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Abstract. The Voronoi game is a two-person game which is a model for a competitive facility location. The
game is done on a continuous domain, and only two special cases (1-dimensional case and 1-round case) are
well investigated. We introduce the discrete Voronoi game of which the game arena is given as a graph. We
first show the best strategy when the game arena is a large complete k-ary tree. Next we show that the discrete
Voronoi game is intractable in general. Even in 1-round case, and the place occupied by the first player is fixed,
the game is NP-complete in general. We also show that the game is PSPACE-complete in general case.
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1 Introduction

The Voronoi game is an idealized model for a competitive facility location, which was proposed by Ahn,
Cheng, Cheong, Golin, and Oostrum [1]. The Voronoi game is played on a bounded continuous arena
by two players. Two playersW (white) and B (black) put n points alternately, and the continuous field
is subdivided according to the nearest neighbor rule. At the final step, the player who dominates larger
area wins.

The Voronoi game is a natural game, but the general case seems to be very hard to analyze from the
theoretical point of view. Hence, in [1], Ahn et al. investigated the case that the game field is a bounded
1-dimensional continuous domain. On the other hand, Cheong, Har-Peled, Linial, and Matoušek [2], and
Fekete and Meijer [3] deal with a 2-dimensional case, but they restrict themselves to one-round game;
first,W puts all n points, and next B puts all n points.

In this paper, we introduce discrete Voronoi game. Two players alternately occupy n vertices on a
graph, which is a bounded discrete arena. (Hence the graph contains at least 2n vertices.) This restriction
seems to be appropriate since real estates are already bounded in general, and we have to build shops
in the bounded area. More precisely, the discrete Voronoi game is played on a given finite graph G,
instead of a bounded continuous arena. Each vertex of G can be assigned to nearest vertices occupied
by W or B, according to the nearest neighbor rule. (Hence some vertex can be “tie” when it has the
same distance from a vertex occupied byW and another vertex occupied by B.) Finally, the player who
dominates larger area (or a larger number of vertices) wins. We note that two players can tie in some
cases.

We first consider the case that the graph G is a complete k-ary tree. A complete k-ary tree is a natural
generalization of a path which is the discrete analogy of 1-dimensional continuous domain. We also
mention that complete k-ary trees form very natural and nontrivial graph class. In [1], Ahn et al. showed
that the second player B has an advantage on a 1-dimensional continuous domain. In contrast to the fact,
we first show that the first playerW has an advantage for the discrete Voronoi game on a complete k-ary
tree, when the tree is sufficiently large (comparing to n and k). More precisely, we show thatW has a
winning strategy if (1) 2n ≤ k, or (2) k is odd and the complete k-ary tree contains at least 4n2 vertices.
On the other hand, when k is even and 2n > k, two players tie if they do their best.
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Next, we show the hardness results of the discrete Voronoi game. When we admit a general graph
as a game arena, the discrete Voronoi game becomes intractable even in the strongly restricted case.
We consider the following strongly restricted case; the game arena is an arbitrary graph, the first player
W occupies just one vertex which is predetermined, the second player B occupies n vertices in any
way. The decision problem for the strongly restricted discrete Voronoi game is defined as follows; the
problem is to determine if B has a winning strategy for given graph G with the occupied vertex byW.
This restricted case seems to be advantageous for B. However, the decision problem is NP-complete.
This result is also quite different from the previously known results in the 2-dimensional problem (i.e. B
can always dominate the fraction 1

2 +ε of the 2-dimensional domain) by Cheong et al. [2] and Fekete et
al. [3].

2 Problem definitions

In this section, we formulate the discrete Voronoi game on a graph. Let denote a Voronoi game VG(G,n),
where G is the game arena, and the players play n rounds. Hereafter, the game arena intends an undi-
rected and unweighted simple graph G = (V,E) with N = |V | vertices.

For each round, the two players,W (white) and B (black), alternately occupy an empty vertex on
the graph G (W always starts the game, as in Chess). The empty vertex is defined as a vertex which
has not been occupied so far. This implies thatW and B cannot occupy a same vertex simultaneously.
Hence it is implicitly assumed that the game arena G contains at least 2n vertices.

