今日の予定

5. 時間計算量

- "Folding complexity"入門
 - 理論上、世界最速のジャバラ折りアルゴリズム

6. 領域計算量(?)

- 切手折り問題
- 折り目幅最小化問題
 - NP完全問題、FPTアルゴリズムなど
- 7. (折り紙における決定不能問題)
 - 対角線論法と不完全性定理

A survey on computational complexity of finding good folded state with few crease width

Ryuhei Uehara (JAIST, Japan)

- Erik D. Demaine, David Eppstein, Adam Hesterberg, Hiro Ito, Anna Lubiw, Ryuhei Uehara and Yushi Uno: Folding a Paper Strip to Minimize Thickness, *The 9th Workshop on Algorithms and Computation (WALCOM 2015)*, Lecture Notes in Computer Science Vol. 8973, pp. 113-124, 2015/02/26-2015/02/28, Dhaka, Bangladesh.
- Takuya Umesato, Toshiki Saitoh, Ryuhei Uehara, Hiro Ito, and Yoshio Okamoto: Complexity of the stamp folding problem, Theoretical Computer Science, Vol. 497, pp. 13-19, 2012.

関連研究?

• 英語のイデオムで「紙を10回半分に折る」で「できないことの例え」に なるらしい。

Folding Paper in Half 12 Times:

The story of an impossible challenge solved at the Historical Society office

Alice laughed: "There's no use trying," she said; "one can't believe impossible things." "I daresay you haven't had much practice," said the Queen.

Through the Looking Glass by L. Carroll

BRITNEY'S FOLDING RECORD STILL HOLDS

The long standing challenge was that a *single* piece of paper, no matter the size, cannot be *folded* in half more than 7 or 8 times. Recently, reports have been made that Britney's paper folding record of folding a piece of paper in half 12 times has been broken. These current attempts though laudable and will eventually be

Photo of the 11th Fold, One More to go.

Minimization of Crease width

<u>Input</u>: Paper of length n+1 and $s \{M, V\}^n$

<u>Output</u>: folded paper according to *s*

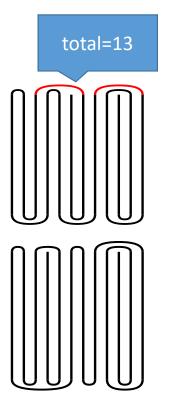
Goal: Find a *good* folded state with *few crease width*

- At each crease, the number of paper layers between the paper segments hinged at the crease is *crease width* at the crease
- Two minimization problems;

Crease width problem

```
Simple non-trivial example (1)
```

Input: MMVMMVVVV

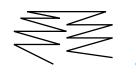

M M V M M V M V V V V 1 2 3 4 5 6 7 8 9 10 11 12

The number of feasible folded states : 100

Goal: Find a good folded state with few crease width

- The unique solution having min. max. value 3 [5|4|3|6|7|1|2|8|10|12|11|9]
- The unique solution having min. total value 11 [5|4|3|1|2|6|7|8|10|12|11|9]

Cf. I'd checked that by brute force...



Crease width problem

Simple non-trivial example (2)

A few facts;

- a pattern has a <u>unique folded state</u> iff it is <u>pleats</u>
- solutions of {min max} and {min total} are different depending on a crease pattern.
- there is a pattern having *exponential* combinations

This pattern is almost pleats, but it has exponentially many folded states....

