
On the Laminar Structure of Ptolemaic and Distance Hereditary
Graphs

Ryuhei Uehara∗ Yushi Uno†

February 25, 2005

Abstract

Ptolemaic graphs are graphs that satisfy ptolemaic inequality for any four vertices. The graph class coincides
with the intersection of chordal graphs and distance hereditary graphs. The graph class can also be seen as
a natural generalization of block graphs (and hence trees). In this paper, a new characterization of ptolemaic
graphs is presented. It is a canonical tree representation based on a laminar structure of cliques. The tree
representation is constructed in linear time from a perfect elimination ordering obtained by the lexicographic
breadth first search. Hence recognition and graph isomorphism for ptolemaic graphs can be solved in linear
time. The tree representation also gives a simple intersection model for ptolemaic graphs. The results are also
extended to distance hereditary graphs.
Keywords: algorithmic graph theory, data structure, distance hereditary graphs, intersection model, ptolemaic
graphs.

1 Introduction

Recently, many graph classes have been proposed and studied [3, 13]. Among them, the class of chordal graphs
is classic and widely investigated. One of the reasons is that the class has a natural intersection model and
hence a concise tree representation; a graph is chordal if and only if it is the intersection graph of subtrees of
a tree. The tree representation can be constructed in linear time, and the tree is called a clique tree since each
node of the tree corresponds to a maximal clique of the chordal graph (see [23]). Another reason is that the
class is characterized by a vertex ordering, which is called a perfect elimination ordering. The ordering can also
be computed in linear time, and typical way to find it is called the lexicographic breadth first search (LBFS)
introduced by Rose, Tarjan, and Lueker [22]. The LBFS is also widely investigated as a tool for recognizing
several graph classes (see a comprehensive survey by Corneil [8]). Using those characterizations, many efficient
algorithms have been found for chordal graphs; to list a few of them, the maximum weighted clique problem,
the maximum weighted independent set problem, the minimum coloring problem [12], the minimum maximal
independent set problem [11], and so on. There are also parallel algorithms to solve some of these problems
efficiently [18].

Distance in graphs is one of the most important topics in algorithmic graph theory. The class of distance
hereditary graphs was introduced by Howorka to deal with the distance property called isometric [15]. Some
characterizations of distance hereditary graphs are given by Bandelt and Mulder [1], D’Atri and Moscarini [10],
and Hammer and Maffray [14]. Especially, Bandelt and Mulder showed that any distance hereditary graph can be
obtained fromK2 by a sequence of extensions called “adding a pendant vertex” and “splitting a vertex.” Using
the characterizations, many efficient algorithms have been found for distance hereditary graphs [6, 2, 5, 21, 17, 7].
However, the recognition of distance hereditary graphs in linear time is not so simple; Hammer and Maffray’s
algorithm [14] fails in some cases, and Damiand, Habib, and Paul’s algorithm [9] requires to build a cotree in
linear time (see [9, Chapter 4] for further details). The cotree can be constructed in linear time by using recent
algorithm based on multisweep LBFS approach by Bretscher, Corneil, Habib, and Paul [4].

In this paper, we first focus on the class of ptolemaic graphs. Ptolemaic graphs are graphs that satisfy the
ptolemaic inequalityd(x, y)d(z,w) ≤ d(x, z)d(y,w)+d(x,w)d(y, z) for any four verticesx, y, z,w. Howorka showed

∗School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan.uehara@jaist.ac.jp
†Department of Mathematics and Information Sciences, College of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Japan.

uno@mi.cias.osakafu-u.ac.jp

1

that the class of ptolemaic graphs coincides with the intersection of the class of chordal graphs and the class
of distance hereditary graphs [16]. Hence the results for chordal graphs and distance hereditary graphs can be
applied to ptolemaic graphs. On the other hand, the class of ptolemaic graphs is a natural generalization of
block graphs, and hence trees (see [25] for the relationships between related graph classes). However, there
are relatively few known results specified to ptolemaic graphs. The reason seems that the class of ptolemaic
graphs has no useful characterizations from the viewpoint of the algorithmic graph theory. We propose a tree
representation of ptolemaic graphs, which is based on the laminar structure of cliques of a ptolemaic graph. The
tree representation also gives a natural intersection model for ptolemaic graphs, which is defined over directed
trees. The tree representation can be constructed in linear time for a ptolemaic graph. The construction algorithm
can also be modified to a recognition algorithm which runs in linear time. In the construction and the recognition,
the ordering of the vertices produced by the LBFS plays an important role. Therefore, our result adds the class
of ptolemaic graphs to the list of graph classes that can be recognized efficiently using the LBFS. Moreover, the
tree representation is canonical up to isomorphism. Hence, using the tree representation, we can solve the graph
isomorphism problem for ptolemaic graphs in linear time. (We note that a clique tree of a chordal graph is not
canonical and the graph isomorphism problem for chordal graphs is graph isomorphism complete.)

Next, we extend the results for the class of ptolemaic graphs to the class of distance hereditary graphs. We
show new characterizations of the class of distance hereditary graphs. The tree representation of the ptolemaic
graphs can be extended to the distance hereditary graphs, and that gives a geometric model for distance hereditary
graphs. As far as the authors know, there were no known geometric model for distance hereditary graphs.

2 Preliminaries

The neighborhoodof a vertexv in a graphG = (V,E) is the setNG(v) = {u ∈ V | {u, v} ∈ E}, and thedegree
of a vertexv is |NG(v)| and is denoted by degG(v). For a subsetU of V, we denote byNG(U) the set{v ∈ V |
v ∈ N(u) for someu ∈ U}. If no confusion can arise we will omit the indexG. Given a graphG = (V,E) and
a subsetU of V, the induced subgraph byU, denoted byG[U], is the graph (U,E′), whereE′ = {{u, v} | u, v ∈
U and{u, v} ∈ E}. Given a graphG = (V,E), its complementis defined byĒ = {{u, v} | {u, v} < E}, and is denoted
by Ḡ = (V, Ē). A vertex setI is anindependent setif G[I] contains no edges, and then the graphḠ[I] is said to be
aclique. Two verticesu andv are said to be atwin if N(u) \ {v} = N(v) \ {u}. For a twinu andv, we say thatu is a
strong siblingof v if {u, v} ∈ E, and aweak siblingif {u, v} < E.

Given a graphG = (V,E), a sequence of the distinct verticesv1, v2, . . . , vl is apath, denoted by (v1, v2, . . . , vl),
if {v j , v j+1} ∈ E for each 1≤ j < l. Thelengthof a path is the number of edges on the path. For two verticesu and
v, thedistanceof the vertices, denoted byd(u, v), is the minimum length of the paths joiningu andv. A cycleis a
path beginning and ending with the same vertex.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is achordof that cycle. A
graph ischordalif each cycle of length at least 4 has a chord. Given a graphG = (V,E), a vertexv ∈ V is simplicial
in G if G[N(v)] is a clique inG. An orderingv1, . . . , vn of the vertices ofV is aperfect elimination ordering(PEO)
of G if the vertexvi is simplicial inG[{vi , vi+1, . . . , vn}] for all i = 1, . . . , n. Once a vertex ordering is fixed, we
denoteN(v j) ∩ {vi+1, . . . , vn} by N>i(v j). We also use the notions “min” and “max” to denote the first and the last
vertices in an ordered set of vertices, respectively. It is known that a graph is chordal if and only if it has a PEO
(see [3, Section 1.2] for further details). A typical way of finding a perfect elimination ordering of a chordal graph
in linear time is the lexicographic breadth first search (LBFS), which is introduced by Rose, Tarjan, and Lueker
[22], and a comprehensive survey is presented by Corneil [8].