Let Wi (resp. Bi) be a set of vertices occupied by playerW (resp. B) at the end of the i-th round. We
define the distance d(v,w) between two vertices v and w as the number of edges along the shortest path
between them if such path exists, otherwise d(v,w) =∞. Each vertex of G can be assigned to the nearest
vertices occupied byW and B, according to the nearest neighbor rule. So, we define a dominance set
V(A,B) (or Voronoi regions) of a subset A ⊂ V against a subset B ⊂ V , where A∩B = ∅ as

V(A,B) = {u ∈ V | min
v∈A

d(u,v) <min
w∈B

d(u,w)}.

The dominance setsV(Wi,Bi) andV(Bi,Wi) represent the sets of vertices dominated at the end of the i-th
round byW and B, respectively. LetVW andVB denoteV(Wn,Bn) andV(Bn,Wn), respectively. Since
some vertex can be ”tie” when it has the same distance from a vertex occupied byW and another vertex
occupied by B, there may exist set Ni of neutral vertices, Ni := {u ∈ V | minv∈Wi d(u,v)=minw∈Bi d(u,w)},
which does not belong to both ofV(Wi,Bi) andV(Bi,Wi).

Finally, the player who dominates larger number of vertices wins, in the discrete Voronoi game.
More precisely,W wins if |VW | > |VB|, B wins (orW loses) if |VW | < |VB|, and tie otherwise, since
the outcome for each player,W or B, is the size of the dominance set |VW | or |VB|. In our model, note
that any vertices in Nn do not contribute to the outcomesVW andVB of both players (see Fig. 1).

3 Discrete Voronoi game on a complete k-ary tree

In this section, we consider the case that the game arena G is a complete k-ary tree, which is a rooted
tree whose inner vertices have exactly k children, and all leaves are in a same level, or the highest level.

Firstly, we show a simple observation for Voronoi games VG(T,n) which are satisfied 2n ≤ k. In
this game of a few rounds,W occupies the root of T with his first move, and thenW can dominate at
least N−1

k n+1 vertices. Since B dominate at most N−1
k n vertices,W wins. More precisely, we show the

following algorithm asW’s winning strategy.
In the strategy of Algorithm 1,W alternately pretends to occupy the empty children of root, though

W may occupy any vertex. This strategy is obviously well-defined and winning strategy forW, when-
ever the game arena T is satisfied 2n ≤ k.
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1st round 2nd round 3rd round

Fig. 1. Example for a discrete Voronoi game VG(G,3), where G is the 15 × 15 grid graph; each bigger circle is a vertex
occupied by W, each smaller circle is an empty vertex dominated by W, each bigger black square is a vertex occupied by
B, each smaller black square is an empty vertex dominated by B, and the other are neutral vertices. In this example, the 2nd
player B won by 108–96.

Algorithm 1: Simple strategy
Stage I: (W’s fist move)W occupies the root of T ;
Stage II: W occupies the empty children of the root for his remaining rounds;

Proposition 1. Let VG(G,n) be the discrete Voronoi game such that G is a complete k-ary tree with
2n ≤ k. Then the first playerW always wins.

We next turn to more general case. We call a k-ary tree an odd (resp. even) if k odd (resp. even). Let
T be a complete k-ary tree as a game arena, N be the number of vertices of T , and H be the height of T .
Note that N = kH+1−1

k−1 and H ∼ logk N3. For this game, we show the following theorem.

Theorem 1. In the discrete Voronoi game VG(G,n) where G is a complete k-ary tree such that N ≥ 4n2,
the first playerW always wins if G is odd k-ary tree, otherwise the game ends in tie when the players
do their best.

In section 3.1, we first show winning strategy for the first playerW when k is odd and the complete
k-ary tree contains at least 4n2 vertices. In idea of any winning strategy, it is necessary to deliberate
the relation between the number of children k and the game round n. Indeed, W chooses one of two
strategies according to the relation between k and n. We next consider the even k-ary tree in section 3.2,
which completes the proof of Theorem 1.

3.1 Discrete Voronoi game on a large complete odd k-ary tree

We generalize the simple strategy to Voronoi games VG(T,n) on a large complete k-ary tree, where
2n > k and k is odd (k ≥ 3). We define that a level h is keylevel if the number kh of vertices satisfies
n ≤ kh < 2n, and a vertex v is a key-vertex if v is in the keylevel. Let Ti denote the number of vertices in
the subtree rooted at a vertex in level i (i.e., T0 = N, Ti = kTi+1+1). Let {Vh

1 ,V
h
2 , . . . ,V

h
kh−1} be a family of

vertices in the keylevel h such that set Vh
i consists of k vertices which have the same parent for each i.

