今日の予定

- 1. 展開図の基礎的な知識
- 1. 正多面体の共通の展開図
- 2. 複数の箱が折れる共通の展開図:2時間目
- 3. <u>Rep-Cube: 最新の話題</u>
- 4. 正多面体に近い立体と正4面体の共通の展開図
 5. ペタル型の紙で折るピラミッド型:2時間目~3時間目

Dissection of Unfolding of Cubes and Its Generalization

Zachary Aoel (MIT) Brad Ballinger (Humboldt State Univ) Erik D. Demaine (MIT) Martin L. Demaine (MIT) Jeff Erickson (EUC)

Done at 31st Bellairs Winter Workshop on Computational Geometry, Barbados, 2016

Extension to Folding problem

Natural Question: Is there any polyomino that folds to a cube and partitioned into some polyominoes s.t. each of which admits to fold a small cube?

Main result

Thm 1 There exists a regular rep-cube of order k for k = 2, 4, 5, 8, 9, 36, 50, 64.

Thm 2 There exists a regular rep-cube of order 36gk'² for any positive integer k' and an integer g in {2, 4, 5, 8, 10, 50}. I.e., there exists an infinite number of regular rep-cubes.

Thm 3 There exists a non-regular rep-cube of order k for k = 2, 10.

Thm 1 There exists a regular rep-cube of order k for k = 2, 4, 5, 8, 9, 36, 50, 64.

Thm 1 There exists a regular rep-cube of order *k* for *k* = 2, 4, 5, 8, 9, 36, 50, 64.

Thm 2 There exists a regular rep-cube of order 36gk'² for any positive integer k' and an integer g in {2, 4, 5, 8, 10, 50}. I.e., there exists an infinite number of regular rep-cubes.

Proof Take any pattern in Thm 1. Then replace each unit square by the right pattern for *k*=36 in Thm 1. We can repeat it recursively any times.

Thm 3 There exists a non-regular rep-cube of order k for k = 2, 10.

Future work

Thm 1 There exists a regular rep-cube of order *k* for *k* = 2, 4, 5, 8, 9, 36, 50, 64.

Thm So far, these patterns in Theorems 1 and 3 are given by just trial and errors!! We need something more...

for

Thm 3 There exists a non-regular rep-cube of order k for k = 2, 10.

Generalization to 2D

Generalization to 2D

Thm 4 For any positive real numbers A, a_1 , a_2 , ..., a_k such that $\Sigma_i a_i = A$, there is a net of a doubly-covered square with area A that can be cut into k polygons with areas $a_1, a_2, ..., a_k$, each of which can be folded into a doubly-covered square. Doubly covered squares

Return to 3D

Thm 5 For any positive real numbers $A, a_1, a_2, ..., a_k$ such that $\Sigma_i a_i = A$, there is a net of a regular tetrahedron with area A that can be cut into k polygons with areas $a_1, a_2, ..., a_k$, each of which can be folded into a regular tetrahedron. Regular tetrahedron

Conclusion and Future work Conclusion: We introduce a new notion of rep-cube We have many examples General Theoretically, there exist infinitely many method for We can consider many variants/generalizations $3 \times 3 \times 3$ any Many open questions; e.g., Pythagorean triple...? 54 $5 \times 5 \times 5$ 150

Future Work

- We need more theoretical work/results?
- Applications ... not only recreational math?

 $4 \times 4 \times 4$