It is also known that a graphG = (V,E) is chordal if and only if it is the intersection graph of subtrees of a
treeT (see [3, Section 1.2] for further details). LetTv denote the subtree ofT corresponding to the vertexv in G.
Then we can assume that each nodec in T corresponds to a maximal cliqueC of G such thatC containsv onG if
and only ifTv containsc onT. Such a treeT is called aclique treeof G. From a perfect elimination ordering of a
chordal graphG, we can construct a clique tree ofG in linear time [23]. We sometimes unify a nodec of a clique
treeT with a maximal clique (or a vertex set)C of G.

Given a graphG = (V,E) and a subsetU of V, an induced connected subgraphG[U] is isometric if the
distances inG[U] are the same as inG. A graphG is distance hereditaryif G is connected and every induced path
in G is isometric. We will use the following characterization of distance hereditary graphs stated by Bandelt and
Mulder [1]:

Theorem 1 A graph G with at least two vertices is distance hereditary if and only if G can be obtained from K2

by a sequence of extensions of(α) pick any vertex x in G and add x′ with an edge{x, x′}, (β) pick any vertex x in

2

G and add x′ with edges{x, x′} and {x′, y} for all y ∈ N(x), or (γ) pick any vertex x in G and add x′ with edges
{x′, y} for all y ∈ N(x).

In case (α), we say that the new graph is obtained by attaching apendant vertex x′, and in cases (β) and (γ), we
say that the new graph is obtained bysplitting the vertexx. We note that in case (β), x andx′ are strong siblings,
and in case (γ), x andx′ are weak siblings.

A connected graphG is ptolemaicif for any four verticesu, v,w, x of G, d(u, v)d(w, x) ≤ d(u,w)d(v, x) +

d(u, x)d(v,w). We will use the following characterization of ptolemaic graphs due to Howorka [16]:

Theorem 2 The following conditions are equivalent: (1) G is ptolemaic; (2) G is distance hereditary and chordal;
(3) for all distinct nondisjoint maximal cliques P,Q of G, P∩ Q separates P\ Q and Q\ P.

Let V be a set ofn vertices. Two setsX andY are said to beincomparableif X ∩ Y , ∅, X \ Y , ∅, and
Y \ X , ∅. A family F ⊆ 2V \ {{∅}} is said to belaminar if F contains no incomparable sets; that is, for any pair
of two distinct setsX andY in F satisfy eitherX ∩ Y = ∅, X ⊂ Y, or Y ⊂ X. Given a laminar familyF , we define
laminar digraph~T(F) = (F , ~EF) as follows;~EF contains an arc (X,Y) if and only if X ⊂ Y and there are no other
subsetZ such thatX ⊂ Z ⊂ Y, for any setsX andY. We denote the underlying graph of~T(F) by T(F) = (F ,EF).
The following two lemmas for the laminar digraph are known (see, e.g., [20, Chapter 2.2]);

Lemma 3 T(F) is a forest.

Lemma 4 If a familyF ⊆ 2V is laminar, we have|F | ≤ 2 |V| − 1.

Hence, hereafter, we callT(F) (~T(F)) a (directed) laminar forest. We regard each maximal (directed) tree in
the laminar forestT(F) (~T(F)) as a (directed) tree rooted at the maximal set, whose outdegree is 0 in~T(F). We
define alabelof each nodeS0 in ~T(F), denoted bỳ (S0), as follows: IfS0 is a leaf,̀ (S0) = S0. If S0 is not a leaf
and has childrenS1,S2, . . . ,Sh, `(S0) = S0\(S1∪S2∪· · ·∪Sh). That is, each vertexv in V appears iǹ(S) whereS
is the minimal set containingv. SinceF is laminar, each vertex inV appears exactly once iǹ(S) for someS ⊆ V,
and its corresponding node is uniquely determined. We note that internal nodes in~T(F) have a label∅ when it is
partitioned completely by its subsets inF . (For example, forV = {a,b} andF = {X = {a,b},Y = {a},Z = {b}},
we havè (X) = {∅}, `(Y) = {a}, and`(Z) = {b}.)

3 A Tree Representation of Ptolemaic Graphs

In this section, we show that ptolemaic graphs have a canonical tree representation, and it can be constructed in
linear time. We also show some applications.

3.1 A Tree Representation

For a ptolemaic graphG = (V,E), letM(G) be the set of all maximal cliques, i.e.,

M(G) := {M | M is a maximal clique inG},

andC(G) be the set of nonempty vertex sets defined below:

C(G) :=
⋃

S⊆M(G)

{C | C = ∩M∈SM,C , ∅}.

Each vertex setC ∈ C(G) is a nonempty intersection of some maximal cliques. Hence,C(G) contains all maximal
cliques, and eachC in C(G) induces a clique. We also denote byL(G) the setC(G)\M(G). That is, each vertex set
L ∈ L(G) is an intersection of two or more maximal cliques, and henceL is a non-maximal clique. The following
properties are crucial.

Theorem 5 Let G = (V,E) be a ptolemaic graph. LetF be a family of sets inL(G) such that∪L∈F L ⊂ M for
some maximal clique M∈ M(G). ThenF is laminar.

3

Proof. To derive a contradiction, we assume thatF is not laminar. Then we have two incomparable vertex sets
L1 andL2 which are properly contained in the maximal cliqueM. Let v, v1, v2 be vertices inL1 ∩ L2, L1 \ L2, and
L2 \ L1, respectively. By definition, there are sets of maximal cliquesM1

1,M
2
1, . . . ,M

a
1, M1

2,M
2
2, . . . ,M

b
2 such that

L1 = M1
1 ∩ M2

1 ∩ · · · ∩ Ma
1 andL2 = M1

2 ∩ M2
2 ∩ · · · ∩ Mb

2. Here, if everyMi
1 with 1 ≤ i ≤ a containsv2, we have

v2 ∈ L1. Thus, there is a maximal cliqueMi
1 with v2 < Mi

1. Similarly, there is a maximal cliqueM j
2 with v1 < M j

2.
Let L be Mi

1 ∩ M j
2. Then we havev1, v2 < L andv ∈ L (henceL , ∅). Thereforev1 ∈ Mi

1 \ L andv2 ∈ M j
2 \ L.

Moreover, sincev1, v2 are inM, {v1, v2} ∈ E. Thus,L = Mi
1 ∩ M j

2 does not separateMi
1 \ L andM j

2 \ L, which
contradicts Theorem 2(3).

