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Polygons Folding to Plural Incongruent Orthogonal Boxes
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Abstract

We investigate the problem of finding orthogonal poly-
gons that fold to plural incongruent orthogonal boxes.
There are two known polygons that fold to produce two
incongruent orthogonal boxes. In this paper, we show
that there are infinite such polygons. We also show
that there exists a tile that produces two incongruent
orthogonal boxes.

1 Introduction

Polygons that can fold to a convex polyhedron have
been investigated since Lubiw and O’Rourke posed the
problem in 1996 [4]. Recently, Demaine and O’Rourke
published a book about geometric folding algorithms
that includes many results about such polygons [2,
Chapter 25]. One of the many interesting problems in
this area is that whether there exists a polygon that
folds to plural incongruent orthogonal boxes. Biedl et
al. answered “yes” by finding two polygons that fold to
two incongruent orthogonal boxes [1] (see also [2, Figure
25.53]). However, are these two polygons exceptional?
We show that the answer is “no.” In this paper, we
first report that there are more than two thousands such
polygons of several sizes. These polygons were found by
a randomized algorithm that repeatedly produces many
nets of orthogonal boxes at random, and matches them
in a huge hash table. Some of those polygons can be
extended to general size. Using this fact, we also show
that there exist an infinite number of polygons that can
fold to two orthogonal boxes. Moreover, we show that
there exists a simple polygon that can fold to two or-
thogonal boxes, and that tiles the plane. This pattern
may be used to produce two kinds of boxes of two dif-
ferent volumes on demand without loss of material.

2 Preliminaries

In this paper, we concentrate on orthogonal polygons
that consist of unit squares. For a positive integer S, we
denote by P (S) the set of three integers a, b, c with 0 <
a ≤ b ≤ c and ab + bc + ca = S, i.e., P (S) = {(a, b, c) |
ab + bc + ca = S}. Clearly, it is necessary to satisfy
|P (S)| ≥ k to have a polygon of size 2S that can fold to
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k incongruent orthogonal boxes. For example, the two
known polygons in [1] correspond to P (11) = {(1, 1, 5),
(1, 2, 3)} and P (17) = {(1, 1, 8), (1, 2, 5)}. Similarly, we
have P (15) = {(1, 1, 7), (1, 3, 3)}, P (23) = {(1, 1, 11),
(1, 2, 7), (1, 3, 5)}, P (35) = {(1, 1, 17), (1, 2, 11), (1, 3, 8),
(1, 5, 5)}, P (47) = {(1, 1, 23), (1, 2, 15), (1, 3, 11),
(1, 5, 7), (3, 4, 5)}, P (59) = {(1, 1, 29), (1, 2, 19),
(1, 3, 14), (1, 4, 11), (1, 5, 9), (2, 5, 7)}, and so on.

Let B be an orthogonal box of size a × b × c. Then
there are six faces that consist of two rectangles of size
a × b, b × c, and c × a, respectively. We regard each
rectangle as a set of unit squares. That is, B consists
of 2(ab + bc + ca) unit squares. Then, for B, we define
a dual graph G(B) = (V,E) of B as follows; V is the
set of 2(ab + bc + ca) unit squares, and E contains an
edge {u, v} iff two unit squares u and v share an edge
on B, or they are incident on B. It is easy to see that
G(B) is a 4-regular graph of 2(ab+bc+ca) vertices, and
hence |E| = 4(ab+ bc+ ca). Then we have the following
observation:

Observation 1 Let T be a spanning tree of G(B) for
some B. For every edge {u, v} not in T , we cut the
edge shared by two unit squares u and v on B. Then,
we obtain a net P of B.

That is, we can make a net P of B for any orthogonal
box B. In the case, we say that the spanning tree T
produces P . However, spanning trees themselves are
not good to represent nets of a box. Suppose that a
polygon P can fold to an orthogonal box B. In general,
P contains a rectangle R of size a × b with a > 1 and
b > 1. Then, no spanning tree T generates P since T
forces unnecessary cuts of inside of R. The following
lemma patches this problem.
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Figure 2: A half of a nonsimple polygon
folding to a box.

Lemma 1 Let P be a polygon that can fold to a box
B. If P has a cut between two unit squares A and D
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in Figure 1, we glue them and obtain P ′. Then P ′ also
can fold to B.

Proof. Since B is a convex orthogonal box, it fol-
lows. ¤
Repeating the gluing in Lemma 1, we obtain a polygon
P that has no two consecutive identical edges, which
means P contains no unnecessary cuts. From the view-
point of programming, it is sufficient to represent each
polygon P by a usual 0/1 matrix in a natural way, and
ignore such cuts. One may think that any polygon that
can fold to a box is simple. However, it is not the case.

