今日の予定

1．展開図の基礎的な知識
1．正多面体の共通の展開図
2．複数の箱が折れる共通の展開図：2時間目
3．Rep－Cube：最新の話題
4．正多面体に近い立体と正4面体の共通の展開図
5．ペタル型の紙で折るピラミッド型：2時間目～3時間目

Dissection of Unfolding of Cubes and Its Generalization

Done at $31^{\text {st }}$ Bellairswinter Workshop on Co tuyt oinal Geomeary, Barbados, 2016

Solomon W. Golomb (1932-2016)

From the viewpoint of Recreational Mathematics, he invented Polyominoes: shapes made by unit squares

Rep-tiles: shapes partitionable to similar shapes

What links here
Uod file
Special pages
Donum-annt Isale
Academic achievements [edit]

Extension to Folding problem

Natural Question: Is there any polyomino that folds to a cube and partitioned into some polyominoes s.t. each of which admits to fold a small cube?

New notion: "Rep-cube"

$>$ A polyomino is "rep-cube" \Leftrightarrow it folds to a cube

- of order k
\Leftrightarrow cut into k parts s.t. each of them folds to a cube
- regular $\Leftrightarrow k$ parts have the same size (area)

Main result

Thm 1 There exists a regular rep-cube of order k for

$$
k=2,4,5,8,9,36,50,64 .
$$

Thm 2 There exists a regular rep-cube of order $36 \mathrm{gk}{ }^{22}$ for any positive integer k ' and an integer g in $\{2,4,5,8,10,50\}$. I.e., there exists an infinite number of regular rep-cubes.

Thm 3 There exists a non-regular rep-cube of order k for $k=2,10$.

Thm 1 There exists a regular rep-cube of order k for $k=2,4,5,8,9,36,50,64$.

\section*{| Method: |
| :---: |
| Trial and Errors |}

Thm 1 There exists a regular rep-cube of order k for $k=2,4,5,8,9,36,50,64$.

Method:
Trial and Errors

$k=50$

Thm 2 There exists a regular rep-cube of order $36 \mathrm{gk}{ }^{22}$ for any positive integer k ' and an integer g in
$\{2,4,5,8,10,50\}$. I.e., there exists an infinite number of regular rep-cubes.

Proof Take any pattern in Thm 1.
Then replace each unit square by the right pattern for $k=36$ in Thm 1. We can repeat it recursively any times.

Thm 3 There exists a non-regular rep-cube of order k

 for $k=2,10$.Method:
Trial and Errors

$$
k=2
$$

$k=10$

Future work

Thm 1 There exists a regular rep-cube of order k for

$$
k=2,4,5,8,9,36,50,64 .
$$

Thm So far, these patterns in Theorems 1 and 3 are given by just trial and errors!! We need something more...

Thm 3 There exists a non-regular rep-cube of order k for $k=2,10$.

Generalization to 2D

Basic Idea;

Fig. 6 (1) A cylinder of circumference a and height b, (2) a common development of two cylinders, (3) the other cylinder of circumference $x / 2$ and height y.

Generalization to 2D

Thm 4 For any positive real numbers $A, a_{1}, a_{2}, \ldots, a_{k}$ such that $\Sigma_{i} a_{i}=A$, there is a net of a doubly-covered square with area A that can be cut into k polygons with areas $a_{1}, a_{2}, \ldots, a_{k}$, each of which can be folded into a doubly-covered square.

Doubly covered squares

Doubly covered square

fold

Return to 3D

Thm 5 For any positive real numbers $A, a_{1}, a_{2}, \ldots, a_{k}$ such that $\Sigma_{i} a_{i}=A$, there is a net of a regular tetrahedron with area A that can be cut into k polygons with areas $a_{1}, a_{2}, \ldots, a_{k}$, each of which can be folded into a regular tetrahedron.

Regular tetrahedron

Conclusion and Future work

Conclusion: We introduce a new notion of rep-cube

- We have many examples
- Theoretically, there exist infinitely many

We can consider many variants/generalizations $3 \times 3 \times 3$

- Many open questions; e.g., triple...? $5 \times 5 \times 5$

Future Work

- We need more theoretical work/results?
- Applications ... not only recreational math?