Lemma 6 Let C1,C2 be any incomparable sets inC(G) for a ptolemaic graph G= (V,E). Then C1∩C2 separates
C1 \C2 and C2 \C1.

Proof. Let C := C1 ∩C2. By definition ofC(G), C ∈ C(G). Let C′i be the sets inC(G) such thatC ⊂ C′i ⊂ Ci and
there is no otherC′ with C ⊂ C′ ⊂ C′i for i = 1,2. We first observe thatC′1 andC′2 are incomparable: IfC′1 = C′2,
we haveC′1 = C′2 ⊆ C1 ∩C2 which contradicts thatC = C1 ∩C2 andC ⊂ C′1. On the other hand, ifC′1 ⊂ C′2, we
haveC ⊂ C′1 ⊂ C′2 which contradicts the definition ofC′2.

We show thatC separatesC′1 andC′2. Let Mi be maximal cliques that containsC′i for i = 1,2 such thatM1 is
incomparable toC′2 andM2 is incomparable toC1. Let Cc := M1 ∩ M2. By definition,C ⊆ Cc. It is sufficient to
show thatC = Cc. To derive contradictions, we assume thatv ∈ Cc \C. We first assume thatv ∈ C′1 \C′2. In the
case, sinceM2 andC′1 are incomparable,C contains a setC′′ with (C′1∩C′2) ⊂ ((C′1∩C′2)∪ {v}) ⊆ C′′ ⊂ C′1, which
is a contradiction. Thus, we havev < C′1 andv < C′2.

By definition ofC′1, there are maximal cliquesM1
1,M

2
1, . . . ,M

k
1 such thatC′1 = ∩k

i=1Mi
1. Sincev < C′1, there is

at least one maximal cliqueMi
1 with v < Mi

1. Similarly, there is at least one maximal cliqueM j
2 with C′2 ⊆ M j

2 and
v < M j

2. However,C′1 ⊆ Mi
1, C′2 ⊆ M j

2, andv < Mi
1∪M j

2 imply thatMi
1 \M j

2 andM j
2 \Mi

1 are connected byv. This
is a contradiction to Theorem 2(3). HenceMi

1 ∩ M j
2 = M1 ∩ M2 = C′1 ∩C′2 = C1 ∩C2, and it is a separator.

Now we define a directed graph~T(C(G)) = (C(G),A(G)) for a given ptolemaic graphG = (V,E) as follows:
two nodesC1,C2 ∈ C(G) are joined by an arc (C1,C2) if and only if C1 ⊂ C2 and there is no otherC in C(G) such
thatC1 ⊂ C ⊂ C2. We denote byT(C(G)) the underlying graph of~T(C(G)).

Theorem 7 A graph G= (V,E) is ptolemaic if and only if the graph T(C(G)) is a tree.

Proof. We first assume thatG is ptolemaic and show thatT(C(G)) is a tree. It is not difficult to see thatT(C(G)) is
connected. Thus, to derive contradictions, we assume thatT(C(G)) contains a cycle (C1,C2, . . . ,Ck,C1), which is
a minimal cycle without chords onT(C(G)). SinceC1 ⊂ C2 ⊂ · · · ⊂ Ck ⊂ C1 (or vice versa) is impossible, there
is a nodeCa with Ca−1 ⊃ Ca ⊂ Ca+1 for somea. Without loss of generality, we assume that|Ca| is the smallest
among such vertex sets on the cycle. LetCx andCy be the nodes on the cycle such thatCx−1 ⊂ Cx ⊃ Cx+1 ⊃ · · · ⊃
Ca−1 ⊃ Ca ⊂ Ca+1 ⊂ · · · ⊂ Cy−1 ⊂ Cy ⊃ Cy+1. It is not difficult to see thatCa−1 andCa+1, and henceCx andCy are
incomparable. Thus, by Lemma 6,Ca separatesCx \Cy andCy \Cx. SinceCa is a separator, we letGx andGy be
the connected components that containCx \Cy andCy \Cx onG[V \Ca], respectively.

Now we consider the pathP = (Cx,Cx−1,Cx−2, . . . ,Cy+2,Cy+1,Cy) which does not containCa. However, since
Ca is a separator,P contains at least one vertex setCb in C with Ca ∩ Cb , ∅. If (Cx ∩ Cb) \ Ca , ∅ and
(Cy ∩ Cb) \ Ca , ∅, Cx \ Cy andCy \ Cx are connected onG[V \ Ca] sinceCb is a clique. Hence eachCb with
Ca ∩Cb , ∅ satisfies (Cx ∩Cb) \Ca = ∅ or (Cy ∩Cb) \Ca = ∅. SinceP connectsGx andGy through the separator
Ca, we have at least two vertex setsCb andC′b such that (Cy ∩ Cb) \ Ca = ∅ and (Cx ∩ C′b) \ Ca = ∅. Moreover,
sinceCa separatesGx andGy, we haveCb∩C′b ⊆ Ca. If Cb∩C′b ⊂ Ca, P contains smaller separator thanCa. Thus
Cb ∩C′b = Ca. ThenP has to containCa betweenCb andC′b, which contradicts the minimality of the cycle.

Therefore,T(C(G)) is a tree.
It is easy to see thatG is ptolemaic ifT(C(G)) is a tree; for each pair of distinct nondisjoint maximal cliques

M1 andM2, (M1 ∩ M2) separatesT(C(G)), and henceG.
Hereafter, given a ptolemaic graphG = (V,E), we callT(C(G)) (~T(C(G))) a (directed) clique laminar treeof

G. We extend the label of a laminar forest to the directed clique laminar tree naturally: Each nodeC0 in C(G) has
a label`(C0) := C0 \ (C1 ∪ C2 ∪ · · · ∪ Ch), where (Ci ,C0) is an arc on~T(C(G)) for 1 ≤ i ≤ h. Intuitively, we
additionally define the label of a maximal clique as follows; the label of a maximal clique is the set of vertices
which are not contained in any other maximal cliques. We note that for each vertex inG its corresponding node in
T(C(G)) is uniquely determined by maximal cliques. Therefore, we can define the mapping from each vertex to
the vertex set inC in T(C(G)): We denote byC(v) the cliqueC with v ∈ `(C). When we know whetherC(v) is inM

4

orL, we specify it by writingCM(v) or CL(v). An example is given in Figure 2. In Figure 2, each single rectangle
represents a non-maximal clique, each double rectangle represents a maximal clique, and each rectangle contains
its label. We also note that from~T(C(G)) with labels, we can reconstruct the original ptolemaic graph uniquely
up to isomorphism. That is, two ptolemaic graphsG1 andG2 are isomorphic if and only if labeled~T(C(G1)) is
isomorphic to labeled~T(C(G2)).

Intuitively, a clique laminar tree subdivides a clique tree of a chordal graph. For a chordal graph, maximal
cliques are joined in a looser way in the sense that a clique tree for a chordal graph is not always uniquely
determined up to isomorphism. The clique laminar tree subdivides the relationships between maximal cliques by
using their laminar structure.