As mentioned above, a winning strategy is sensitive for the relation between k,h, and n.So, we firstly
introduce a magic number α = 2n

kh , 1 < α < k (see Fig. 2). We note that since k is odd, we have neither
α = 1 nor α = k. By assumption, we have that the game arena T is sufficiently large such that the subtrees
rooted at level h contain sufficient vertices comparing to the number of vertices between level 0 and level

3 In this paper, we denote by f (x) ∼ g(x) when limx→∞
f (x)
g(x) = 1.
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Fig. 2. The notations on the game arena T .

h. More precisely, by assumption N ≥ 4n2, we have H ≥ 2h and N ≥ 4n2

α2 . We define γ := H − 2h, and
hence γ ≥ 0.

The winning strategy forW chooses one of two strategies according to the condition whether the
magic number α is greater than 1+ 2

k −
1

k−1 +
1

kh+γ(k−1) or not. The strategy is shown in Algorithm 2.

Algorithm 2: Keylevel strategy forW
if α > 1+ 2

k −
1

k−1 +
1

kh+γ(k−1) then
Stage (a)-I:
W occupies an empty key-vertex so that at least one vertex is occupied in each Vh

i ;
(Stage (a)-I ends after the last key-vertex is occupied by eitherW or B. Note that the game may finish in
Stage (a)-I.)

end
Stage (a)-II:
W occupies an empty vertex which is a child of the vertex v, such that v is occupied by B, and v has the
minimum level greater than or equal to h;
(W dominates as much vertices as possible from B.)

end
else

Stage (b)-I:
W occupies an empty vertex in level h−1;
(Stage (b)-I ends when such empty vertices are not exists.)

end
Stage (b)-II:
W occupies an empty key-vertex whose parent is not occupied byW;
(Stage (b)-II ends when such empty key-vertices are not exist.)

end
Stage (b)-III:

if there exists an empty vertex v in level h+1 such that the parent of v is occupied by B then W occupies v;
else W occupies an empty key-vertex in level h+1 whose parent is occupied byW;

end
end

Lemma 1. The keylevel strategy is well-defined in a discrete Voronoi game VG(T,n), where T is a
sufficient large complete k-ary tree so that N ≥ 4n2.

Proof. By assumption, there exists the keylevel h.
In the Stage (a)-I, if B occupied a key-vertex in Vh

i andW has not occupied any vertex in Vh
i ,W

occupies an empty key-vertex in Vh
i rather than occupies the other empty key-vertices. This implies that

W can occupy at least one key-vertex in each Vh
i , i = 1,2, . . . ,kh−1. Since the situation W follows the

Stage (a)-II is happened when B occupies at least one key-vertex, there exists such a children. If W
follows the case (b), then this is obviously well-defined. So, the keylevel strategy is well-defined. ut
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Lemma 2. The keylevel strategy is a winning strategy for W in a discrete Voronoi game VG(T,n),
where T is a sufficient large complete odd k-ary tree so that N ≥ 4n2.

Proof. We first argue that W follows the case (a), or α > 1+ 2
k −

1
k−1 +

1
kh+γ(k−1) . When the game ends

in the Stage (a)-I (i.e., B never occupies any key-vertices, or does not so many key-vertices), the best
strategy of B follows, occupying all vertices in level h−1 for the first kh−1 rounds, and then occupying
a child of key-vertex dominated by W to dominate as much vertices as possible with his remaining
moves. In fact, the winner dominates more leaves than that of the opposite. So, it is not so significant to
occupy the vertices in a level strictly greater than h+1, and strictly less than h−1.

Now, we estimate their outcomes |VW | and |VB|. Firstly, W dominates nTh vertices and B dom-
inates (kh − n)Th +

kh−1
k−1 vertices. Since B dominates the subtrees of W with his remaining n − kh−1

vertices,

|VW | = nTh− (n− kh−1) Th+1,

|VB| ≤ (kh−n) Th+ (n− kh−1) Th+1+
kh−1
k−1

.

