
1/20

I618 Advanced Computer Science II
(Part II)

Ryuhei Uehara
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

12/21 11:00-12:30
1/ 7 15:10-16:40
1/ 9 9:20-10:50
1/11 11:00-12:30
1/16 9:20-10:50

I give you some report problems TODAY with deadline 1/31

2/20

Algorithms on Interval/Chordal Graphs
Some efficient algorithms on the graphs

Compact interval representation of an interval graph
which can be used for recognition and graph isomorphism.
each “cut” at integer point gives us a maximal clique which
allows us to solve many problems efficiently.

“Compact” clique tree of a chordal graph
which cannot be used for graph isomorphism, but,
each “cut” at a node of the tree gives us a maximal clique
which allows us to use dynamic programming and we can
solve many problems efficiently.

the ideas can be extended to general graphs…
k-tree and partial k-tree
path decomposition and tree decomposition

3/20

Algorithms on Interval/Chordal Graphs
“Compact” clique tree of a chordal graph

a clique tree T=(C,E) of a chordal graph G=(V,E) is…
each vertex v corresponds to subtree Tv of T
G is an intersection graph of Tvs of T
for each node x in T ;

let C(x) be the set of subtree Tvs that contains the node x.
clearly, the vertices in C(x) induces a clique in G.
that is, each node x in T corresponds to a clique C(x) in G.

3

4

6

7

5 2

1

4,6,7 5,6,7 2,5

1,73,4,6,7
G TT

4/20

Algorithms on Interval/Chordal Graphs
“Compact” clique tree of a chordal graph

a clique tree T=(C,E) of a chordal graph G=(V,E) is…
clearly, the vertices in N(x) induces a clique in G.

[Definition 10] A clique tree is compact if and only if for each
node x in T, C(x) induces a maximal clique.

This clique is not maximal.
Hence this is not compact.

This clique is not maximal.
Hence this clique tree is not compact.

3

4

6

7

5 2

1

4,6,7 5,6,7 2,5

1,73,4,6,7
G TT

5/20

Algorithms on Interval/Chordal Graphs
“Compact” clique tree of a chordal graph

[Lemma 3] If a node x in T does not corresponds to a maximal
clique, C(x)⊆C(y) for some y which is a neighbor of x.

3

4

6

7

5 2

1

4,6,7 5,6,7 2,5

1,73,4,6,7G TT

(Proof (Sketch)) If C(x) is not a maximal clique, there is a
maximal clique M that contains C(x). Then, T has to have a
node corresponding to M. The path on T between C(x) and M
has to linearly ordered for inclusion since each vertex
corresponds to a connected tree.

(C.f.) Similar idea can be found in [Def. 3](3).

6/20

Algorithms on Interval/Chordal Graphs
“Compact” clique tree of a chordal graph

[Lemma 4] For any clique tree T of a chordal graph G, we can
construct a compact clique tree T ’ in linear time of |T|.

3

4

6

7

5 2

1

5,6,7 2,5

1,7

3,4,6,7

G TT

(Proof (Sketch)) If C(x) is not a maximal clique, there is a
neighbor y of x with C(x)⊆C(y). We then contract x and y.
Repeating this process, we finally have a compact clique tree.

7/20

Algorithms on Interval/Chordal Graphs
“Compact” clique tree of a chordal graph

[Theorem 17] A graph G is a chordal graph if and only if G has a
compact clique tree representation.

3

4

6

7

5 2

1

5,6,7 2,5

1,7

3,4,6,7

G TT

[Corollary 4] For a compact clique tree T of a chordal graph
G=(V,E), T has at most |V| nodes. For each pair of nodes x
and y in T, we have and .() ()C x C y⊄ () ()C y C x⊄

[Useful property] Each leaf x in T has simplicial vertices in
C(x)-C(y), where y is the neighbor of x.

8/20

Algorithms on Interval/Chordal Graphs
Two notes on compact clique tree

1. Why the graph isomorphism is still hard for chordal
graphs? … which is equivalent to “isn’t the compact
clique tree canonical up to isomorphism?”

The answer is, unfortunately, “No”.
For a chordal graph, there are several distinct compact
clique trees in general.

3

4

6

7

5 2

1

5,6,7 2,5

1,7

3,4,6,7

G T

5,6,7 2,5

1,7

3,4,6,7

T ’

[Open Problem] As far as I know, there are no known O(2n) time
algorithms that solve the GI problem on chordal graphs.

9/20

Algorithms on Interval/Chordal Graphs
Two notes on compact clique tree

2. As far as I know, most efficient and simple algorithm that
constructs a compact clique tree is given in chapter 15 of
“Efficient Graph Representation,” J.P. Spinrad, 2003.

the outline of the algorithm is as follows;
1. compute a PEO by LexBFS or MCS;
2. for each vn,vn-1,…,v1, grow the tree as follows;

1. if vi gives a new maximal clique, grow the tree, or
2. add vi into the current maximal clique.

it is easy to implement the algorithm to run in linear time.

[Corollary 5] For a chordal graph, its compact clique tree can be
constructed in linear time.

10/20

Algorithms on Interval/Chordal Graphs
Efficient algorithms on interval/chordal graphs;

useful property of compact representations;
interval graphs;

by Lemma 1, on a compact representation, there is a
(simplicial) vertex that corresponds to the interval [0,0].

chordal graphs; similar property of interval graphs;
on a compact representation,

1. there is a simplicial vertex that corresponds to a leaf
2. each leaf contains such a simplicial vertex

problems related to {clique/independent set} are
easy to solve;

1. maximum clique; find the maximum one in the
compact representation.