The following properties of~T(C(G)) is easy to see, and useful from the algorithmic point of view:

Corollary 8 If G is a ptolemaic graph, we have the following: (1) For each maximal clique M inM(G), `(M)
consists of simplicial vertices in M. (2) The vertices in a maximal clique M inM(G) induce a maximal directed
subtree of~T(C(G)) rooted at the node M. (3) Each leaf in T(C(G)) corresponds to a maximal clique inM(G).

It is well known that a graph is chordal if and only if it is the intersection graph of subtrees of a tree. By
Theorem 7, we obtain an intersection model for ptolemaic graphs as follows:

Corollary 9 Let ~T be any directed graph such that its underlying graph T is a tree. LetT be any set of subtrees
~Tv such that~Tv consists of a root C and all vertices reachable from C in~T. Then the intersection graph overT is
ptolemaic. On the other hand, for any ptolemaic graph, there exists such an intersection model.

Proof. The directed clique laminar tree~T(C(G)) is the base directed graph of the intersection model. For each
v ∈ V, we define the rootC such thatv ∈ `(C).

3.2 A Linear Time Construction of Clique Laminar Trees

The main theorem in this section is the following:

Theorem 10 Given a ptolemaic graph G= (V,E), the directed clique laminar tree~T(C(G)) can be constructed
in O(|V| + |E|) time.

We will make the directed clique laminar tree~T(C(G)) by separating the vertices inG into the vertex sets in
C(G) =M(G) ∪ L(G).

We first compute (and fix) a perfect elimination orderingv1, v2, . . . , vn by the LBFS. The outline of our al-
gorithm is similar to the algorithm for constructing a clique tree for a given chordal graph due to Spinrad in
[23]. For each vertexvn, vn−1, . . . , v2, v1, we add it into the tree and update the tree. For the current vertexvi ,
let v j := min{N>i(vi)}. Then, in Spinrad’s algorithm [23], there are two cases to consider:N>i(vi) = C(v j) or
N>i(vi) ⊂ C(v j). The first case is easy; just addvi into C(v j). In the second case, Spinrad’s algorithm adds a new
maximal cliqueC(vi) that consists ofN>i(vi) ∪ {vi}. However, in our algorithm, involved case analysis is required.
For example, in the latter case, the algorithm have to handle three vertex sets; two maximal cliques{vi} ∪ N>i(vi)
andC(v j) together with one vertex setN>i(vi) shared by them. In this case, intuitively, our algorithm makes three
distinct setsCM with `(CM) = {vi}, CL with `(CL) = N>i(vi), andC with `(C) = C(v j) \ N>i(vi), and adds two arcs
(CL,CM) and (CL,C); this means thatvi is in CM = N>i(vi) ∪ {vi}, C is a cliqueC(v j), andCL is the vertex set
shared byCM andC. However, our algorithm has to handle more complicated cases since the setC(v j) (and hence
N>i(vi)) can already be partitioned into some vertex sets.

In ~T(C(G)), each nodeC stores̀ (C). Hence each vertex inG appears exactly once in the tree. To represent it,
each vertexv has a pointer to the nodeC(v) in C(G) =M(G) ∪ L(G). The detail of the algorithm is described as
CLT shown in Figure 1, and an example of the construction is depicted in Figure 2. In Figure 2,
the left-hand graph gives a ptolemaic graph, and the right-hand trees are clique laminar trees constructed (a) after
adding the vertices 16,15,14,13,12,11, (b) after adding the vertices 16,15,14,13,12,11,10, (c) after adding
the vertices 16,15,14,13,12,11,10,9,8, and (d) after adding all the vertices. We show the correctness and a
complexity analysis of the algorithm.

We will use the following property of a PEO found by the LBFS of a chordal graph:

Lemma 11 Let v1, v2, . . . , vn be a PEO found by the LBFS. Then i< j impliesmax{N(vi)} ≤ max{N(v j)}.

5

Algorithm 1 : CLT

Input : A ptolemaic graphG = (V,E) with a PEOv1, v2, . . . , vn obtained by the LBFS,
Output : A clique laminar treeT.
initialize T by the cliqueCM(vn) := {vn} and set the pointer fromvn to CM(vn);1

for i := n− 1 down to1 do2

let v j := min{N>i(vi)};3

switch condition of N>i(vi) do4

case(1) N>i(vi) = CM(v j)5

updatè (CM(v j)) := `(CM(v j)) ∪ {vi} and
∣∣∣CM(v j)

∣∣∣ :=
∣∣∣CM(v j)

∣∣∣ + 1;6

setCM(vi) := CM(v j);7

case(2) N>i(vi) = CL(v j)8

make a new maximal cliqueCM(vi) with `(CM(vi)) := {vi} and |CM(vi)| :=
∣∣∣CL(v j)

∣∣∣ + 1;9

add an arc (CL(v j),CM(vi));10

case(3) N>i(vi) ⊂ C(v j) and
∣∣∣`(C(v j))

∣∣∣ =
∣∣∣C(v j)

∣∣∣11

updatè (C(v j)) := `(C(v j)) \ N>i(vi) and
∣∣∣`(C(v j))

∣∣∣ :=
∣∣∣`(C(v j))

∣∣∣ − |N>i(vi)| ;12

make a new vertex setL := N>i(vi) with `(L) := N>i(vi) and |L| := |N>i(vi)| ;13

make a new maximal cliqueCM(vi) with `(CM(vi)) = {vi} and |CM(vi)| := |L| + 1;14

add arcs (L,C(v j)) and (L,CM(vi));15

case(4) N>i(vi) ⊂ C(v j) and
∣∣∣`(C(v j))

∣∣∣ <
∣∣∣C(v j)

∣∣∣16

make a new vertex setL := N>i(vi) with `(L) := N>i(vi) ∩ `(C(v j)) and |L| := |N>i(vi)| ;17

updatè (C(v j)) := `(C(v j)) \ L and
∣∣∣`(C(v j))

∣∣∣ :=
∣∣∣`(C(v j))

∣∣∣ − |L| ;18

make a new maximal cliqueCM(vi) with `(CM(vi)) = {vi} and |CM(vi)| = |L| + 1;19

remove the arc (L′,C(v j)) with L′ ⊂ L and add an arc (L′, L);20

add arcs (L,C(v j)) and (L,CM(vi));21

end22

end23

set the pointer fromvi to C(vi);24

end25

return T.26

Figure 1: A linear time algorithm for the clique laminar treeT of a ptolemaic graphG = (V,E).

165

3

2

4 6

13

12

11 15

98

10

7

14

1

16,15,14,13,12,11

16,14,13,12,11

15 10

16,13,12,11

15

109

14

16

12

6,4

9

11

φ

14

15

7

8

105

(a)

(b)

(c)

(d)

3

2

13 18

Figure 2: A ptolemaic graph and its clique laminar tree.

6

Proof. Let vk be max{N(vi)}. If vk is a neighbor ofv j , we have done. Hence we assume thatvk < N(v j). Then
Theorem 1 in [8] implies thatv j should have a neighborvk′ with k′ > k.