Since 2n = αkh and α > 1+ 2
k −

1
k−1 +

1
kh+γ(k−1) ,

|VW | − |VB| ≥ nTh−2(n− kh−1) Th+1− (kh−n) Th−
kh−1
k−1

> (kh+1α+2kh−1− khα− kh+1)Th+1−
kh−1
k−1

≥ 1
kγ

Th+1−
kh−1
k−1

. (1)

By the definition of γ with γ = H−2h,

1
kγ

Th+1−
kh−1
k−1

=
1
kγ

(kTh+2+1)− kh−1
k−1

=
1
kγ

(
k2Th+3+ k+1

)
− kh−1

k−1

=
1
kγ

 ki Th+1+i+

i−1∑
j=0

k j

 − kh−1
k−1

, (i = 1,2, . . . ,H−h−1)

=
1
kγ

kH−h−1
k−1

− kh−1
k−1

=
1
kγ

k(2h+γ)−h−1
k−1

− kh−1
k−1

=
1

k−1

(
1− 1

kγ

)
> 0.

Next, we consider the case thatW follows Stage (a)-II. At level greater than h, there are three types
of B’s occupation (see Fig. 3). In cases (2) and (3) of Fig. 3, B has no profits. Therefore, when B uses his

level h

level h + 1

W

B BB

empty vertex

(1) (2) (3)

B

Fig. 3. B’s occupations at the level greater than h.

best strategy, we can assume that B only occupies vertices underW’s vertices. This implies that B tries
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to perform the similar strategy ofW, that is to occupy much key-vertices. More precisely, B chooses
his move from following ways at every round:

– B occupies an empty key-vertex, or
– occupies a vertex v in level h+1, where the parent of v is a key-vertex ofW, or
– occupies a vertex w in level h+1, where the parent of w is a key-vertex of B.

This implies that almost all key-vertices are occupied by either W or B, and then the subtree of T
consisted by the vertices in level 0 through h− 1 is negligible small so that these vertices cannot have
much effect on outcomes ofW and B. It is not significant to the occupation of these vertices for both
players.

Let xi (resp. yi) be the number of vertices occupied byW (resp. B) in level i. Let y+i (resp. y−i ) be
the number of vertices occupied by B in higher (resp. lower) than or equal to level i.

When Stage (a)-I ends,W has xh key-vertices and B has yh key-vertices. Note that xh+ yh ≤ kh and
yh < d kh

2 e ≤ xh < n. xh+1 is the number of vertices occupied in Stage (a)-II. Let y′h+1 be the number of
occupations used to dominate vertices ofW’s dominance set by B in level h+1, and y′′h+1 be yh+1−y′h+1.
(see Fig. 4). Note that xh − yh ≥ y′h+1 − xh+1 (it has equality if y′′h+1 + y−h−1 + y+h+2 = 0.) Now, we estimate

level h

level h + 1

xh

xh+1

yh

y′′

h+1

y′

h+1

y
−

h−1

Fig. 4. The notations in the case (a) of keylevel strategy.

their outcomes. Since W can dominate at least xhTh + (xh+1 − y′h+1)Th+1 vertices, and W dominates
yhTh+ (y′h+1− xh+1)Th+1 vertices, the difference between the outcomes ofW and B is

|VW | − |VB| = xhTh+ (xh+1− y′h+1)Th+1− yhTh− (y′h+1− xh+1)Th+1

≥
(
k(xh− yh)−2(y′h+1− xh+1)

)
Th+1 > Th+1 > 0.

W can dominates at least Th+1 vertices more than that of B, which is more vertices dominated by B
using y0 vertices between level 0 and h. So,W wins when α > 1+ 2

k −
1

k−1 +
1

kh+γ(k−1) .

We next argue that W follows the case (b), or α ≤ 1+ 2
k −

1
k−1 +

1
kh+γ(k−1) . When xh−1 = kh−1, the

best strategy for B is to occupied as much key-vertex as possible. So, the differences of outcomes are
estimated as follow;

|VW | − |VB| = (kh−2n) Th+2(n− kh−1) Th+1+
kh−1
k−1

≥ (kh+1−2kh−1− kh(k−1)α)Th+1+2 · k
h−1

k−1

≥ 2 · k
h−1

k−1
− 1

kγ
Th+1 = 2

kh−1
k−1

− 1
kγ

kh+γ −1
k−1

=
1

k−1

(
kh−2+

1
kγ

)
> 0.