11/20

Algorithms on Interval/Chordal Graphs
Efficient algorithms on interval/chordal graphs;

problems related to {clique/independent set} are
easy to solve;

2. maximum independent set;
1. S := φ;
2. on the clique tree,

1. pick up a simplicial vertex v corresponding to a leaf in
the tree;

2. S := S∪{v};
3. remove v and its neighbors from the graph;
4. if the graph is not empty, go to step 2.

3

4

6

7

5 2

1

2,5

1,7G T

5,6,7,73,4,6

12/20

Algorithms on General Graphs
Extensions…

We admit to lack of edges on each representation;

two vertices u, v are
adjacent

corresponding trees/intervals
share a common node

two vertices u, v are
adjacent

corresponding trees/intervals
share a common node

[Example 3] Long cycle, which is not a chordal graph.

1
2 3 4

5
8 7 6

1,2,8 2,3,8 3,4,8 4,5,8 5,6,8 6,7,8

1. Each edge in G appears in a node in I,
2. each vertex in G appears consecutively in I, and
3. not all pairs in a node in I produce edges in G.G

I

13/20

Algorithms on General Graphs
Extensions…

We admit to lack of edges; on each representation,
From the viewpoint of efficient algorithms, the
representation is enough to solve many problems; each node
in the representation is still a separator.
From the graph theoretical point of view, finding the
representation of G=(V,E) corresponds to finding a super
graph G’=(V,E’) such that E⊆E’ and G’ is chordal.

1
2 3 4

5
8 7 6

1,2,8 2,3,8 3,4,8 4,5,8 5,6,8 6,7,8

1. Each edge in G appears in a node in I,
2. each vertex in G appears consecutively in I, and
3. not all pairs in a node in I produce edges in G.G

I

[Observation] Any graph has a trivial super chordal graph;
1,2,3,4,5,6,7,8 any graph is a subgraph of Kn.

14/20

Algorithms on General Graphs
Extensions…

1
2 3 4

5
8 7 6

1,2,8 2,3,8 3,4,8 4,5,8 5,6,8 6,7,8

G

T

[Definition11] A tree decomposition of a graph G=(V,E) is a tree
T=(B,E) such that

1. each bag B in B is B⊆V,
2. for each edge e={u,v} in E, there is a bag B with u,v in B,
3. each vertex v in V induce a (connected) subtree Tv of T;

precisely, Tv consists of nodes B in B with v in B.

1,2,3,4,5,6,7,8 T ’
bag

15/20

Algorithms on General Graphs
Extensions…

We want to have a good tree decomposition
“good” = “max{|B|} is small”

1
2 3 4

5
8 7 6

1,2,8 2,3,8 3,4,8 4,5,8 5,6,8 6,7,8

G

T

1,2,3,4,5,6,7,8 T ’

[Definition12]
1. The treewidth tw(T) of a tree decomposition T=(B,E) of a

graph G=(V,E) is defined by tw(T)=max{|B|} for all B in B.
2. The treewidth tw(G) of a graph G is defined by min{tw(T)}-

1 for all tree decompositions T.

Any cycle has treewidth 2.

16/20

Algorithms on General Graphs
Extensions…

1

2 3

4 5

7

6

1,2 1,3

2,4 3,5 3,6

5,7
G T

Any cycle has treewidth 2.

Any tree has treewidth 1.

[Definition12]
1. The treewidth tw(T) of a tree decomposition T=(B,E) of a

graph G=(V,E) is defined by tw(T)=max{|B|} for all B in B.
2. The treewidth tw(G) of a graph G is defined by min{tw(T)}-

1 for all tree decompositions T.

17/20

Algorithms on General Graphs
Known Results

Computing the treewidth of a graph is NP-complete in general.
there are several approximation algorithms for some graph
classes.

But, the treewidth is fixed parameter tractable; that is,
if the graph G=(V,E) has treewidth k, we can compute the tree
decomposition of treewidth k in O(f(k) poly(n)) time, where n=|V|,
even if we do not know the value of k; here, f(k) is not
polynomial of k, but f(k) is independent from n.
actually, for fixed k, there is a linear time algorithm that
computes the treewidth. [Bodlaender 1996]

Thus, in a practical sense, treewidth can be computed
… for graphs having small treewidth.

18/20

Algorithms on General Graphs
Graphs with small treewidth k;

“A graph has treewidth k” means the graph can be
decomposed into small graphs (with vertices of
constant number) by using the separators of size at
most k.

Typical “dynamic programming” on the tree
decomposition works; for each merging process of
nodes, the algorithm may maintain some tables of
size O(2k), which is polynomial of n (or constant).

in some areas like bioinformatics, treewidth of graphs is
bounded by 3.

19/20

Algorithms on General Graphs
Graphs with small treewidth k;

Bodlaender wrote two survey papers;
“A partial k-arboretum of graphs with bounded treewidth,”
Theoretical Computer Science, 209, p.1-45, 1998.
“A tourist guide through treewidth,” Acta Cybernetica, 11, p.1-
21, 1993.

… and tons of papers can be found at Bodlaender’s web page
(http://people.cs.uu.nl/hansb/mypapers.html)

in the papers, you can find many tractable problems
on graphs with small treewidth.

20/20

Report
Deadline: January 31 (Thusday), 17:00.

Submit to Uehara at I67b.

1. Prove the Helly property for the set of intervals.

2. Prove that the graph isomorphism can be solved in
linear time for trees.

3. Prove that any vertex can be the last vertex of a
perfect elimination ordering of a chordal graph.

