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Q. What is Memory Consistent Model (MCM)?

A. MCM is a rule to share a memory among multiple threads.
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There exist many MCMs

sequential consistency
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ltanium memory model

UPC memory model

Shared memory

We have to understand such MCMs
since the MCMs are rules. But,

There exist non-intuitive MCMs!



An example of curious executions
Under ltanium MCM,

-
Memory: [x] == [y] ==
Thread 1 Thread 2
[x] = 1; r2 = [y]l;
rl = [X]; r3 = [x];
[y] = rl;
\

r2 == 1 && r3 == 0 is allowed!



Reordering under Itanium MCM

Under ltanium MCM,
4 I

Memory: [x] == [y] ==
Thread 1 Thread 2
[x] = 1; r3 = [x];
rl = [x]; r2 = [vyl;
[yl = rl;
\ %
Sincer2 == 1and r3 == 0 can be reordered,

r2 == 1 && r3 == 0 is allowed!



Speculative behaviors under UPC MCM

-
Thread 1 Thread 2
rl = [x]; r2 = [x];
[x] = 2; [x] = 1;

N

rl == 1 && r2 == 2 is allowed!




Speculative behaviors under UPC MCM

-
Thread 1 Thread 2
rl = [x]; r2 = [x];
[x] = 2; [x] = 1;

N

rl == 1 && r2 == 2 is allowed!

~
Thread 1 Thread 2
speculate: [x] =1 speculate: [x] = 2
rl = [x]; r2 = [x];
[x] = 2; [x] = 1;

o




Reordering depends on an MCM

Can

r2
r3

[yv];
[x];

be reordered?

Sequential consistency: No
Total Store Ordering: No
Partial Store Ordering:  Yes
ltanium MCM: Yes
UPC MCM: No



Our approach to handle various MCMs simultaneously

1. Give a general model (called base model),
2. define an MCM as a constraint on base model,

3. develop a model checker generator

an MCM ¥ a program P a verified property ¢

7

model checker model checker Does P have
generator for P ¢ under ¥?




Base model for reorderings
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Threads have their own memories, and read-from/write-to a
shared memory is simulated by communication among them.




Base model for reorderings and speculative behaviors

( Thread ) ( Thread ) ( Thread ) ( Thread ) ( Thread ) ( Thread ) ( Thread ) ( Thread )

Issue Issue
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Each thread has its own base model (at the previous slide) for a
speculation.



How to define an MCM

Issue; Rflct; Issue, Rflct, Issue; Rflct; ...
Each pair can be reordered on base model.
v/ Issue; Issue, Rflct; Rflct, Issue; Rflcts ...
v/ Issue; Issue, Issues Rflct; Rflct, Rflcts ...
VA
MCMs are constraints for base model.
v/ Issue; Issue, Rflct; Rflct, Issue; Rflcts ...

X Issue; Issue, Issue; Rflct; Rflct, Rflct;y ...



Formal definition of MCMs

Define an MCM as a set of formulas in mathematical logic.

Definition of formula. A formula is a combination of atomic
formulas by logical connectives — (negation), > (implication),
and V (universal quantifier).

Atomic formulas. o < 0’ (o’ must be performed after o)
where o and o’ are either of the following:

e IssueT (i, a)
T’s instruction i with attributes «a is issued.

e Rflct[= T] (i, a)
Issue of i is reflected to 7', i.e., T can observe i’s issue.



Acquire and release semantics of Iltanium MCM

Any instruction must wait for all reflections of an instruction with
an attribute release that is issued before.

[Xx] = l:release;
rl = [x];

r1 = [x] must wait for reflections of [x] = 1l:release.

Issue T (i, {release}) < IssueT (i’, A}) D
Rflct T (i, {release}) < IssueT (i, A)

We confirmed that it was possible to write ltanium MCMs.



Lock and unlock of UPC MCM

If T locks x, then 7’ cannot lock x until 7 unlocks x.

Issue T (Nop, {lock(x)}) < Issue T’ (i’, {lock(x)}) D
Issue 7" (Nop, {lock(x)}) < Issue T (Nop, {unlock(x)}) A
Issue 7" (Nop, {unlock(x)}) < Issue 7’ (i’, {lock(x)})

We confirmed that it was possible to write UPC MCMs.