Finally, we consider the case of α < 1+ 2
k −

1
k−1 +

1
kh+γ(k−1) and xh−1 < kh−1 (or xh−1+ yh−1 = kh−1). In

this case, the similar arguments in whichW follows Stage (a)-II can be applied. Each xh−1, xh, and xh+1
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is the number of vertices occupied in Stage (b)-I, (b)-II, and (b)-III, respectively. As mentioned above,
y−h−2 and y+h+2 should be 0 to maximize his outcome |VB|. Let y′h be the number of key-vertices occupied
by B whose parent is occupied by W, and y′′h = yh − y′h. Fig. 5 shows these notations. If W does not

level h − 1

level h

level h + 1

xh−1

xh
xh+1

yh−1

y′′

h
y′

h
xh+1

y
−

h−2

Fig. 5. The notations in the case (b) of keylevel strategy.

follows Stage (b)-III, thenW wins since xh−1 − yh−1 ≥ y′h − xh and k(xh−1 − yh−1)−2(xh − y′h) > 0. IfW
follows Stage (b)-III, then we have yh−1 + y′h + y′′h ≤ n, xh + y′′h = yh−1, and xh−1 >

1
2 kh−1 > yh−1 by the

keylevel strategy. We can estimate the outcome ofW as follows;

|VW | − |VB| = xh−1Th−1+ (xh−2y′h− y′′h )Th+2xh+1Th+1

> kxh−1+ xh−2y′h− y′′h

≥ kh+2(kh−1− xh−1)−αkh ≥ kh−1

k−1
− 1

kγ(k−1)
> 0.

Therefore, the first playerW wins when he follows case (b) in the keylevel strategy. This completes the
proof of Lemma 2. ut

3.2 Discrete Voronoi game on a large complete even k-ary tree

We consider the case that the game arena T is a large complete even k-ary tree. We assume that the game
VG(T,n) is sufficed k > 2n, sinceW always wins if k ≤ 2n as mentioned above. Moreover, we assume
that game arena T contains at least 4n2 vertices. Hence the first playerW always loses if he occupies
the root of T , since the second player B can use the keylevel strategy ofW andW cannot drive B in
disadvantage.

In fact, since T is an even k-ary tree, B can take the symmetric moves ofW ifW does not occupy
the root. Therefore, B never loses. However, we can show that W also never loses if he follows the
keylevel strategy.

If B has a winning strategy, then the strategy must not the symmetric strategy ofW. However, such
a strategy does not exist, sinceW can occupy at least half of vertices on the important level, although the
important level is varied by the condition α > 1+ 2

k −
1

k−1 +
1

kh+γ(k−1) . This implies thatW can dominate
at least half vertices of T if he follows the keylevel strategy. Therefore, if both players do their best, then
the game always ends in tie.

4 NP-hardness for general graphs

In this section, we show that the discrete Voronoi game is intractable on general graphs even if we restrict
ourselves to the one-round case. To show this, we consider the following special case:
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Problem 1:
Input: A graph G = (V,E), a vertex u ∈ V , and n.
Output: Determine whether B has the winning strategy on G by n occupations after just one
occupation of u byW.

That is,W first occupies u, and never occupy any more, and B can occupy n vertices in any way.
Then we have the following Theorem:

Theorem 2. Problem 1 is NP-complete.

Proof. It is clear Problem 1 is in NP. Hence we prove the completeness by showing the polynomial
time reduction from a restricted 3SAT such that each variable appears at most three times in a given
formula [5, Proposition 9.3]. Let F be a given formula with the set W of variables {x1, x2, . . . , xn} and the
set C of clauses {c1,c2, . . . ,cm}, where n = |W | and m = |C|. Each clause contains at most 3 literals, and
each variable appears at most 3 times. Hence we have 3n ≥ m.

Now we show a construction of G. Let W+ := {x+i | xi ∈ W}, W− := {x−i | xi ∈ W}, Y := {y j
i | i ∈

{1,2, . . . ,n}, j ∈ 1,2,3}, Z := {z j
i | i ∈ {1,2, . . . ,n}, j ∈ 1,2,3}, C′ := {c′1,c′2, . . . ,c′m}, P := {d1,d2, . . . ,d2n−2}.

Then the set of vertices of G is defined by V := {u}∪W+∪W−∪Y ∪Z∪C∪C′∪P.
We will call each vertex in P pendant vertex, which is attached to the vertex u to make it “heavy.”

