
1/19

I618 Advanced Computer Science II
(Part II)

Ryuhei Uehara
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

12/21 11:00-12:30
1/ 7 15:10-16:40
1/ 9 9:20-10:50
1/11 11:00-12:30
1/16 9:20-10:50

I will give you some report problems on January.

2/19

Algorithms on Interval/Chordal Graphs
Basic problems

graph isomorphism;
graph isomorphism is GI-complete for chordal
graphs [Done!]
graph isomorphism is linear time solvable for
interval graphs [Postponed after recognition]

graph recognition;
chordal graphs can be recognized in linear time

LexBFS & MCS
interval graphs can be recognized in linear time

canonical tree representation
multi-sweep LexBFSs
modular decomposition

3/19

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

Both algorithms find reverse of a PEO as follows;
1. put any vertex as vn;
2. for each i=n-1, n-2, …, 1

1. find the next vertex and put it as vi

2

3

6

7

4

5

1[Point] How can we find the next vertex?
[MCS] the next vertex vi has the most numbered neighbors,

which is determined by
vi := max |N(vi)∩{vi+1,vi+2,…,vn}|,

which is the reason why we call it
“maximum cardinality” search.
(Ties are broken in any way.)

4/19

Recognition of a Chordal Graph
Lexicographically Breadth First Search;

X<Y if and only if
1. ∃i xi<yi, and xj=yj for all j<i, or
2. if xi=yi for all i in [1..min{n,m}], X<Y if n<m or Y<X if n>m
(Otherwise, we have X=Y.)
E.g., ε< 0101 < 01010 < 01011 < 01100 < 1
We can apply the lex. ordering over ordered sets;

(1,2,3)<(1,2,3,4)<(1,2,5)<(1,3,4)
(3,2,1)<(4,3,1)<(4,3,2,1)<(5,2,1)

[Definition 8] Lexicographical ordering of two strings
X=x1x2…xn and Y=y1y2…ym are defined as follows
(usual ordering in dictionary):

5/19

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

Both algorithms find reverse of a PEO as follows;
1. put any vertex as vn;
2. for each i=n-1, n-2, …, 1

1. find the next vertex and put it as vi

[Point] How can we find the next vertex?
[LexBFS] the next vertex vi is determined by the reverse of the

lexicographically ordering of the neighbor sets
N(v)∩{vn,vn-1,…,vi+1},

where neighbor sets are ordered in reverse of PEO.
(Ties are broken in any way.)

2

3

6

7

4

5

1

2

3

6

7

4

5

1

This is a natural ordering if we compute the reverse
of a PEO, which appears some papers…

6/19

Recognition of a Chordal Graph
[LexBFS] the next vertex vi is determined by the reverse of the

lexicographically ordering of the neighbor sets
N(v)∩{vn,vn-1,…,vi+1},

where neighbor sets are ordered in reverse of PEO.
(Ties are broken in any way.)

7

5

10 9

8

6

(10)(10)

(10)(10,9)

(9)(9,8)

(8)

4

3

2

1
(6)

(7)(4)

(5)

7/19

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

[Natural explanation]

[LexBFS] the next vertex vi is determined by the reverse of the
lexicographically ordering of the neighbor sets

N(v)∩{vn,vn-1,…,vi+1},
where neighbor sets are ordered in reverse of PEO.

vn

vn-1

vn-2

vn

vn-1 vn

<

< < <

Once we divide a set into two subsets
by neighborhood, the relationship

never be broken.

Implementation is easy by a priority queue.

8/19

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

[Theorem 12] Let G=(V,E) be any graph. Then we can
determine if G is chordal or not in O(|V|+|E|) time and space.

To prove Theorem 12, we need two lemmas;

[Lemma 2] Let G be any chordal graph. Then
1. output of LexBFS is a PEO of G, and
2. output of MCS is a PEO of G.

[Lemma 3] Let v1, v2, …, vn be any ordering over V.
Then we can determine if it is a PEO or not in
linear time.

(Proof of Lemma 3) Omitted; check the papers!

9/19

For a chordal graph

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.
We only show a part of proofs briefly…

[Lemma 2] Let G be any chordal graph. Then
1. output of LexBFS is a PEO of G.

[Note before proof] Not necessarily all vertex orderings of
a chordal graph are PEO.

[Example 2]

31 2

,

is a PEO, but 31 2 is not a PEO.