We assume that AlgorithmCLT is going to addvi , and letv j := min{N>i(vi)}. We will show that
all possible cases are listed, and in each case,CLT correctly manages the nodes inC(G) and their
labels inO(deg(vi)) time. The following lemma drastically decreases the number of possible cases, and simplifies
the algorithm.

Lemma 12 Let vk bemax{N>i(vi)}. We moreover assume that the set N>i(vi) has already been divided into some
distinct vertex sets L1, L2, . . . , Lh. Then, there is an ordering of the sets such that vk ∈ L1 ⊂ L2 ⊂ · · · ⊂ Lh.

Proof. We first observe thatG[{vi , vi+1, . . . , vn}] is ptolemaic ifG is ptolemaic since any vertex induced subgraph of
a chordal graph is chordal, and any vertex induced subgraph of a distance hereditary graph is distance hereditary.

We assume that there is a vertex setL ⊂ N>i(vi) such thatL does not containvk. Then, there is a vertexvi′ with
i′ > i that makes the vertex setL beforevi . Since{vi′ , vk} < E, by Lemma 11,vi′ has another neighborvk′ with
k′ > k. By the property of the LBFS, it is easy to see thatG[{vk, . . . , vn}] is connected. LetMi be a maximal clique
{vi} ∪N>i(vi), andMi′ be a maximal clique that contains{vi′ } ∪ L. Then,Mi ∩Mi′ = L which contains no vertex in
G[{vk, . . . , vn}]. On the other hand, we have{vi , vk}, {vi′ , vk′ } ∈ E. Hence,Mi ∩ Mi′ does not separateMi \ Mi′ and
Mi′ \Mi . ThereforeG[{vi , vi+1, . . . , vn}] is not ptolemaic by Theorem 2(3), which is a contradiction. Thus we have
vk ∈ L, and hence, all the vertex setsL1, L2, . . . , Lh containvk. The vertex setN>i(vi) is contained in a maximal
clique in the ptolemaic graphG[{vi , vi+1, . . . , vn}]. Hence by Theorem 5,L1, L2, . . . , Lh are laminar. Therefore, we
havevk ∈ L1 ⊂ L2 ⊂ · · · ⊂ Lh for some suitable ordering.

Since the graphG is chordal and the vertices are ordered in a perfect elimination ordering,N>i(vi) induces a
clique. By Lemma 12, we have three possible cases; (a)N>i(vi) = C(v j), (b) N>i(vi) ⊂ C(v j) and there are no
vertex sets inN>i(vi), and (c)N>i(vi) ⊂ C(v j) and there are vertex setsL1 ⊂ L2 ⊂ · · · ⊂ Lh ⊂ N>i(vi). In the last
case, we note thatLh , N>i(vi); otherwise, we havev j ∈ Lh, or consequently,Lh = C(v j) = N>i(vi), which is case
(a).
(a) N>i(vi) = C(v j): We have two subcases;C(v j) is a maximal clique (i.e.N>i(vi) = CM(v j)) or C(v j) is a non-
maximal clique (i.e.N>i(vi) = CL(v j)). In the former case, we just updateCM(v j) by CM(v j) ∪ {vi}. This is case
(1) in CLT. In the latter case, there are other vertex set that containsCL(v j) as a subset. Thus we
add a new maximal cliqueCL(v j) ∪ {vi}. More precisely, we add a new nodeCM(vi) with `(CM(vi)) = {vi} and
|CM(vi)| =

∣∣∣CL(v j)
∣∣∣ + 1, and a new arc (CL(v j),CM(vi)). This is done in case (2) ofCLT. We can

check ifN>i(vi) = C(v j) by checking if |N>i(vi)| =
∣∣∣C(v j)

∣∣∣ in O(1) time. Thus it is easy to see that time complexity
is O(1) in both cases.
(b) N>i(vi) ⊂ C(v j) and there are no vertex sets inN>i(vi): We removeN>i(vi) from C(v j) and make a new vertex
setN>i(vi) shared byC(v j) andCM(vi) = {vi}∪N>i(v j). We can observe thatN>i(vi) ⊂ C(v j) and there are no vertex
sets inN>i(vi) if and only if |N>i(vi)| <

∣∣∣C(v j)
∣∣∣ and

∣∣∣`(C(v j))
∣∣∣ =

∣∣∣C(v j)
∣∣∣ . Thus,CLT recognizes

this case inO(1) time, and handles it in case (3). It is easy to see that case (3) can be done inO(|N>i(vi)|) =

O(deg(vi)) time. We note that, in the case, we do not mind ifC(v j) is maximal or not. In any case, the property
does not change forC(v j).
(c) N>i(vi) ⊂ C(v j) and there are vertex setsL1 ⊂ L2 ⊂ · · · ⊂ Lh ⊂ N>i(vi): We first observe that the nodes
L1, L2, . . . , Lh, andC(v j) form a directed path in~T in the case. (Hence we can recognize this case inO(|N>i(vi)|) =

O(deg(vi)) time, which will be used in Theorem 13.) Thus we make a new vertex setL := N>i(vi) with `(L) =

N>i(vi) \ Lh. The setN>i(vi) \ Lh is given byN>i(vi) ∩ `(C(v j)). Then we updatè(C(v j)) by `(C(v j)) \ N>i(vi). It
is easy to add a maximal cliqueCM(vi) = {vi} ∪ N>i(vi). Next, we have to update arcs aroundC(v j). By Lemma
12, this process is simple; we can findLh in O(deg(vi)) time, and there are no other vertex setL′ that has an arc
(L′,C(v j)) which has to be updated. We note that there can be some vertex setL′ with an arc (L′,C(v j)). But L′

is independent fromL in this case, and hence we do not have to mind it. Finally, we change the arc (Lh,C(v j))
to (Lh, L), and add the arcs (L,C(v j)) and (L,CM(vi)). Therefore the time complexity in the last case isO(deg(vi))
time.

By the above case analyses, Theorem 10 is settled.

3.3 Applications

Theorem 13 The recognition problem for ptolemaic graphs can be solved in linear time.

Proof.(Sketch.) Using the LBFS, we can obtain the perfect elimination ordering ofG if G is chordal in linear
time (and reject it ifG is not chordal). For a chordal graph, we run modifiedCLT. It is not

7

difficult to modify CLT to reject it if G is not distance hereditary. The key fact is that, ifG is
ptolemaic,N>i(vi) corresponds to a maximal directed path in~T(C(G)) as follows; suppose that we have vertex
setsL1 ⊂ L2 ⊂ · · · ⊂ Lh ⊂ N>i(vi) ⊂ C(v j) in case (c). In the case, (1) the nodesL1, L2, . . . , Lh,C(v j) form a
(connected) directed path inT(C(G)), (2) there are no other setL with L ⊂ L1, (3) all vertices inLh (and hence
L1 ∪ L2 ∪ · · · ∪ Lh) belong toN>i(vi), and (4) some vertices inC(v j) may not be inN>i(vi). Checking them can
be done inO(|N>i(vi)|) = O(deg(vi)) time for eachi, and otherwise, the vertex sets in the tree are not laminar,
and hence it would be rejected. The cases (a) and (b) can be seen as special cases of the case (c). Therefore, total
running time of the modifiedCLT is still O(n + m).