(Hence each pendant vertex has degree 1.)
The set of edges E is defined by the union of the following edges; {{u,z} | z ∈ Z}, {{y j

i ,z
j
i } | y

j
i ∈ Y,z j

i ∈
Z with 1 ≤ i ≤ n,1 ≤ j ≤ 3}, {{x+i ,y

j
i } | x+i ∈W+,y j

i ∈ Y with 1 ≤ i ≤ n,1 ≤ j ≤ 3}, {{x−i ,y
j
i } | x−i ∈W+,y j

i ∈
Y with 1 ≤ i ≤ n,1 ≤ j ≤ 3}, {{x+i ,c j} | x+i ∈ W+,c j ∈ C if c j contains literal xi}, {{x−i ,c j} | x−i ∈ W−,c j ∈
C if c j contains literal x̄i}, {{c j,c′j} | c j ∈ C,c′j ∈ C′ with 1 ≤ j ≤ m}, {{c′j,u} | c′j ∈ C′ with 1 ≤ j ≤ m}, and
{{u, pi} | pi ∈ P with 1 ≤ i ≤ 2n−2}.

An example of the reduction for the formula F = (x̄1∨ x2∨ x3)∧ (x̄2∨ x̄3∨ x̄4) is depicted in Fig. 6:
Small white and black circles are the vertices in Z and Y , respectively, large black circles are the vertices
in W+ ∪W−, black and white rectangles are the vertices in C and C′, respectively, two white large
diamonds are the same vertex u, and small diamonds are the pendants in P. It is easy to see that G
contains 10n+2m−1 vertices, and hence the reduction can be done in polynomial time.

x−3x+3x−2x+2x−1x+1 x−4x+4

c1 c2

c′1 c′2

u

u

Fig. 6. Reduction from F = (x̄1∨ x2∨ x3)∧ (x̄2∨ x̄3∨ x̄4)

Now we show that F is satisfiable if and only if B has a winning strategy. We first observe that for
B, occupying the vertices in W+∪W− gives more outcome than occupying the vertices in Y∪Z∪C∪C′.
More precisely, occupying either x+i or x−i for each i with 1 ≤ i ≤ n, B dominates all vertices in W+ ∪
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W−∪Y , and it is easy to see that any other ways archive less outcome. Therefore, we can assume that B
occupies one of x+i and x−i for each i with 1 ≤ i ≤ n.

When there is an assignment (a1,a2, . . . ,an) that satisfies F, B can also dominates all vertices in C
by occupying x+i if ai = 1, and occupying x−i if ai = 0. Hence, B dominates 5n+m vertices in the case,
and thenW dominates all vertices in Z, C′ and P, that is,W dominates 1+3n+m+2n−2 = 5n+m−1
vertices. Therefore, B wins if F is satisfiable.

On the other hand, if F is unsatisfiable, B can dominate at most 5n+m−1 vertices. In the case, the
vertex in C corresponding to the unsatisfied clause is dominated by u. ThusW dominates at least 5n+m
vertices, and henceW wins if F is unsatisfiable.

Therefore, Problem 1 is NP-complete. ut

Next we show that the discrete Voronoi game isNP-hard even in the one-round case. More precisely,
we show the NP-completeness of the following problem:

Problem 2:
Input: A graph G = (V,E), a vertex set S ⊆ V with n := |S |.
Output: Determine whether B has the winning strategy on G by n occupations after n occupations
of the vertices in S byW.

Corollary 1. Problem 2 is NP-complete.

Proof. We use the same reduction in the proof of Theorem 2. Let S be the set that contains u and (n−1)
pendants in P. Then we immediately have NP-completeness of Problem 2. ut

5 PSPACE-completeness for general graphs

In this section, we show that the discrete Voronoi game is intractable on general graphs. More precisely,
we consider the following general case:

Problem 3:
Input: A graph G = (V,E) and n.
Output: Determine whetherW has the winning strategy on G by n occupations.

Then we have the following Theorem:

Theorem 3. The Discrete Voronoi game is PSPACE-complete in general.

Proof. We show that Problem 3 is PSPACE-complete. It is clear Problem 3 is in PSPACE. Hence we
prove the completeness by showing the polynomial time reduction from the following two-person game:

Gpos(Pos Dnf):
Input: A positive DNF formula A (that is, a DNF formula containing no negative literal).
Rule: Two players alternately choose some variable of A which has not been chosen. The game
ends after all variables of A has been chosen. The first player wins if and only if A is true when all
variables chosen by the first player are set to 1 and all variables chosen by the second player are set
to 0. (In other words, the first player wins if and only if he takes every variable of some disjunct.)
Output: Determine whether the first player has the winning strategy for A.

The game Gpos(Pos Dnf) is PSPACE-complete even with inputs restricted to DNF formulas having
at most 11 variables in each disjunct (see [6, Game 5(b)]).

