

Simple Undecidable Problem on Origami

Japan Advanced Institute of Science and Technology Ryuhei Uehara (上原 隆平) uehara@jaist.ac.jp

Computational Origami

Intractable results:

- The complexity of Flat Origami Bern and Hayes, SODA, 1996.
- Tractable results:
 - *TreeMaker*; Free software by R. Lang

given a metric tree, it generates the development.

Uehara:

- NP-hardness of a Pop-up book (2006)
- Efficient algorithms for pleat folding (2010)

Complexity/Efficiency on Origami(?)

- From the viewpoint of Theoretical Computer Science...
- E.g., <u>Two Resources</u> on Turing Machine Model
 - 1. <u>Time</u>: The number of applied operations
 - 2. <u>Space</u>: The number of memory cells required to compute

Complexity/Effic Origan

From the viewpo Computer Scien Wait a moment! At first, what is the "<u>computation model</u>" corresponding to Turing Machine?

- Two Resources on Origina
 - Time...The number of fold g(basic operation)
 - J. Cardinal, E. D. Demaine, M. L. Demaine, S. Imahori, T. Ito, M. Kiyomi, S. Langerman, <u>R. Uehara</u>, and T. Uno: Algorithmic Folding Complexity, *Graphs and Combinatorics*, Vol. 27, pp. 341-351, 2011.
- 2. Space...???
 - <u>R. Uehara</u>: Stretch Minimization Problem of a Strip Paper, <u>5th</u> <u>International Conference on Origami in Science, Mathematics and</u> <u>Education</u>, 2010/7/13-17.
 - <u>R. Uehara</u>: On Stretch Minimization Problem on Unit Strip Paper, <u>22nd Canadian Conference on Computational Geometry</u>, pp. 223, 226, 2010/8/9-11.

Origami as a computation model?

- Origami as a "computation model"
 - Input: "points" on a sheet of square paper
 - Basic operations:
 - 7 operations by "Huzita & Hatori"
 - Comparison & branch:
 - decision of coincidence of points/lines_____
 - finite operations of "straight edge and compass"

A4.

- can solve **quadratic** equations
- finite combinations of 7 basic operations above
 - can solve **quartic** equations
 - (E.g., can trisect any angle)

...They do *not* deal with "computability" and/or "computational complexity" of an Origami

Origami as a computation model?

- "Reasonable" Origami model would be...
 - Given: finite number of points on a sheet of paper
 - Operation: 7 basic operations proposed by Huzita and Hatori
 - Each point has a coordinate (*x*, *y*) with <u>real numbers</u> *x* and *y*
 - "a point" and "a line";
 - We can "*use*" it (if it exists) to make another one
 - We can <u>compare accuracy</u> the coincidence between two "points" which can be an intersect of two or more lines
 - "Nonexistent point/line" (which may be goal) can be "seen", but cannot be "used"

Origami as a computation model?

- "Reasonable" Origami model would be...
 - Given: finite number of points on a sheet of paper
 - Operation: 7 basic operations proposed by Huzita and Hatori
 - Each point has a coordinate (x,y) with <u>real numbers</u>
 x and y

[Key points]

- Points on an origami have coordinates (x,y), which are real numbers. Thus, they are uncountable infinity.
 Sequence of operations are countable infinity.
- Sequence of operations are **countable infinity**.
- \Rightarrow Natural "undecidable" problem...

Undecidable problem on Origami

- Consider the following simple (?) foldability problem:
 Input: Three "start points" (x, y, z) and a "goal point" w on a unit square paper
 - **Question**: Folding from points (x, y, z), after finite number of foldings, can you make two lines l_1 , l_2 such that their intersection coincides to w?
- Simpler foldability on <u>1D</u> Origami:
 - **Input**: Three "start points" (*x*, *y*, *z*) and a "goal point" *w* on a line segment [0,1]
 - **Question:** Folding from points (x, y, z), after finite number of foldings, can you fold at w?

[Theorem]

Foldability is undecidable even on 1D Origami

That is, we cannot make a program that always answers either [Yes] or [No]. 2010/11/6 8/11

Undecidable problem on Origami

[Theorem]

Foldability is undecidable even on 1D Origami

[Outline of the proof]

To derive a contradiction, we assume that a program (or some algorithmic way) P solves it. Then, for fixed x,y,z, we define point sets S*i* according to the step *i* of P(x,y,z,w);

 $Si = \{ w \mid P(x,y,z,w) \text{ halts after the } ith \text{ step for } w \}$

Then, |Si| is countable, and so is $\cup Si$. By a diagonalization, we can construct w such that P(x,y,z,w) never halt in a finite step.

2010/11/6

Not so trivial.

9/11

Undecidable problem on Origami

[Theorem]

Foldability is undecidable even on 1D Origami

[Yes/No]

[Outline of the proof (cont.)]

- Si = { $w \mid P(x,y,z,w)$ halts after the *i*th step for w}
- •"Yes": "points coincide with the other existing points" \Rightarrow countable!
- •<u>"No" : may be for uncountable many w?</u> \Rightarrow "No" to all real numbers in (a,b)
- We can make a point p in (a,b) with finite operations;
 hence p in (a,b) is a "Yes" instance, a contradiction.
 "No" points are also countable, and |Sil is countable.

 \therefore "No" points are also countable, and |Si| is countable.

So what?...what this theorem means

Undecidability of origami...

- The halting problem on TM implies a kind of "strongness" of the machine model.
- So it implies "strongness" of an origami model in a paradoxical way?

Thank You!

11/11

Future works...

- Model admitting error ε: Ex: "real number r" is represented by [r-ε, r+ε]
- From the viewpoint of algorithms
 Ex: "Polynomial time constructible real numbers" by Origami?