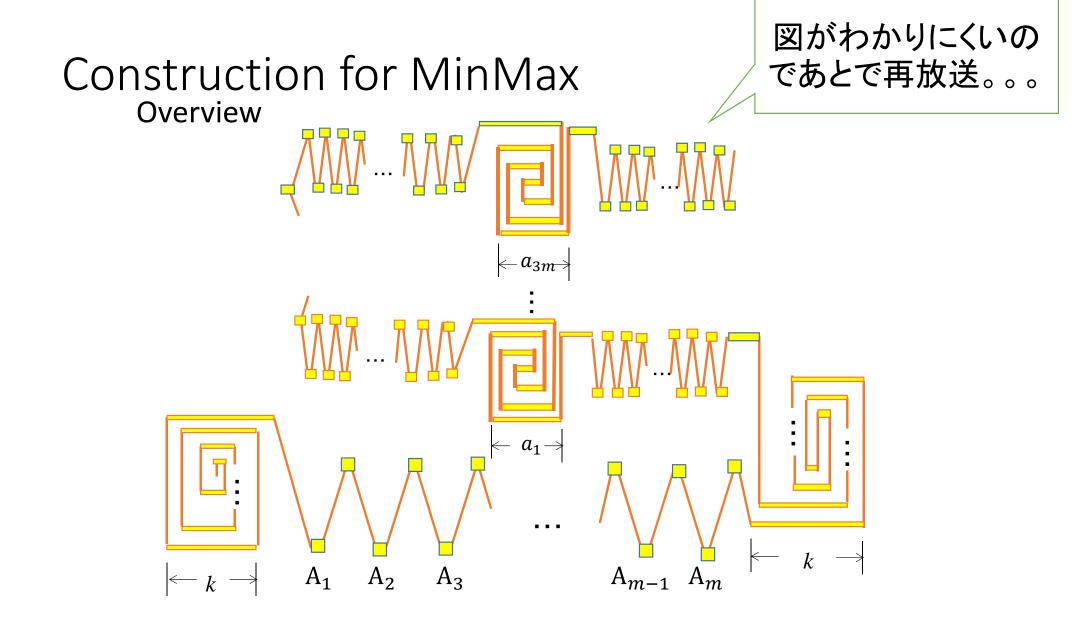
Main Results

The crease width problem (unit interval)

• Min-Max problem: NP-complete

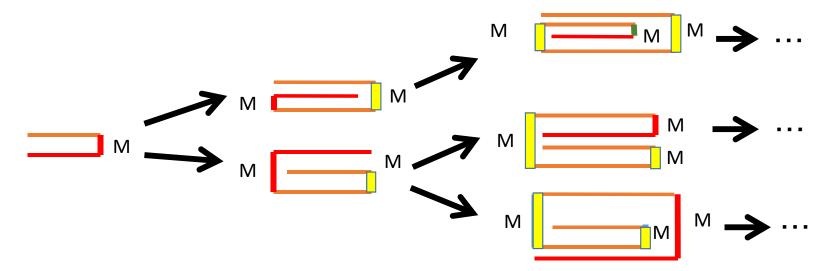
(Reduction from 3-Partition)

- Min-Total problem:
 - Complexity is *still open*...
 - Fixed Parameter Tractable algorithm;
 it runs in O((k+1)^k n) time, where k is the total crease width.
 the algorithm itself is natural, but analysis is bit tricky.


It is solvable if k is quite small...

It is intractable even for small *n*...

MinMax is NP-complete


Proof: Polynomial time reduction from 3-Partition.

<u>3-Partition</u>: Input: Set of integers $A = \{a_1, a_2, ..., a_{3m}\}$ and integer B**3-Partition:** Question: Is there a partition of A to A_1, \ldots, A_m such that $|A_i|=3$ and $\sum_{a:\in A} a_j = B$ $A = \{a_1, a_2, ..., a_{3m}\}$

(Poly-time) Algorithm for MinTotal

- Enumerate all folding ways with respect to the string *s* up to total crease width *k*.
- Each folded state is generated incrementally.

• Check the total crease width at each increment.

Running time

• The algorithm for given fixed total crease width k runs in $O(n^{2+k})$ time.