Lemma 2 Let B be an orthogonal box and P a polygon
that can fold to B. Then, P is not necessarily simple.

Proof. For B of size 1 × 2 × 3, we make a (half of)
polygon P as in Figure 2. Then, clearly, P is a polygon
that can fold to B, but P is not simple. ¤

3 Algorithm

Our algorithm is a quite simple randomized one de-
scribed below:

Input : S with |P (S)| > 1;
Output: Polygons of size 2S that fold to plural

boxes;
clear a hash table H;1

while true do2

choose a type t = (a, b, c) in P (S) at random;3

generate a spanning tree T of G(B) for an4

orthogonal box B of size a × b × c at random;
represent a polygon P corresponding to T by a5

0/1 matrix;
if (t′, P ) is in H with t 6= t′ then output P6

(and all associate types);
if P is not in H then add (t, P ) into H;7

end8

We aim at finding polygons shared by two or more types.
Hence, the algorithm ignores weak points mentioned in
Preliminaries. More precisely, the algorithm has the
following flaws; (1) it does not generate the polygons
uniformly at random, (2) some polygons overlap (by
Lemma 2). Moreover, even if the polygon P does not
overlap, two nonincident squares on the box B can share
a common edge on P (by Lemma 2; if we have a cut
between d and e in Figure 2, a, b, c, and d make a hole
in P ). Since the information is not represented on a 0/1
matrix, (3) some polygons P contain holes and have to
be cut in differently to produce two distinct boxes.

Fortunately, the flaws cause few errors through our
experiments; in fact, among 2165 outputs, the algo-
rithm produced 2139 simple polygons, which are solu-
tions, and only 26 non-simple polygons, which are not
solutions. We note that from the algorithmic point of
view, it is easy to check (2) and (3) in linear time when
the algorithm outputs each solution.

Table 1: Experimental results (1)
2S(S) |P (S)| ∼RG(×107) Sols Errs
22(11) 2 6.7 541 15
30(15) 2 18.6 72 1
34(17) 2 28.4 708 0
38(19) 2 30.4 41 0
46(23) 3 191.0 660 8
54(27) 3 126.7 3 0
58(29) 3 89.3 37 0
62(31) 3 82.4 5 0
64(32) 3 204.8 56 2
70(35) 4 91.3 14 0
88(44) 4 217.0 2 0
94(47) 5 51.3 0 0

118(59) 6 35.5 0 0
Total - - 2139 26

Table 2: Experimental results (2)
2S(S) Types Sols Errs
46(23) (1,1,11), (1,3,5) 568 3

(1,2,7), (1,3,5) 92 5
54(27) (1,1,13), (3,3,3) 2 0

(1,3,6), (3,3,3) 1 0
58(29) (1,1,14), (1,4,5) 37 0
62(31) (1,3,7), (2,3,5) 5 0
64(32) (1,2,10), (2,2,7) 50 2

(2,2,7), (2,4,4) 6 0
70(35) (1,1,17), (1,5,5) 3 0

(1,2,11), (1,3,8) 11 0
88(44) (2,2,10), (1,4,8) 2 0

4 Experimental results

We first ran the algorithm on a laptop (IBM ThinkPad
X40: 1 Processor with 1.5GB Memory). This generated
approximately 3×106 polygons in 1 hour, and obtained
around 100 solutions for P (11). To experiment more
efficiently, we used a supercomputer (SGI Altix 4700:
96 Processors with 2305GB Memory). We used an im-
plement of the Mersenne Twister algorithm1 to generate
random numbers. Our results are summarized in Tables
1 and 2. In Table 1, “2S(S)” denotes the (half) size of
a polygon, “|P (S)|” denotes the number of distinct box
types, “RG” denotes the number of random generations,
“Sols” denotes the number of simple polygons that can
fold to two incongruent orthogonal boxes, and “Errs”
denotes the number of non simple polygons. For exam-
ple, for P (11), the algorithm generates around 6.7×107

nets of boxes of size (1, 1, 5) or (1, 2, 3), and we have
556 outputs. Among them, 15 polygons have a hole, and
hence we have 541 distinct simple polygons that can fold