Implementation: model checker generator
Skip!




Experiments: model checking under MCMs
Skip!




Related work

Relaxed memory consistency model is a hot topic.

[Yang et al. ‘053] proposes an operational specification framework
UMM, which cannot handle speculative behaviors.

[Saraswat et al. '07] uses program transformations to reason
about it.

[Boudol et al. '09] uses a process calculus to reason about it.

[Shen et al. '99] uses term rewriting to reason about it.



State explosion

A verification under an MCM suffers from state explosion.

Consider m threads with n instructions.
Under an MCM that allows interleavings,

T
e o o

there exist ,,,.,Cp, - mn-1)nCn = -+ - - »nCh + ,C,, €xecution traces.



Partial order reduction based on a verified property

To check o < 0, use time counter,
ABCD means a state {ty = 1,13 = 2,tc = 3,tp = 4}, and
ACBD means astate {ty = 1,13 =3,tc = 2,tp = 4}.

Let us use pairs of terms that occur in an MCM.

AssumeaMCMisA<B>C < D.
Then, pairs of terms that occur in an MCM are {(A, B), {C, D)}.

ABCD means a state {t,.p = true, t-.p = true}, and
ACBD means a state {t4.p = true, t-.p = true}, too.



Theorem proving using partial order reduction

Thread 1 Thread 2
store x <+ 1; storey < 2;
flush x; flush y;
barrier; barrier;

loadry <y loadr, <1 x

Question. ri =2 Ar, =17



Merging triples in backward searches

I1,(G1) {y =2Anr= 1} {load! r| <y} {m =2Anr= 1}

() 6 (n-2nn-1]

storel x 1 ST_O]:‘e2 Yy < 2 IL(G») {r1 =2AXx= 1} {load2 ry «i x} {rl =2Ar= 1}

\ ¥
flujhl X flush? y i} 6 {n=2an=1)
\
barﬂ/ierl barli/ier2 IT'(G") {y =2AX= 1} {load? ry «i x} {y =2Ar = 1}
load' ry —y load® ry i x {7} G {y:2/\r2:1}

IT(G") {y:2/\x:1} {load! r| <y} {r1:2/\x:1}

() o {n-2nx-1]




Semantics of programs with shared memories

load' r < x, (o, s) | (o[r := {xD,], s)

store' x —i e, (0, s) || (o, s[x = {e),])

G,{(o,s) | (o, 5" (o’,s) = (o, s")
G,{(o,s) | (o, 5"

The = on (o, s) is defined as the smallest reflexive and
transitive closure that contains (o, s) = {(o[s | {x}], s \ {x}).

G\{C}L{(o,s) | (o7, s") {C}, (o7, s") | (o, s") C is not ...

G,{(o,s) | (d”,s")



Hoare logic for dependence graphs

Define a dependence graph from a program and an MCM.

E==r|x|x

®:=E=E|E<E|-®|PO>D|Vr.®|Vx.D|VTE D

{[x/r]®} load' r «i x {D}

{[e/X](® A [e/x]D)} store’ x < e {D)

VC e L(G) DG\ C{T} {7}y C{¥}

{@} G {P)
It is sound and relatively complete to the semantics.



Related work

[Owicki & Gries 1976] gives a Hoare logic for parallel
programs.

[Jones 1981] gives a compositional Hoare logic by using the
so-called rely/guarantee method.

[O’Hearn 2007] gives a separation logic for concurrent
programs with shared memories

[Kojima & Igarashi 2013] gives a Hoare logic for Single
Instruction Multiple Data (SIMD) programs.



Summary

e Propose a base model on which we discuss MCMs,

e define a set of formulas to describe MCMs,

— confirm possible to write Iltanium and UPC MCMs.
e develop a model checker generator that takes an MCM, and

e demonstrate some experiments.

e (Give semantics of programs with shared memories,
e define MCMs as translations from programs into graphs, and

e give sound and relatively complete Hoare logic for graphs.