Let A be a positive DNF formula with n variables {x1, . . . , xn} and m disjuncts {d1, . . . ,dm}. With-
out loss of generality, we assume that n is even. Now we show a construction of G = (V,E). Let
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X = {x1, . . . , xn}, D = {d1, . . . ,dm}, U = {u1,u2}, and P = {p1, . . . , p2n2+6n}. Then the set of vertices of G
is defined by V := X∪D∪U ∪P.

In this reduction, each pendant in P is attached to some vertex in X∪U to make it “heavy.”
The set of edges E consists of the following edges; (1) make X a clique with edges {xi, x j} for each

1 ≤ i < j ≤ n, (2) join a vertex xi in X with a vertex d j in D if A has a disjunct d j that contains xi, (3) join
each d j with u2 by {d j,u2} for each 1 ≤ j ≤ m, (4) join u1 and u2 by {u1,u2}, (5) attach 2n pendants to
each xi with 1 ≤ i ≤ n, and (6) attach 3n pendants to each ui with i = 1,2.

An example of the reduction for the formula A = (x1 ∧ x2 ∧ x4 ∧ x5)∨ (x3 ∧ x5 ∧ x7 ∧ x8)∨ (x6 ∧ x8)
is depicted in Fig. 7: Back diamond and white diamond are u1 and u2, respectively, white squares are
the vertices in D, and small circles are vertices in X. Large white numbered circles are pendants, and the
number indicates the number of pendants attached to the vertex.

Each player will occupy (n/2)+1 vertices in G. It is easy to see that G contains n+m+2+6n+2n2 =

2n2+7n+m+2 vertices, and hence the reduction can be done in polynomial time.

16

d1 d2 d3

u1 u2
24 24

16 16 16 16 16 16 16

Clique

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 7. Reduction from A = (x1∧ x2∧ x4∧ x5)∨ (x3∧ x5∧ x7∧ x8)∨ (x6∧ x8)

Now we show that the first player of Gpos(Pos Dnf) for A wins if and only if W of the Discrete
Voronoi Game for G wins.

Since the vertices in X and U are heavy enough,W and B always occupy the vertices in X and U.
In fact, occupying a vertex d j in D does not bring any advantage; since X induces a clique, the pendants
attached to some xi in N(d j) will be canceled by occupying any xi′ by the other player.

Since the vertices in U are heavier than the vertices in X,W and B first occupy one of u1 and u2,
and occupy the vertices in X, and the game will end when all vertices in X are occupied.

The playerW has two choices.
We first consider the case W occupies u2. Then B has to occupy u1, and W and B occupy n/2

vertices in X. It is easy to see that in the case, they are in tie on the graph induced by U ∪X∪P. Hence
the game depends on the occupation for D. In Gpos(Pos Dnf), if the first player has the winning strategy
for A, the first player can take every variable of a disjunct d j. Hence, following the strategy, W can
occupy every variable in N(d j) on G. Then, since W also occupies u2, d j is dominated by W. On
the other hand, B cannot dominate any vertex in D sinceW occupies u2. Hence, if the first player of
Gpos(Pos Dnf) has a winning strategy, so doesW. (Otherwise, game ends in tie.)

Next, we consider the caseW occupies u1. Then B can occupy u2. The game is again depends on
the occupation for D. However, in the case, W cannot dominate any vertex in D since B has already
occupied u2. HenceW will lose or they will be in tie at best.

ThusW has to occupy u2 at first, and thenW has winning strategy if the first player of Gpos(Pos Dnf)
has it.

Therefore, Problem 3 is PSPACE-complete. ut
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6 Concluding Remarks and Further Researches

We give winning strategies for the first playerW on the discrete Voronoi game VG(T,n), where T is a
large complete k-ary tree with odd k. It seems thatW has an advantage even if the complete k-ary tree
is not large, which is a future work.

In our strategy, it is essential that each subtree of the same depth has the same size. Therefore,
considering general trees is the next problem. The basic case is easy: When n = 1, the discrete Voronoi
game on a tree is essentially equivalent to find a median vertex of a tree. The deletion of a median vertex
partitions the tree so that no component contains more than n/2 of the original n vertices. It is well
known that a tree has either one or two median vertices, which can be found in linear time (see, e.g.
[4]). In the former case,W wins by occupying the median vertex. In the later case, two players tie. This
algorithm corresponds to our Algorithm 1.
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