I618 Advanced Computer Science II (Part II)

1/18

Algorithms on Interval/Chordal Graphs

- Some efficient algorithms on the graphs
 - based on the graph properties, especially;
 - [Thm 5] Every interval graph has a compact representation in [1..|V]], and all maximal cliques appear on the representation.
 - ... we can solve many problems by "sweeping" from left to right.
 - [Thm 6] In a chordal graph, every separator is a clique. ... which allows us to use "divide-and-conquer."
 - [Thm 9] A chordal graph is an intersection graph of subtrees of a tree.
 - ... which generalizes the results on interval graphs;
 - each node of the tree *can* correspond to a maximal clique,
 - the number of nodes *can* be at most /V/.
 - ... which allows us "dynamic programming" on the tree.

The tree is called "clique tree," but it requires more detailed analysis to make it "compact" since [Thm 9] does not construct a compact one.

Algorithms on Interval/Chordal Graphs

Basic problems

- graph isomorphism asks if two graphs are essentially "same".
 - its difficulty is *hereditary*; superclass is more difficult and subclass is easier.
 - graph isomorphism is *hard* for chordal graphs (and its superclasses)
 - graph isomorphism is *linear time solvable* for interval graphs (and its subclasses)

graph recognition determines if a given graph is in the class.

- its difficulty is not hereditary; we need specified algorithm for each graph class
- chordal graphs can be recognized in linear time
- interval graphs can be recognized in linear time

- The graph isomorphism problem
 - asks if there is a one-to-one mapping of vertex sets which keeps adjacency relationship.

- The graph isomorphism problem
 - asks if there is a one-to-one mapping of vertex sets which keeps adjacency relationship.

- The graph isomorphism problem
 - asks if there is a one-to-one mapping of vertex sets which keeps adjacency relationship.
- The GI problem is very natural basic problem.
 - It is in \mathcal{NP} , but it is not known if it is in \mathcal{P} or \mathcal{NP} complete
 - Iong standing open problem
 - many researchers feel it is easier than \mathcal{NP} -complete problems
 - one candidate between \mathcal{P} and \mathcal{NP} -complete problems.
 - □ Hence we introduce 'GI-completeness';
 - the GI problem is GI-complete on a graph class C if the GI problem is still as hard as the usual one even on the class C.

The GI problem is very natural basic problem.

- □ Hence we introduce 'GI-completeness';
 - the GI problem is GI-complete on a graph class C if the GI problem is still as hard as the usual one even on the class C.

[Example 1] The GI problem for bipartite graphs is GI-complete.

(Proof) For any given graph G=(V,E), we construct G'=(V',E') as follows;

1. $V':=V \cup E$

2. $E':=\{\{e,v\}|v\in e\in E\}$

It is easy to see that

- 1. G' is bipartite for any G, and
- 2. G_1 ' and G_2 ' are isomorphic iff G_1 and G_2 are isomorphic. \square

- The GI problem is very natural basic problem.
 - □ For our graph classes...
 - The GI problem on interval graphs is solvable in linear time.
 - Chordal graphs are GI-complete.
 - [Theorem 10] The GI problem for trees can be solved in linear time.
 - (Proof) Exercise! (Or report?) □
 - [Note] Theorem 10 is strongly related to the GI-problem for several graph classes including interval graphs.

[Today's First Goal]

- 1. The results for interval graphs are postponed after recognition.
- 2. GI-completeness of chordal graphs.

The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

- (Proof) It is sufficient to show that the GI problem for general graphs can be reduced to the GI problem for chordal graphs by a polynomial time reduction.
- Let G=(V,E) be a given (general) graph, and G'=(V',E') be a graph constructed as follows;
- 1. $V':=V \cup E$
- 2. E' consists of
 - 1. $\{u, e\}, \{v, e\}$ if $e = \{u, v\}$ in E,
 - 2. $\{e_1, e_2\}$ for all e_1, e_2 in *E*.

The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

(Proof) It is sufficient to show that the GI problem for general graphs can be reduced to the GI problem for chordal graphs by a polynomial time reduction.

It is sufficient to show that

- I G' is a chordal graph, and
- 2. G_1 and G_2 are isomorphic iff so are G_1 ' and G_2 '.

