
Program Verification
under

Formalized Memory Consistent Models

Tatsuya Abe
RIKEN AICS

(JointWork with Toshiyuki Maeda)

SLACS / NSA
May 26, 2014

Q. What is Memory Consistent Model (MCM)?

A. MCM is a rule to share a memory among multiple threads.

76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��

OO OO OO OO

Shared memory

a memory

consistent

model

There exist many MCMs

76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��

OO OO OO OO

Shared memory

sequential consistency

TSO
PSO
Itanium memory model

UPC memory model

We have to understand such MCMs
since the MCMs are rules. But,

There exist non-intuitive MCMs!

An example of curious executions

Under Itanium MCM,

Memory: [x] == [y] == 0

Thread 1

[x] = 1;

r1 = [x];

[y] = r1;

Thread 2

r2 = [y];

r3 = [x];

r2 == 1 && r3 == 0 is allowed!

Reordering under Itanium MCM

Under Itanium MCM,

Memory: [x] == [y] == 0

Thread 1

[x] = 1;

r1 = [x];

[y] = r1;

Thread 2

r3 = [x];

r2 = [y];

Since r2 == 1 and r3 == 0 can be reordered,

r2 == 1 && r3 == 0 is allowed!

Speculative behaviors under UPC MCM

Thread 1

r1 = [x];

[x] = 2;

Thread 2

r2 = [x];

[x] = 1;

r1 == 1 && r2 == 2 is allowed!

Speculative behaviors under UPC MCM

Thread 1

r1 = [x];

[x] = 2;

Thread 2

r2 = [x];

[x] = 1;

r1 == 1 && r2 == 2 is allowed!

Thread 1

speculate: [x] = 1
r1 = [x];

[x] = 2;

Thread 2

speculate: [x] = 2
r2 = [x];

[x] = 1;

Reordering depends on an MCM

Can

r2 = [y];

r3 = [x];

be reordered?

Sequential consistency: No

Total Store Ordering: No

Partial Store Ordering: Yes

Itanium MCM: Yes

UPC MCM: No

Our approach to handle various MCMs simultaneously

1. Give a general model (called base model),

2. define an MCM as a constraint on base model,

3. develop a model checker generator

an MCM Ψ

��

a program P

wwooo
ooo

ooo
ooo

a verified property φ

vvmmm
mmm

mmm
mmm

mm

model checker
generator

//GF ED@A BCmodel checker
for P

// Does P have
φ under Ψ?

Base model for reorderings76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��

OO OO OO OO

Shared memory

Base model76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��

76 5401 23Thread

��?> =<89 :;Memory

Issue

OO

+3?> =<89 :;Memory

OO

+3

Rflct
ks ?> =<89 :;Memory

OO

+3
ks ?> =<89 :;Memory

OO

ks

Threads have their own memories, and read-from/write-to a
shared memory is simulated by communication among them.

Base model for reorderings and speculative behaviors'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��'& %$! "#Memory

Issue

OO

+3'& %$! "#Memory

OO

+3
Rflct

ks '& %$! "#Memory

OO

+3ks '& %$! "#Memory

OO

ks

'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��'& %$! "#Memory

Issue

OO

+3'& %$! "#Memory

OO

+3
Rflct

ks '& %$! "#Memory

OO

+3ks '& %$! "#Memory

OO

ks'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��'& %$! "#Memory

Issue

OO

+3'& %$! "#Memory

OO

+3
Rflct

ks '& %$! "#Memory

OO

+3ks '& %$! "#Memory

OO

ks

'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��

'& %$! "#Thread

��'& %$! "#Memory

Issue

OO

+3'& %$! "#Memory

OO

+3
Rflct

ks '& %$! "#Memory

OO

+3ks '& %$! "#Memory

OO

ks

Each thread has its own base model (at the previous slide) for a
speculation.

How to define an MCM

Issue1 Rflct1 Issue2 Rflct2 Issue3 Rflct3 ...

Each pair can be reordered on base model.

✓ Issue1 Issue2 Rflct1 Rflct2 Issue3 Rflct3 ...

✓ Issue1 Issue2 Issue3 Rflct1 Rflct2 Rflct3 ...

✓ ...

MCMs are constraints for base model.

✓ Issue1 Issue2 Rflct1 Rflct2 Issue3 Rflct3 ...

× Issue1 Issue2 Issue3 Rflct1 Rflct2 Rflct3 ...

...

Formal definition of MCMs

Define an MCM as a set of formulas in mathematical logic.

Definition of formula. A formula is a combination of atomic
formulas by logical connectives ¬ (negation), ⊃ (implication),
and ∀ (universal quantifier).

Atomic formulas. o < o′ (o′ must be performed after o)
where o and o′ are either of the following:

• Issue T (i, a)
T ’s instruction i with attributes a is issued.

• Rflct [⇒ T] (i, a)
Issue of i is reflected to T , i.e., T can observe i’s issue.

Acquire and release semantics of Itanium MCM

Any instruction must wait for all reflections of an instruction with
an attribute release that is issued before.

[x] = 1:release;

r1 = [x];

r1 = [x] must wait for reflections of [x] = 1:release.

Issue T (i, {release}) < Issue T (i′, A}) ⊃
Rflct T (i, {release}) < Issue T (i′, A)

We confirmed that it was possible to write Itanium MCMs.

Lock and unlock of UPC MCM

If T locks x, then T ′ cannot lock x until T unlocks x.