1http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.
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to boxes of size (1, 1, 5) and (1, 2, 3). In total, we have
2139 distinct simple polygons that can fold to two incon-
gruent orthogonal boxes. For each S with |P (S)| > 2,
more details can be found in Table 2. All cases are
checked in parallel on the machine, and the computa-
tions take from a few days to a few weeks (we stopped
execution when each process requires too much mem-
ory). Some solutions are illustrated in Figure 7, and
all solutions can be found at http://www.jaist.ac.
jp/~uehara/etc/origami/nets/index-e.html. After
these experiments, we still have no polygon that can
fold to three (or more) incongruent orthogonal boxes.
We note that some values of S are related; for example,
the solutions for P (11) give the solutions for P (44) by
dividing a unit square into four unit squares. Although
we have 541 solutions for P (11) after 6.7× 107 random
generations (it takes 3 days), we have only two solutions
for P (44) after 217.0×107 random generations (it takes
1 month). These two solutions for P (44) do not corre-
spond to any solution for P (11). Some special polygons
found in the solutions are below.

Tiling The discovered polygonal patterns reminded us
of tilings. Indeed, there exists a simple polygon that can
fold to two incongruent orthogonal boxes and it forms
a tiling. The polygon in Figure 3 can fold to two boxes
of size 1 × 1 × 8 and 1 × 2 × 5, and it tiles the plane.

+ makes 1x2x5
+ makes 1x1x8

Figure 3: Polygon folding to two boxes of 1× 1× 8 and
1 × 2 × 5, and tiling the plane.

We note that the boxes with the common polygon
form “double packable solids” introduced by Akiyama
[3, Section 3.5.2]. Moreover, we can make two kinds of
the boxes of volumes 8 and 10 on demand!

Disjoint crease patterns There exists a simple poly-
gon that can fold to two incongruent orthogonal boxes
and that foldings to two boxes are disjoint; the last poly-
gon in Figure 7 satisfies the property.

Cross-free patterns There exists a simple polygon
that can fold to two incongruent orthogonal boxes and

that foldings to two boxes are cross free. The second
last polygon in Figure 7 satisfies the property. We note
that the previously known results in [1] also satisfy the
property.

We have not checked if there exists a simple polygon
such that foldings are disjoint and cross free.

5 Infinite polygons

A natural question is whether or not there are infinite
distinct2 polygons that can fold to plural boxes? The
answer is “yes.” Some polygons obtained by the exper-
iments can be generalized. From two of them, we have
the following theorem.

Theorem 3 For any positive integer k, there is a dis-
tinct polygon that can fold to two incongruent orthogonal
boxes of sizes (1) 1 × 1 × (6k + 2) and 1 × 5 × 2k, and
(2) 1 × 1 × (8k + 11) and 1 × 3 × (4k + 5).
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+ makes 1x1x(6k+2)
+ makes 1x5x2k

Figure 4: Polygon folding to two boxes of 1×1×(6k+2)
and 1 × 5 × 2k by stretch.
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+ makes 1x1x(8k+11)
+ makes 1x3x(4k+5)

Figure 5: Polygon folding to two boxes of 1×1×(8k+11)
and 1 × 3 × (4k + 5) by spiral.

2Precisely, distinct means gcd(a, b, c, a′, b′, c′) = 1 for two
boxes of size a × b × c and a′ × b′ × c′.
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Proof. The first one is obtained by stretching a poly-
gon. For any positive integer k, Figure 4 gives a polygon
that satisfies (1). The second one is obtained by a spiral
extension of a polygon. For any positive integer k, we
copy in the leftside polygon in Figure 5 and glue it to
the leftmost square (with overlapping at gray areas) and
repeat it k times. Then the polygon satisfies (2). ¤

Corollary 4 There exist an infinite of distinct polygons
that can fold to two incongruent orthogonal boxes.

6 Concluding remarks

From the theoretical point of view, uniform random gen-
eration and enumeration of all simple polygons for a
given box are interesting problems. However, those al-
gorithms are not necessarily useful to find polygons that
can fold to plural incongruent orthogonal boxes. Indeed
we search “similar” polygons heuristically to find such
polygons.
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Figure 6: A polygon folding to two boxes of 1× 1× 17,
1 × 5 × 5, and “close” to 1 × 3 × 8.

It is an open question if a polygon exists that can fold to
three or more orthogonal boxes. The author conjectures
“yes;” through experience, there is a polygon that seems
to be “close” to the answer. The polygon in Figure 6
can fold to two boxes of size 1× 1× 17 and 1× 5× 5 in
the similar ways in Figure 4. Moreover, it also can fold
to the box of size 1 × 3 × 8 with only two overlapping
squares (and hence with two holes); a and b overlap with
a′ and b′, respectively (with a cut between a and a′).
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Figure 7: A part of solutions.