The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

- (Proof) It is sufficient to show that the GI problem for general graphs can be reduced to the GI problem for chordal graphs by a polynomial time reduction.
- 1. *G*' is a chordal graph;

any cycle $C=(v_1,v_2,...,v_k,v_1)$ of length at least 4 contains at least two vertices in E, which are joined by a chord.

The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

(Proof) 2. G_1 is isomorphic to G_2 iff so are G_1 ' and G_2 '

 \Leftrightarrow G can be reconstructed from G' up to isomorphism.

For given G'=(V',E'),

- 1. E can be determined by the set of vertices
 - 1. E induces a clique
 - 2. each of them have two neighbors in V'-E.
- 2. *V* is determined by *V*'-*E*, and *G* can be reconstructed uniquely. \Box

The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

- [Note] The chordal graph in the proof of [Theorem 11] is a special chordal graph G=(V,E);
 - V can be partitioned into two sets X and Y such that G[X] induces a clique and G[Y] induces an independent set.
 Such graphs are called "split graphs."

[Corollary 2] The GI problem for split graphs is GI-complete.

Algorithms on Interval/Chordal Graphs

- The graph recognition problem
 - difficulty is *not hereditary*; we need specified algorithm for each graph class
 - chordal graphs can be recognized in linear time
 - interval graphs can be recognized in linear time
- Very rough history...
 - chordal graph
 - Lexicographically breadth first search
 - Maximum cardinality search
 - interval graph
 - based on canonical tree representations
 - based on LexBFS
 - based on modular decompositions

Recognition of Interval/Chordal Graphs

- Rough history of the graph recognition...
 - chordal graph... linear time recognition by
 - Lexicographically breadth first search (LexBFS)
 - □ [Rose, Tarjan, Lueker 1976]
 - Maximum cardinality search
 [Tarjan, Yannakakis 1984]

Those two algorithms are so "good" that we have no chance to "improve"

- □ interval graph... linear time recognition by
 - 1970s-80s; based on canonical tree representations
 - □ [Booth, Lueker 1976], [Lueker, Booth 1979], [Korte, Möhring 1989]
 - 1990s; based on LexBFS
 - □ several papers...,[Corneil, Olariu, Stewart 1998]
 - 2000-?; based on modular decompositions
 - □ some papers..., [McConnell, de Montgolfier 2005]

Those algorithms have more detailed history, which will be explained later (not today)... [Today's Next Goal]

Recognition of a C^{3.} Brief introduction of MCS (and LexBFS).

- Rough history of the graph recognition of chordal graphs
 - Lexicographically breadth first search (LexBFS)
 - by [Rose, Tarjan, Lueker 1976]
 - LexBFS is used to recognize several graph classes including
 - chordal graphs, interval graphs, cographs, Ptolemaic graphs, unit interval graphs, …
 - A survey for (only?) LexBFSs can be found in [Corneil 2004], which is an invited talk at WG 2004.
 - Maximum cardinality search (MCS)
 - by [Tarjan, Yannakakis 1984]
 - A relatively *few* related results are known about MCS.
 - LexBFS and MCS are simple for implementation, have good property, and hence they are well investigated.

Recognition of a Chordal Graph

- LexBF<u>S</u> and MC<u>S</u> are a kind of "search" algorithms.
 - Both algorithms find *reverse* of a PEO as follows;
 - 1. put any vertex as v_n ;
 - 2. for each i=n-1, n-2, ..., 1
 - 1. find the next vertex and put it as v_i

[Observation 1] Any vertex can be the last vertex of a PEO on a chordal graph.

(Proof) Exercise!! (Hint: consider the tree model.)

[Point] How can we find the next vertex?

Recognition of a Chordal Graph

- LexBFS and MCS are a kind of "search" algorithms.
 - Both algorithms find *reverse* of a PEO as follows;
 - 1. put any vertex as v_n ;
 - 2. for each *i*=*n*-1, *n*-2, ..., 1
 - 1. find the next vertex and put it as v_i

[Point] How can we find the next vertex?

[MCS] the next vertex v_i is determined by

 $v_i := \max |N(v_i) \cap \{v_{i+1}, v_{i+2}, \dots, v_n\}|,$ which is the reason why we call it "maximum cardinality" search. (Ties are broken in any way.)

