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Abstract

This paper deals with the graph isomorphism (GI) problem for two graph classes:
chordal bipartite graphs and strongly chordal graphs. It is known that GI problem
is GI complete even for some special graph classes including regular graphs, bipar-
tite graphs, chordal graphs, comparability graphs, split graphs, and k-trees with
unbounded k. On the other side, the relative complexity of the GI problem for the
above classes was unknown. We prove that deciding isomorphism of the classes are
GI complete.
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1 Introduction

The graph isomorphism (GI) problem is a well-known problem and exploring
its precise complexity has become an important open question in computa-
tional complexity theory three decades ago (see (Kar72)). Although the prob-
lem is trivially in NP, the problem is not known to be in P and not known
to be NP-complete either (see (RC77; KST93)). It is very unlikely that the
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GI problem is NP-complete. As its evidence, the counting version of the GI
problem is known to be polynomial time equivalent to the original GI problem
(see (Mat79)) while for almost all NP complete problems, their counting ver-
sions appear to be of much higher complexity than themselves. Furthermore,
it is recently shown by Arvind and Kurur (AK02) that the GI problem is in
SPP and hence the problem is low for any counting complexity classes defined
via #P (or GapP) functions. On the other hand, any NP complete problems
don’t appear to reveal this property. It also seems unlikely that the GI prob-
lem is in P. Though there does not seem to be a good evidence supporting this
unlikelihood, we may note that no efficient algorithm has been found even if
we allowed to use some probabilistic method (or some quantum mechanism).

The current status on the computational complexity of the GI problem men-
tioned above has motivated us to introduce a notion of ”GI completeness”. A
problem is GI complete if it is polynomial time equivalent to the GI problem.
There are many GI complete problems (see (BC79), (KST93) ). In fact, the GI
problem itself remains to be GI complete for several graph classes including
regular graphs, bipartite graphs, chordal graphs, comparability graphs, split
graphs, and k-trees with unbounded k (see (BC79) for a review). On the other
hand, the GI problem is solvable in polynomial time when it is restricted to
special graph classes, e.g., graphs of bounded degrees, planar graphs, interval
graphs, permutation graphs, k-trees with fixed k (see (BPT96) for reference),
and convex graphs (Che99).

Recently, many graph classes have been proposed and widely investigated (see
(BLS99) for a comprehensive survey). However, relative complexity of the GI
problem is not known for some graph classes. Among them, the classes of
strongly chordal graphs and chordal bipartite graphs are on the border. We
show that the GI problem for the graph classes is GI complete. These results
solve the open questions noted by Spinrad (Spi95; BPT96).

2 Preliminaries

For a given graph G = (V,E), G[U ] denotes the subgraph of G induced by
U ⊆ V . Two graphs G = (V, E) and G′ = (V ′, E ′) are isomorphic if and only
if there is a one-to-one mapping φ : V → V ′ such that {u, v} ∈ E if and
only if {φ(u), φ(v)} ∈ E ′ for every pair of vertices u, v ∈ V . We denote by
G ∼ G′ if G and G′ are isomorphic. The graph isomorphism (GI) problem is
to determine if G ∼ G′ for given graphs G and G′. An edge is a chord of a
cycle if it joins two vertices of the cycle but is not itself an edge of the cycle.
A graph is chordal if every cycle of length at least 4 has a chord. A graph
is chordal bipartite if the graph is bipartite and every cycle of length at least
6 has a chord. A chord {xi, xj} in a cycle (x1, x2, · · · , x2k, x1) of even length
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2k is an odd chord if |j − i| ≡ 1 (mod 2). A graph is strongly chordal if G is
chordal and each cycle in G of even length at least 6 has an odd chord. In and
Kn denote an independent set and a clique of size n, respectively. A graph
G = (V, E) is a split graph if V can be partitioned into two subsets X and Y
such that G[X] ∼ K |X| and G[Y ] ∼ I |Y | .

3 Main Results

In (BPT96), Babel, et al. give the following reduction from a bipartite graph
to a directed path (DP) graph such that two given bipartite graphs are iso-
morphic if and only if the reduced DP graphs are isomorphic: given bipartite
graph G = (X,Y,E) with |X ∪ Y | = n and |E| = m, the edge set Ê of the
reduced graph Ĝ = (X ∪Y ∪E, Ê) contains {e, e′} for all e, e′ ∈ E, and {x, e}
and {y, e} for each e = {x, y} ∈ E (Figure 1). Our starting point is the DP
graph Ĝ that is a split graph having the following properties: (a) Ĝ[E] ∼ Km,
(b) Ĝ[X ∪Y ] ∼ In, and (c) each e ∈ E has exactly one neighbor in X and an-
other one in Y (thus d(e) = m+1). Without loss of generality, we also assume
that (d) m > 1 and (e) |X| > |Y | > 1 (if |X| = |Y | , construct new graph
(X1∪Y2∪{v}, X2∪Y1, E

′) from (X,Y,E) as follows: for each e = {x, y} ∈ E,
xi ∈ Xi, yi ∈ Yi, and {xi, yi} ∈ E ′ for i = 1, 2, and for every u ∈ X2 ∪ Y1,
{v, u} ∈ E ′).

We reduce the split graph Ĝ = (X ∪ Y ∪ E, Ê) to a graph G = (V , E). We
set V = X ∪ Y ∪ E ∪ E ′ ∪ B ∪W such that each vertex e ∈ E corresponds
to three vertices e′ ∈ E ′, eb ∈ B, and ew ∈ W , respectively (hence |E| =
|E ′| = |B| = |W | = m). Vertices are connected as follows: (1) for each
e ∈ E, {e, e′}, {e′, eb}, {eb, ew}, {e, ew} ∈ E , (2) for each e1, e2 ∈ E, {e1, e

′
2},
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{e′1, e2} ∈ E (thus G[E∪E ′] ∼ Km,m), and (3) for each vertex x ∈ X, {x, e} ∈ E
if {x, e} ∈ Ê, and for each vertex y ∈ Y , {y, e′} ∈ E if {y, e} ∈ Ê. The reduced
graph G for Ĝ in Figure 1 is shown in Figure 2. The reduction can be done in
polynomial time.