Issue T (Nop, {lock(x)}) < Issue T ′ (i′, {lock(x)}) ⊃
Issue T (Nop, {lock(x)}) < Issue T (Nop, {unlock(x)}) ∧
Issue T (Nop, {unlock(x)}) < Issue T ′ (i′, {lock(x)})

We confirmed that it was possible to write UPC MCMs.

Implementation: model checker generator

Skip!

Experiments: model checking under MCMs

Skip!

Related work

Relaxed memory consistency model is a hot topic.

[Yang et al. ’05] proposes an operational specification framework
UMM, which cannot handle speculative behaviors.

[Saraswat et al. ’07] uses program transformations to reason
about it.

[Boudol et al. ’09] uses a process calculus to reason about it.

[Shen et al. ’99] uses term rewriting to reason about it.

...

State explosion

A verification under an MCM suffers from state explosion.

Consider m threads with n instructions.
Under an MCM that allows interleavings,

m

n

•
��

•
��

•
��

•
��•

��
•
��

•
��

•
��•

��
•
��

•
��

•
��

...
...

...
...

there exist m·nCn · (m−1)·nCn · · · · · 2·nCn · nCn execution traces.

Partial order reduction based on a verified property

To check o < o′, use time counter,
ABCD means a state {tA = 1, tB = 2, tC = 3, tD = 4}, and
ACBD means a state {tA = 1, tB = 3, tC = 2, tD = 4}.

Let us use pairs of terms that occur in an MCM.

Assume a MCM is A < B ⊃ C < D.

Then, pairs of terms that occur in an MCM are {⟨A, B⟩, ⟨C,D⟩}.

ABCD means a state {tA<B = true, tC<D = true}, and
ACBD means a state {tA<B = true, tC<D = true}, too.

Theorem proving using partial order reduction

Thread 1 Thread 2

store x 7→1; store y 7→2;

flush x; flush y;

barrier; barrier;

load r1 7→y load r2 7→x

Question. r1 = 2 ∧ r2 = 1?

Merging triples in backward searches

store1 x 7→1
��

store2 y 7→2
��

flush1 x
��

flush2 y
��

barrier1

��
barrier2

��
load1 r1 7→y load2 r2 7→x

Π1(G1)
{
y = 2 ∧ r2 = 1

}
{load1 r1 7→y}

{
r1 = 2 ∧ r2 = 1

}
{
?
}

G
{
r1 = 2 ∧ r2 = 1

}

Π2(G2)
{
r1 = 2 ∧ x = 1

}
{load2 r2 7→x}

{
r1 = 2 ∧ r2 = 1

}
{
?
}

G
{
r1 = 2 ∧ r2 = 1

}

Π′(G′)
{
y = 2 ∧ x = 1

}
{load2 r2 7→x}

{
y = 2 ∧ r2 = 1

}
{
?
}

G1

{
y = 2 ∧ r2 = 1

}

Π′(G′)
{
y = 2 ∧ x = 1

}
{load1 r1 7→y}

{
r1 = 2 ∧ x = 1

}
{
?
}

G2

{
r1 = 2 ∧ x = 1

}

Semantics of programs with shared memories

loadi r 7→x, ⟨σ, s⟩ ⇓ ⟨σ[r B ⟨|x|⟩σ], s⟩

storei x 7→e, ⟨σ, s⟩ ⇓ ⟨σ, s[x B ⟨|e|⟩σ]⟩

G, ⟨σ, s⟩ ⇓ ⟨σ′, s′⟩ ⟨σ′, s′⟩ ⇒ ⟨σ′′, s′′⟩
G, ⟨σ, s⟩ ⇓ ⟨σ′′, s′′⟩

The⇒ on ⟨σ, s⟩ is defined as the smallest reflexive and
transitive closure that contains ⟨σ, s⟩ ⇒ ⟨σ[s ↾ {x}], s \ {x}⟩.

G \ {C}, ⟨σ, s⟩ ⇓ ⟨σ′, s′⟩ {C}, ⟨σ′, s′⟩ ⇓ ⟨σ′′, s′′⟩ C is not ...
G, ⟨σ, s⟩ ⇓ ⟨σ′′, s′′⟩

Hoare logic for dependence graphs

Define a dependence graph from a program and an MCM.

E F r | x | x
ΦF E = E | E ≤ E | ¬Φ | Φ ⊃ Φ | ∀ r. Φ | ∀ x. Φ | ∀ x. Φ

{[x/r]Φ} loadi r 7→x {Φ}

{[e/x](Φ ∧ [e/x]Φ)} storei x 7→e {Φ}

∀C ∈ L(G) {Φ}G \C {Υ} {Υ}C {Ψ }
{Φ}G {Ψ }

It is sound and relatively complete to the semantics.

Related work

[Owicki & Gries 1976] gives a Hoare logic for parallel
programs.

[Jones 1981] gives a compositional Hoare logic by using the
so-called rely/guarantee method.

[O’Hearn 2007] gives a separation logic for concurrent
programs with shared memories

[Kojima & Igarashi 2013] gives a Hoare logic for Single
Instruction Multiple Data (SIMD) programs.

Summary

• Propose a base model on which we discuss MCMs,

• define a set of formulas to describe MCMs,

– confirm possible to write Itanium and UPC MCMs.

• develop a model checker generator that takes an MCM, and

• demonstrate some experiments.

• Give semantics of programs with shared memories,

• define MCMs as translations from programs into graphs, and

• give sound and relatively complete Hoare logic for graphs.