at each crease, the sequence of c.w. is

• $c_1, c_2, ..., c_i$, ..., with $\sum_{i=1,2,...} c_i \le k$

that is a partition of k

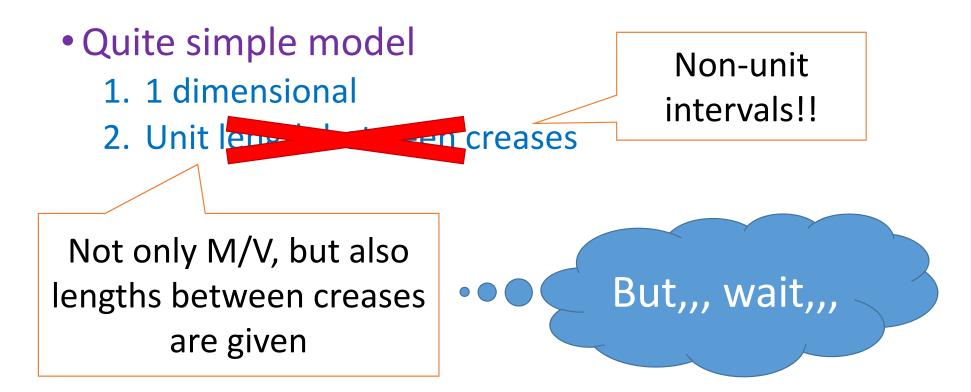
• With more careful (and complex) analysis shows that the algorithm runs in $O((k+1)^k n)$ time!!

That is, this is fixed parameter tractable algorithm!

Known results

Possible extensions in 2012;

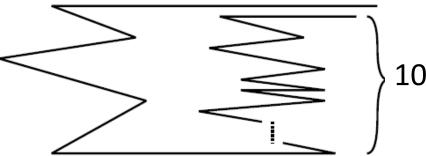
最近ここで進展がありました。


1. <u>Non-unit intervals between creases</u>

How can you measure the thickness of pile of various lengths?

- 2. 2-Dimenaional (...related to Map-folding?) How can you measure the crease-width in 2D?
- 3. Different Criteria for "space complexity"

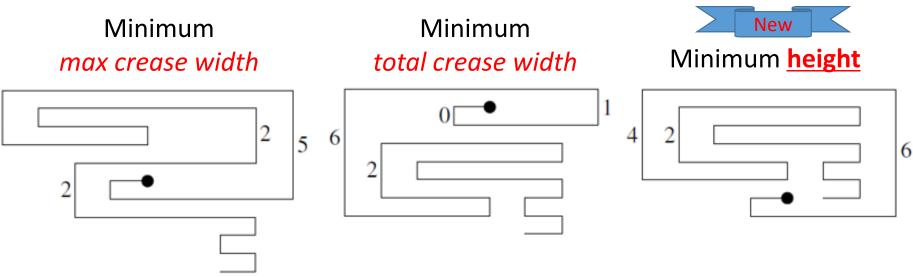
We have few ideas...


(by Prof. Iwama: you can fold <u>left <k</u> and <u>right>k</u> creases in [1..*n*]) (<u>Area</u> to fold for long-pipe folding) Now we turn to •••

Erik D. Demaine, David Eppstein, Adam Hesterberg, Hiro Ito, Anna Lubiw, <u>Ryuhei Uehara</u> and Yushi Uno: Folding a Paper Strip to Minimize Thickness, *The 9th Workshop on Algorithms and Computation (WALCOM 2015)*

For non-unit interval creases...

<u>Crease width</u> = the number of paper layers at a crease?


100 paper layers

How can we count the paper layers?

For non-unit interval creases...

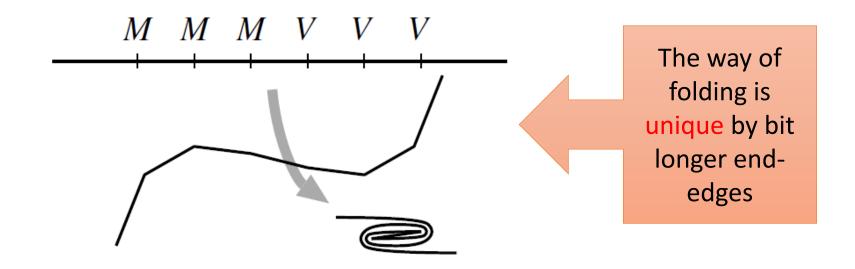
<u>Crease width</u> = the number of paper layers at a crease?