We note that Theorem 13 is not new. A ptolemaic graph is distance hereditary and chordal [16], distance
hereditary graphs are recognized in linear time [14, 9, 4], and chordal graphs are also recognized in linear time
[22, 24]. Thus, combining them, we have the theorem. We dare to state Theorem 13 to show that we can recognize
and then construct the clique laminar tree ofG at the same time in linear time, and the algorithm is much simpler
and more straightforward than the combination of known algorithms. (As noted in Introduction, the linear time
algorithm for recognition of distance hereditary graphs is not so simple.)

Theorem 14 The graph isomorphism problem for ptolemaic graphs can be solved in linear time.

Proof. Given a ptolemaic graphG = (V,E), the labeled clique laminar tree~T(C(G)) is uniquely determined up
to isomorphism by maximal cliques. Each vertex inV appears once in~T(C(G)), and the number of nodes in
~T(C(G)) is at most 2|V| − 1 by Lemma 4. Thus the representation of~T(C(G)) requiresO(|V|) space. The graph
isomorphism problem for labeled trees can be done in linear time (see, e.g., [19]), which completes the proof.

4 A Tree Representation of Distance Hereditary Graphs

In Section 3.1, we defined a clique laminar tree of a ptolemaic graphG. In the clique laminar tree, a nodeC has a
label`(C), which means a vertexv is in `(C) if and only if C is the minimal vertex set that containsv. WhenG is
ptolemaic, the vertex setsC, and hencè(C), induce cliques of the original graphG. The main idea in this section
is that we loosen the condition “clique” to “clique or independent set.” This idea leads us to new characterizations
of distance hereditary graphs.

4.1 A Tree Representation

Given a graphG = (V,E), we first defineM(G)

M(G) := {M | M is a nonempty set of vertices inV},
satisfying the following three properties; (i)∪M = V, (ii) each pair of setsM andM′ is incomparable or disjoint,
and (iii) for any two nondisjoint setsM andM′, M ∩M′ separatesM \M′ andM′ \M. We next defineC(G) to be
a set of non-empty vertex setsC that satisfies

C(G) :=
⋃

S⊆M(G)

{C | C = ∩M∈SM,C , ∅}.

We also defineL(G) := C(G) \ M(G). (We note thatM(G) is not uniquely determined for a distance hereditary
graph, which will be discussed in Section 5.)

We here define thelabel `(C) of each vertex setC ∈ C(G), and the mapping fromV to the partition defined by
labels in the same way. We also denote byC(v), CM(v), CL(v) for eachv ∈ V similarly.

We further require that a given graphG = (V,E) with the setM(G) has the following properties: (iv) Each
partition, or label̀ (C) for someC, has an attribute either “clique” or “independent” which means the vertex set
`(C) induces a clique or an independent set ofG. (v) Each vertex setC in C also has an attribute either “clique”
or “independent” as follows: Wheǹ(C) = C, the attribute is the same as`(C). Otherwise, the vertex setC is
partitioned into two or more disjoint vertex setsL1, L2, . . . , Lk such that∪iLi = C, Li ∩ L j = ∅ with i , j, and
there are no other setL ∈ L with Li ⊂ L ⊂ C for eachi. (Note that̀ (C) = Li for somei.) In the case, whenC
is “independent,” there are no edges betweenLi andL j for i , j. WhenC is “clique,” every vertex inLi is joined
to all vertices inL j for i , j. (vi) The graphG has no other edges. For simplicity, we define that the vertex set of
size≤ 1 is not an independent set but a clique. We denote the attribute of a label`(C) or a nodeC by a(·).

It is easy to see that if all attributes are “clique,” the graph is ptolemaic. This observation leads us to the
following theorem and lemma:

8

9 8

11

10

7

151

2

3

4

5

6

12

13

14

1617

0

(a)

9;c 10,8;i 11,7;i 12,6;i 0;c 13,5;c

φ;c4,1;i 2;c 14;cφ;c3;c17,16,15;c

(b)c c i c

c c c c c

i i

c i

Figure 3: A distance hereditary graph and its CIL-tree.

Theorem 15 Let G = (V,E) be a graph that has the familyM with the properties (i)∼(vi). LetF be a family of
the sets inL(G) such that∪L∈F L ⊂ M for some set M∈ M(G). ThenF is laminar.

Lemma 16 Let C1,C2 be any incomparable sets inC(G) for a graph G = (V,E) with associated familyM
satisfying the properties (i)∼(vi). Then C1 ∩C2 separates C1 \C2 and C2 \C1.

We can also define a directed graph~T(C(G)) = (C(G),A(G)) and its underlying graphT(C(G)) for a given
graphG = (V,E) andM in the same way as we introduced in Section 3.1, and obtain the following theorem.

Theorem 17 If a given graph G= (V,E) has a familyM with the properties (i)∼(vi), the graph T(C(G)) is a tree.

We say that a graphG has aclique-independent laminar tree(CIL-tree, for short) ifG has a familyM with
the properties (i)∼(vi). Figure 3(a) depicts an example of a distance hereditary graph, which is the same graph
as in [1, Figure 10]. In the graph, we haveM = {{0,1,2,4,6,12}, {0,5,6,12,13}, {1,3,4}, {2,14}, {3,15,16,17},
{6,7,8,10,11,12}, {8,9,10}}, andL = {{0,6,12}, {6,12}, {2}, {1,4}, {3}, {8,10}}. Hence its CIL-tree is given as
Figure 3(b). In the graph, for example,a({0,5,6,12,13}) is “clique” anda(`({0,5,6,12,13})) is also “clique”;
a({6,7,8,10,11,12}) is “clique” anda(`({6,7,8,10,11,12})) is “independent.” Althougha({0,6,12}) is “inde-
pendent” anda(`({0,6,12})) is “clique,” if the vertex 0 had weak siblings,a(`({0,6,12})) would be “independent”
(hence we have all possible cases).

We note thatG = (V,E) withM is connected if and only ifa(M) is “clique” for every maximal setM inM.
Hereafter we assume thatG is connected.

Lemma 18 If a connected graph G= (V,E) is distance hereditary, G has a CIL-tree.