Lemma 1 G is chordal bipartite.

Proof. Dividing V into Vw = X ∪E ′ ∪W and Vb = Y ∪E ∪B, G is bipartite.
In Figure 2, the vertices of Vw are colored white and the vertices of Vb are
colored black. To show the chordal property, let C be a cycle of length at least
6. If C contains at least one vertex in B ∪W , then we have four consecutive
vertices v0, v1, v2, and v3 on C such that both v1 and v2 are in B ∪W and
both v0 and v3 are in E ∪ E ′. It is obvious that {v0, v3} is a chord of C. We
next suppose that all vertices of C are in X ∪ Y ∪E ∪E ′. Let v0, v1, v2, v3 be
consecutive vertices on C. If they are all in E ∪E ′, then we have {v0, v3} ∈ E
since G[E∪E ′] is Km,m. Thus we suppose that at least one of them is in X∪Y .
Without loss of generality, we may assume that v1 ∈ X and hence v0, v2 ∈ E.
Then, by (c), no other vertex in X is incident to v0 and v2. Since no vertices
in Y are incident to E, we have v3 ∈ E ′. This implies {v0, v3} ∈ E . 2

Lemma 2 Given bipartite graphs G1 and G2, G1 ∼ G2 if and only if G1 ∼ G2.

Proof. We first note that for each edge e = {u, v} with u, v ∈ B ∪W , there
exists only one cycle of length four which contains e. We call such a cycle a
handle. Then, it is easy to see that any isomorphism between G1 and G2 maps
the handles in G1 to those in G2. Furthermore, it is easy to see that for i = 1, 2,
an isomorphic copy of Ĝi can be obtained by contracting each of the handles
in Gi into a vertex. These facts immediately imply that Ĝ1 ∼ Ĝ2 if G1 ∼ G2.
The other direction is obvious. 2

Theorem 3 The GI problem is GI complete for chordal bipartite graphs and
strongly chordal graphs.

Proof. Lemmas 1 and 2 imply the claim for chordal bipartite graphs. To show
the claim for strongly chordal graphs, we below show how to reduce a chordal
bipartite graph to a strongly chordal graph.

Let G = (Vw,Vb, E) be a chordal bipartite graph constructed above. Then, for
each u, v ∈ Vw, we add an edge e = {u, v} to G in order to change Vw into a
clique. We further attach pendant vertices (pendant for short) to each vertex
in Vw as follows (see Figure 3): (1) for each vertex e′ ∈ E ′, we add a pendant
vertex and an edge between the pendant and e′, (2) for each vertex x in X, we
add three pendant vertices and edges between those vertices and x, and (3)
for each vertex w in W , we add four pendant vertices and edges between those
vertices and w. Then, the resultant graph is strongly chordal if G is chordal
bipartite (BLS99, Theorem 3.4.3).
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As mentioned in the first paragraph of this section, we assume |Vw| > |Vb| and
|E| > 1. Then, it follows from these assumptions that Vw become the unique
maximum clique in the resultant (strongly chordal) graph. This implies that
any isomorphism between two such graphs maps the clique in one graph to
that of the other. In other words, the isomorphism preserves the vertex colors.
We further note that each of X, E ′, and W , which are subsets of Vw, can
be identified in the resultant graph via the number of pendants. Precisely
speaking, X is the set of vertices in Vw which own three pendants, E ′ is the
set of vertices in Vw which own one or two pendants where, in the latter case,
one of the two pendants originally came from Y , and W is the set of vertices in
Vw which own four pendants. Then, we can easily see that any isomorphism
between two such graphs does not only preserve the vertex colors but also
preserves each of the sets X, E ′, and W . From this, we can see that for any
isomorphism between two such graphs, its restriction to the original (chordal
bipartite) graphs is an isomorphism between the two original graphs. From
this, we have our claim for strongly chordal graphs. 2

4 Concluding Remarks

The class of strongly chordal graphs is between chordal graphs and interval
graphs. Babel, et al. show that the GI problem for directed path (DP) graphs
is GI complete, while the GI problem for rooted directed path (RDP) graphs is
polynomial time solvable in (BPT96). The class of the RDP graphs is between
the strongly chordal graphs and interval graphs, although the class of the DP
graphs is incomparable to strongly chordal graphs. In the paper, we draw a
line between the RDP graphs and strongly chordal graphs for GI completeness,
which answers the open problem stated in (BPT96).

The class of chordal bipartite graphs is between bipartite graphs and interval
bigraphs. Recently, Hell and Huang show that any interval bigraph is the
complement of a circular arc graph (HH03). Thus, combining the result by
Hsu (Hsu95), we can see that the GI problem for interval bigraphs can be
solved in polynomial time. Therefore we draw a line between the interval
bigraphs and chordal bipartite graphs for GI completeness, which improves
the GI completeness results.

As mentioned in Introduction, we have many graph classes, which are pro-
posed recently, and we do not know whether the GI problem is GI complete
or polynomial time solvable on some classes. In order to clarify the complex-
ity of the GI problem, considering the GI problem on such graph classes is
future work. For example, trapezoid graphs are the natural and classic graph
class such that the complexity of the GI problems is still unknown, which is
mentioned by Spinrad (Spi03).
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