10/19

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.
We only show a part of proofs briefly…

[Lemma 2] Let G be any chordal graph. Then
1. output of LexBFS is a PEO of G.
[Proof (Sketch)] To derive contradictions, assume that

LexBFS outputs a vertex ordering v1, v2, …, vn which is
not a PEO for a chordal graph G.
Then there is a non-simplicial vertex vi in G[{vi,vi+1,…,vn}].
Thus N(vi)∩{vi+1,…,vn} contains two non-adjacent vertices

vj and vk. We take the maximum vi and maximum pair in
N(vi).

vi vi+1 vj vk vn… … …

11/19

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

[Lemma 2] For any chordal graph G, an output of LexBFS
is a PEO of G.

[Proof (Sketch)]

Thus, from vj and vk, we repeat to find precedessors until
we meet the (first) common vertex vl.

vi vi+1 vj vk vn… … …

In LexBFS, except vn, each v is added into the
ordering by a “precedessor” u; v is added because v is in N(u).

… vl… …

Then, we have a cycle (vi,vj,…,vl,…,vk,vi) of length at least 4
with {vj,vk} E.∉

12/19

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

[Lemma 2] For any chordal graph G, an output of LexBFS
is a PEO of G.

[Proof (Sketch)]

vi vi+1 vj vk vn… … … … vl… …

We have a cycle (vi,vj,…,vl,…,vk,vi) with {vj,vk} E.∉

Since G is chordal, vi has to have a neighbor vl’ between vj
and vk. Then, with careful analysis of LexBFS and
maximality of taking the vertices, we have to have {vi,vl}∊E,
and we conclude vj<vi or vk<vi, which is a contradiction.

13/19

Algorithms on Interval Graphs
Graph recognitions of interval graphs

based on canonical tree representation
which construct the tree representation
using the tree, we can solve graph isomorphism in linear
time.

based on multi-sweep LexBFSs
which try to embed given graph into a specific interval
representation
tie breaking rule of LexBFS is very important

based on modular decomposition
which decompose given graph into disjoint components
which are called modular

14/19

Algorithms on Interval Graphs
Canonical Tree representation of an interval graph
Basic idea comes from simple observation…

[Observation 2] For an interval graph G, there are several
distinct compact interval representations.

intervals can be ordered in arbitrary ordering

intervals can be ordered in “forward” or “backward.”

15/19

Algorithms on Interval Graphs
Canonical Tree representation of an interval graph

[Definition 9] A PQ-tree consists of two kinds of nodes,
called P-nodes and Q-nodes.

The children of a P-node are ordered in arbitrary way.
The children of a Q-node are ordered in forward or
backward.

[Theorem 13] For any interval graph G, its all
affirmative compact interval representations
can be represented by one PQ-tree, where
each leaf corresponds to a maximal cliques
in the interval graph.

([Theorem 3] Each integer point corresponds to a maximal
clique on a compact interval representation…)

Q-node

P-node

16/19

Algorithms on Interval Graphs
Canonical Tree representation of an interval graph

[Theorem 13] For any interval graph G, its all affirmative
compact interval representations can be represented by
one PQ-tree, where each leaf corresponds to a maximal
cliques in the interval graph.

C1 C2 C3 C4 C5 C6

C6 C4 C5 C3 C1 C2

C1 C2 C3 C4 C5 C6

Q-node

P-node

Each vertex has to appear in
consecutive cliques.

17/19

Algorithms on Interval Graphs
Canonical Tree representation of an interval graph

[Theorem 14] A graph G is an interval graph if and only if it
has a unique PQ-tree for its maximal cliques.

C1 C2 C3 C4 C5 C6

[Theorem 15] [Booth, Lueker 1976] For an interval graph G,
its PQ-tree can be constructed in linear time.

[Proof (Sketch)] They give incremental algorithm, which
has many case analysis with around 20 templates.

Each vertex
has to

appear in
consecutive

cliques.

C1 C2 C3 C4 C5 C6

18/19

Algorithms on Interval Graphs
Canonical Tree representation of an interval graph

[Note] Any interval graph G has a unique PQ-tree, but a
PQ-tree can represent non-isomorphic interval graphs.

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

19/19

Algorithms on Interval Graphs
Canonical Tree representation of an interval graph

[Theorem 16] [Lueker, Booth 1979] (1) Any interval graph
G has a unique labeled PQ-tree, and vice versa.

C1 C2 C3 C4 C5 C6

[Theorem 16] [Lueker, Booth 1979] (2) For any interval graph,
its labeled PQ-tree can be constructed in linear time.

[Corollary 3] The GI problem for interval graphs can be
solved in linear time.