Proof. To show this, we use the characterization due to Bandelt and Mulder [1] in Theorem 1. To unify the
notation, we assume that the graphG can be obtained from{vn, vn−1} by splitting some vertex or attaching a pendant
vertex according to the orderingvn−2, vn−3, . . . , v2, v1. For the ordering, we first setCM(vn) = CM(vn−1) = {vn, vn−1}.
Then, according to the ordering, we incrementally grow the CIL-tree for eachi = n− 2, . . . , 2,1. We have three
cases.
(α) The vertex vi is added as a pendant vertex ofv j ∈ N>i(vi). It is easy to see that̀(C(v j)) is the set of
siblings ofv j . If

∣∣∣`(C(v j))
∣∣∣ = 1, that is,v j has no sibling, we makeCM(vi) := {vi , v j} with `(CM(vi)) := {vi},

and add an arc (C(v j),CM(vi)). The attributesa(CM(vi)) = a(`(CM(vi))) :=“clique.” If
∣∣∣C(v j)

∣∣∣ > 1, we takev j

from C := C(v j) sincev j is shared byC and the set{vi , v j}. Then we make a new vertex setCL(v j) := {v j} with
`(CL(v j)) := {v j}, andCM(vi) := {vi , v j} with `(CM(vi)) := {vi}. We add arcs (CL(v j),C) and (CL(v j),CM(vi)). The
attributesa(CL(v j)) = a(`(CL(v j))) = a(CM(vi)) = a(`(CM(vi))) =“clique.”

9

(β) The vertex vi is added as a strong sibling of some vertexv j . If a(`(C(v j))) is “clique” (including the
case

∣∣∣`(C(v j))
∣∣∣ = 1), we just addvi into `(C(v j)) by setting`(C(v j)) := `(C(v j)) ∪ {vi} andC(vi) := C(v j).

Whena(`(C(v j))) is “independent,” we removev j from C = C(v j) (and `(C(v j))), and make a new vertex set
CM(vi) = CM(v j) := (C \ `(C)) ∪ {vi , v j} with an arc (C′,C(vi)) for each arc (C′,C). We set̀ (C(vi)) := {vi , v j} and
a(C(vi)) = a(`(C(vi))) =“clique”.
(γ) The vertex vi is added as a weak sibling of some vertexv j . If a(`(C(v j))) is “independent,” we just add
vi into C(v j) and`(C(v j)). Whena(`(C(v j))) is “clique,” we have two subcases. If

∣∣∣`(C(v j))
∣∣∣ = 1, we addvi

into `(C(v j)) and changea(`(C(v j))) from “clique” (of one vertexv j) to “independent” (of two verticesvi andv j).
Otherwise, we make a new vertex setC(vi) := C(v j) \ `(C(v j)) with `(C(vi)) := {vi}. We add (C′,C(vi)) for each
arc (C′,C(v j)) and seta(`(C(vi))) = a(C(vi)) :=“clique.”

It is not difficult to see that each construction grows the tree as a CIL-tree for eachi = n− 2, . . . , 2,1. Thus we
have the lemma.

Lemma 19 If a connected graph G= (V,E) has a CIL-tree~T(C(G)), G is distance hereditary.

Proof. We show the lemma by induction of the number of vertices inV. For K1 and K2, we have the lemma
immediately. We assume thatG = (V,E) has a corresponding CIL-tree, and|V| ≥ 3. We will show thatG
contains at least one pendant vertex, or at least one pair of twins; then we can reduce the number of vertices.

If the CIL-tree has a nodeC such that̀ (C) consists of two or more vertices, they are twins, and we have done.
Thus we assume that every node in the CIL-treeT has label with at most one vertex, and henceT has no twins.

We remind that the CIL-tree~T(C(G)) is a directed tree. Since it represents a laminar family joined by the
vertex sets inM, we can see that (1) each node of outdegree 0 in~T(C(G)) implies a node inM, (2) no two nodes
inM are adjacent, (3) each internal node ofT(C(G)) inM has indegree at least two and no outdegree, and (4)
each internal node ofT(C(G)) in L has outdegree at least two. The fourth property can be obtained from the fact
that each vertex set inL is an intersection of at least two vertex sets.

We also observe the following claim. LetM ∈ M be a leaf inT(C(G)) that has indegree 1 from a nodeC in
~T(C(G)). ThenC is inL since any two maximal sets inM are incomparable. In this case, (5) ifC has indegree 0,
M contains a pendant vertex. The claim (5) is proved as follows. Suppose thatC has indegree 0. Then, sinceC
does not contain any other vertex set, andC does not contain any twins, we have|`(C)| = |C| = 1. Then, we have
|`(M)| = 1 and |M| = 2, that is,C = {u} andM = {u, v} for someu, v ∈ V. SinceG is connected,v is a pendant
vertex.

We now regardT(C(G)) as a tree rooted at any fixed noder. For the tree, we define thedepthof each
node; the rootr has depth 0, denoted bydep(r) = 0, and the depth of each nodep except root is defined by
dep(p) := dep(q) + 1, whereq is the parent ofp.

Now, we pick up any nodeM of the maximum depth; clearly,M is a leaf and henceM ∈ M. Let L be the
parent ofM. Then, by the claim (2),L is in L. If L is the root of depth 0,L has at least two childrenM andM′

sinceM has the maximum depth. Then, by the claim (1),M andM′ are inM. However, the vertices iǹ(M) and
`(M′) becomes twins in the case, which is a contradiction. ThusL is not the root. Hence, there is a parentC of L
in the tree.

We first suppose that~T(C(G)) contains an arc (C, L). In the case, by claim (4),L has at least two childrenM
andM′, which again implies a contradiction. Therefore,~T(C(G)) contains an arc (L,C), andL has only one child
M. However, in the case,L has indegree 0. Hence, by the claim (5),M contains a pendant vertex.

Therefore, when a connected graphG has a CIL-tree,G has at least one pendant vertex or a pair of twins.
Hence, by Theorem 1,G is distance hereditary.

By Lemmas 18 and 19, we have the main theorem in this section:

Theorem 20 A graph G= (V,E) is distance hereditary if and only if G has a CIL-tree.

Hence we also denote by~T(C(G)) andT(C(G)) the CIL-tree and its underlying tree for a distance hereditary graph
G, respectively. Using the CIL-tree model, we can characterize ptolemaic graphs and bipartite distance hereditary
graphs.

Corollary 21 (cf. [1, Chapter 6]) Let G be a distance hereditary graph, and~T(C(G)) be its CIL-tree. If all
attributes are “clique,” the graph is ptolemaic. On the other hand, if all attributes of`(C) are “independent” and
all attributes of C are “clique,” the graph is bipartite distance hereditary graph.

In [23], Spinrad mentioned that there is no known intersection model of distance hereditary graphs. Theorems
7 and 20 give us a geometric model of distance hereditary graphs:

10

Corollary 22 Let T be the set of directed subtrees~Tv of a directed graph~T that satisfies the properties stated
in Corollary 9. Moreover, each node C of~T has two attributes a(C) and a(`(C)), and the values of the attributes
are either “independent” or “clique.” Let u and v be any vertices in V. Then{u, v} ∈ E if and only if (1)
a(`(C)) =“clique” if ~Tu = ~Tv rooted at C, or (2) a(C) =“clique” if T u , Tv and the common subtree of~Tu and ~Tv

is rooted at C. Then a graph G= (V,E) is distance hereditary if and only if the graph has the geometric model
defined above.

Theorem 23 Let G = (V,E) be a distance hereditary graph. Then its CIL-tree~T(C(G)) can be constructed in
linear time.