- We introduce three new "widths" of a folded state:
 - Two are natural extensions of Max-CW and Total-CW; one is totally new! •
- For VMVMVVMMMM, e.g., we have;

h = 11, m = 5, t = 11

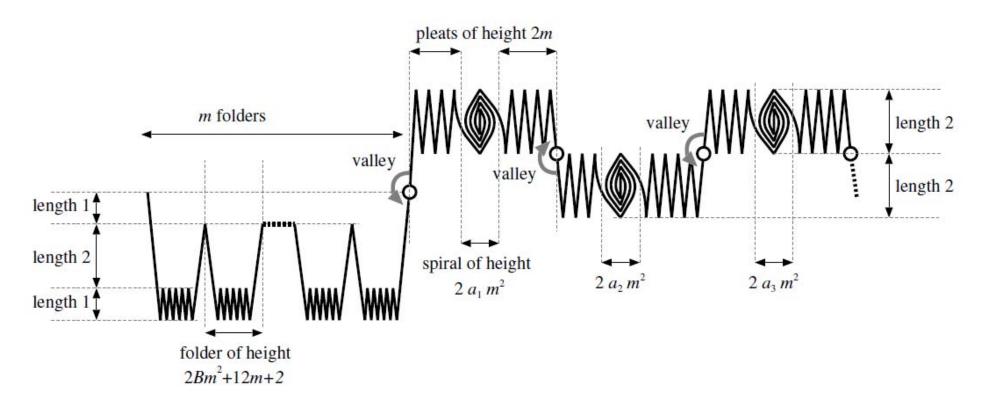
h = 9, m = 6, t = 9 h = 8, m = 6, t = 12

Main results in (DEHILUU 2015)

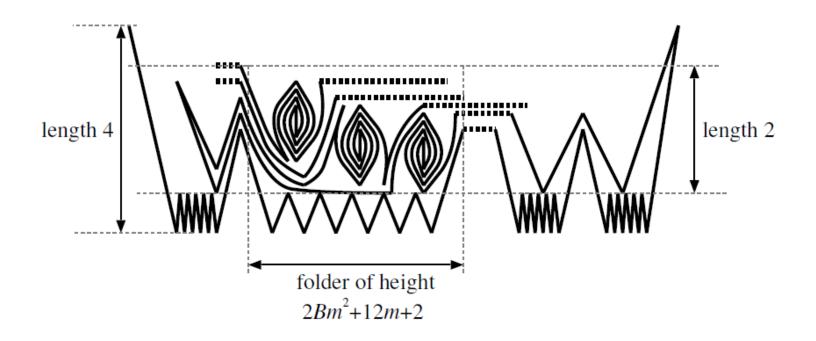

Summary

		Unit interval model in [US <u>U</u> IO2012]	General model in (DEHILUU 2015)
	max crease width	NP-complete	NP-complete
	total crease width	open	NP-complete [DEHILUU 2015]
Proof Idea	height	trivial	NP-complete [DEHILUU 2015]

Proof: Polynomial time reduction from 3-Partition.


<u>3-Partition</u>: Input: Set of integers $A = \{a_1, a_2, ..., a_{3m}\}$ and integer B**3-Partition:** Question: Is there a partition of A to A_1, \ldots, A_m such that $|A_i|=3$ and $\sum_{a_i \in A_i} a_j = B$ $A = \{a_1, a_2, ..., a_{3m}\}$

Proof: Polynomial time reduction from 3-Partition. <u>Basic gadget</u>



Proof: Polynomial time reduction from 3-Partition.

Overview

Proof: Polynomial time reduction from 3-Partition. <u>Overview</u>

Summary & Future work...

Origami is interesting even in 1 dimension!!

	Unit interval model in [US <u>U</u> IO2012]	General model in (DEHIL <u>U</u> U 2015)
max crease width	NP-complete	NP-complete
total crease width	open	NP-complete [DEHILUU 2015]
height	trivial	NP-complete [DEHILUU 2015]

Future work:

- Replace "open" into ???
- Extension to 2 dimension
 - Different measures of "thickness"?
- Estimation of the way of folding (~time complexity)
- Nicer model for "Time-space trade off" for Origami