Proof. For a given distance hereditary graphG, using the algorithm by Hammer and Maffray, we can compute the
sequence of extensions in Theorem 1. Then the proof of Lemma 18 gives us the construction of a CIL-tree ofG
from the ordered vertices. It is easy to see that each step for a vertexv takesO(deg(v)) time.

5 Concluding Remarks

In Section 3, the partition of the vertex set is uniquely determined by its maximal cliques for a ptolemaic graph.
Hence the clique laminar tree of a ptolemaic graph is uniquely determined up to isomorphism. However, for a CIL-
tree of a distance hereditary graph, this is not the case. For example, for the graph given in Figure 3(a), we can let
M = {{0,1,2,4,5,13}, {1,2,4,5,6,12,13}, {1,3,4}, {2,14}, {3,15,16,17}, {6,7,8,10,11,12}, {8,9,10}}, andL =

{{1,2,4,5,13}, {1,4}, {2}, {3}, {6,12}, {8,10}}. Then this family gives a different CIL-tree from the one in Figure
3(b). Intuitively, the reason is the following: Given a distance hereditary graphG, we first add suitable edges
and makeG into a ptolemaic graphG′. Then the clique laminar tree ofG′ gives a CIL-tree forG. However,
we have several ways to make a distance hereditary graph into a ptolemaic graph. For example, Figure 3(b) is
obtained when we regard the vertex sets{0,5,6,12,13} and{0,1,2,4,6,12} as “maximal cliques,” and the other
CIL-tree is obtained when we regard the vertex sets{0,1,2,4,5,13} and{1,2,4,5,6,12,13} as “maximal cliques.”
Therefore, we cannot solve the graph isomorphism problem for distance hereditary graphs by using CIL-trees
immediately. We found a polynomial time algorithm that constructs a canonical CIL-tree for a given distance
hereditary graph. However, efficient, especially linear time, algorithm that solves the graph isomorphism problem
for distance hereditary graphs is remained open, which is mentioned by Spinrad in [23].

As noted in Introduction, distance hereditary graphs can be recognized in linear time by using the algorithms in
[14, 9, 4]. However, they are still complicated. A simple linear algorithm for the recognition of distance hereditary
graphs is still unknown. Especially, is there a simple algorithm based on LBFS that constructs a CIL-tree for any
given distance hereditary graph (and rejects if it is not distance hereditary)?

In this paper, we present new tree representations (data structures) for ptolemaic graphs and distance hereditary
graphs. Our results will enable us to use the dynamic programming technique to solve some basic problems on
these graph classes. To develop such efficient algorithms based on the dynamic programming are future works.
The authors are now preparing an efficient algorithm that finds a longest cycle in a given ptolemaic graph.

References

[1] H.-J. Bandelt and H.M. Mulder. Distance-Hereditary Graphs.Journal of Combinatorial Theory, Series B,
41:182–208, 1986.

[2] A. Brandsẗadt and F.F. Dragan. A Linear-Time Algorithm for Connectedr-Domination and Steiner Tree on
Distance-Hereditary Graphs.Networks, 31:177–182, 1998.

[3] A. Brandsẗadt, V.B. Le, and J.P. Spinrad.Graph Classes: A Survey. SIAM, 1999.

[4] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A Simple Linear Time LexBFS Cograph Recognition
Algorithm. In Graph-Theoretic Concepts in Computer Science (WG 2003), pp. 119–130. Lecture Notes in
Computer Science Vol. 2880, Springer-Verlag, 2003.

[5] H.J. Broersma, E. Dahlhaus, and T. Kloks. A Linear Time Algorithm for Minimum Fill-in and Treewidth for
Distance Hereditary Graphs.Discrete Applied Mathematics, 99:367–400, 2000.

11

[6] M.-S. Chang, S.-Y. Hsieh, and G.-H. Chen. Dynamic Programming on Distance-Hereditary Graphs. In
Proceedings of 8th International Symposium on Algorithms and Computation (ISAAC ’97), pp. 344–353.
Lecture Notes in Computer Science Vol. 1350, Springer-Verlag, 1997.

[7] M.-S. Chang, S.-C. Wu, G.J. Chang, and H.-G. Yeh. Domination in Distance-Hereditary Graphs.Discrete
Applied Mathematics, 116:103–113, 2002.

[8] D.G. Corneil. Lexicographic Breadth First Search — A Survey. InGraph-Theoretic Concepts in Computer
Science (WG 2004), pp. 1–19. Lecture Notes in Computer Science Vol. 3353, Springer-Verlag, 2004.

[9] G. Damiand, M. Habib, and C. Paul. A Simple Paradigm for Graph Recognition: Application to Cographs
and Distance Hereditary Graphs.Theoretical Computer Science, 263:99–111, 2001.

[10] A. D’Atri and M. Moscarini. Distance-Hereditary Graphs, Steiner Trees, and Connected Domination.SIAM
Journal on Computing, 17(3):521–538, 1988.

[11] M. Farber. Independent Domination in Chordal Graphs.Operations Research Letters, 1(4):134–138, 1982.

[12] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Max-
imum Independent Set of a Chordal Graph.SIAM Journal on Computing, 1(2):180–187, 1972.

[13] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics 57.
Elsevier, 2nd edition, 2004.

[14] P.L. Hammer and F. Maffray. Completely Separable Graphs.Discrete Applied Mathematics, 27:85–99, 1990.

[15] E. Howorka. A Characterization of Distance-Hereditary Graphs.Quart. J. Math. Oxford (2), 28:417–420,
1977.

[16] E. Howorka. A Characterization of Ptolemaic Graphs.Journal of Graph Theory, 5:323–331, 1981.

[17] S.-Y. Hsieh, C.-W. Ho, T.-S. Hsu, and M.-T. Ko. Efficient Algorithms for the Hamiltonian Problem on
Distance-Hereditary Graphs. InCOCOON 2002, pp. 77–86. Lecture Notes in Computer Science Vol. 2387,
Springer-Verlag, 2002.

[18] P.N. Klein. Efficient Parallel Algorithms for Chordal Graphs.SIAM Journal on Computing, 25(4):797–827,
1996.

[19] J. Köbler, U. Scḧoning, and J. Toŕan. The Graph Isomorphism Problem: Its Structural Complexity.
Birkhäuser, 1993.

[20] B. Korte and J. Vygen.Combinatorial Optimization, Vol. 21 of Algorithms and Combinatorics. Springer,
2000.

[21] F. Nicolai and T. Szymczak. Homogeneous Sets and Domination: A Linear Time Algorithm for Distance-
Hereditary Graphs.Networks, 37(3):117–128, 2001.

[22] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on Graphs.SIAM
Journal on Computing, 5(2):266–283, 1976.

[23] J.P. Spinrad.Efficient Graph Representations. American Mathematical Society, 2003.

[24] R.E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclic-
ity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs.SIAM Journal on Computing, 13(3):566–
579, 1984.

[25] H.-G. Yeh and G.J. Chang. Centers and Medians of Distance-Hereditary Graphs.Discrete Mathematics,
265:297–310, 2003.

12

