PROGRAM VERIFICATION
UNDER
FormALIZED MEMORY CoNsISTENT MODELS

Tatsuya ABE
RIKEN AICS
(JoINT WoRK wiTH TosHIYuki MAEDA)

SLACS / NSA
May 26, 2014

Q. What is Memory Consistent Model (MCM)?

A. MCM is a rule to share a memory among multiple threads.

(Thread)Thread)Thread)Thread)

a memory

consistent
% model

Shared memory

There exist many MCMs

sequential consistency

(Thread)Thread)Thread)Thread)

ltanium memory model

UPC memory model

Shared memory

We have to understand such MCMs
since the MCMs are rules. But,

There exist non-intuitive MCMs!

An example of curious executions
Under ltanium MCM,

-
Memory: [x] == [y] ==
Thread 1 Thread 2
[x] = 1; r2 = [y]l;
rl = [X]; r3 = [x];
[y] = rl;
\

r2 == 1 && r3 == 0 is allowed!

Reordering under Itanium MCM

Under ltanium MCM,
4 I

Memory: [x] == [y] ==
Thread 1 Thread 2
[x] = 1; r3 = [x];
rl = [x]; r2 = [vyl;
[yl = rl;
\ %
Sincer2 == 1and r3 == 0 can be reordered,

r2 == 1 && r3 == 0 is allowed!

Speculative behaviors under UPC MCM

-
Thread 1 Thread 2
rl = [x]; r2 = [x];
[x] = 2; [x] = 1;

N

rl == 1 && r2 == 2 is allowed!

Speculative behaviors under UPC MCM

-
Thread 1 Thread 2
rl = [x]; r2 = [x];
[x] = 2; [x] = 1;

N

rl == 1 && r2 == 2 is allowed!

~
Thread 1 Thread 2
speculate: [x] =1 speculate: [x] = 2
rl = [x]; r2 = [x];
[x] = 2; [x] = 1;

o

Reordering depends on an MCM

Can

r2
r3

[yv];
[x];

be reordered?

Sequential consistency: No
Total Store Ordering: No
Partial Store Ordering: Yes
ltanium MCM: Yes
UPC MCM: No

Our approach to handle various MCMs simultaneously

1. Give a general model (called base model),
2. define an MCM as a constraint on base model,

3. develop a model checker generator

an MCM ¥ a program P a verified property ¢

7

model checker model checker Does P have
generator for P ¢ under ¥?

Base model for reorderings

(Thread)Thread)Thread)(Thread)

I |

Shared memory

Base model

(Thread) (Thread) (Thread) (Thread)

Issue

<Memo@<%>@emo@<§>@/lemor@é{l\ﬂeﬁm@

Threads have their own memories, and read-from/write-to a
shared memory is simulated by communication among them.

Base model for reorderings and speculative behaviors

(Thread) (Thread) (Thread) (Thread) (Thread) (Thread) (Thread) (Thread)

Issue Issue

Mg(Memorbg(Memorggw Memory Memory Memory Memory
Rflct Rflct
(Thread } (Thread) (Thread } (Thread) (Thread } (Thread) (Thread } (Thread)

Issue Issue

WMemorDé{Memor)Dgcw Memory Memory Memory Memory
Rflct Rflct

Each thread has its own base model (at the previous slide) for a
speculation.

How to define an MCM

Issue; Rflct; Issue, Rflct, Issue; Rflct; ...
Each pair can be reordered on base model.
v/ Issue; Issue, Rflct; Rflct, Issue; Rflcts ...
v/ Issue; Issue, Issues Rflct; Rflct, Rflcts ...
VA
MCMs are constraints for base model.
v/ Issue; Issue, Rflct; Rflct, Issue; Rflcts ...

X Issue; Issue, Issue; Rflct; Rflct, Rflct;y ...

Formal definition of MCMs

Define an MCM as a set of formulas in mathematical logic.

Definition of formula. A formula is a combination of atomic
formulas by logical connectives — (negation), > (implication),
and V (universal quantifier).

Atomic formulas. o < 0’ (o’ must be performed after o)
where o and o’ are either of the following:

e IssueT (i, a)
T’s instruction i with attributes «a is issued.

e Rflct[= T] (i, a)
Issue of i is reflected to 7', i.e., T can observe i’s issue.

Acquire and release semantics of Iltanium MCM

Any instruction must wait for all reflections of an instruction with
an attribute release that is issued before.

[Xx] = l:release;
rl = [x];

r1 = [x] must wait for reflections of [x] = 1l:release.

Issue T (i, {release}) < IssueT (i’, A}) D
Rflct T (i, {release}) < IssueT (i, A)

We confirmed that it was possible to write ltanium MCMs.

Lock and unlock of UPC MCM

If T locks x, then 7’ cannot lock x until 7 unlocks x.

Issue T (Nop, {lock(x)}) < Issue T’ (i’, {lock(x)}) D
Issue 7" (Nop, {lock(x)}) < Issue T (Nop, {unlock(x)}) A
Issue 7" (Nop, {unlock(x)}) < Issue 7’ (i’, {lock(x)})

We confirmed that it was possible to write UPC MCMs.

Implementation: model checker generator
Skip!

Experiments: model checking under MCMs
Skip!

Related work

Relaxed memory consistency model is a hot topic.

[Yang et al. ‘053] proposes an operational specification framework
UMM, which cannot handle speculative behaviors.

[Saraswat et al. '07] uses program transformations to reason
about it.

[Boudol et al. '09] uses a process calculus to reason about it.

[Shen et al. '99] uses term rewriting to reason about it.

State explosion

A verification under an MCM suffers from state explosion.

Consider m threads with n instructions.
Under an MCM that allows interleavings,

T
e o o

there exist ,,,.,Cp, - mn-1)nCn = -+ - - »nCh + ,C,, €xecution traces.

Partial order reduction based on a verified property

To check o < 0, use time counter,
ABCD means a state {ty = 1,13 = 2,tc = 3,tp = 4}, and
ACBD means astate {ty = 1,13 =3,tc = 2,tp = 4}.

Let us use pairs of terms that occur in an MCM.

AssumeaMCMisAC < D.
Then, pairs of terms that occur in an MCM are {(A, B), {C, D)}.

ABCD means a state {t,.p = true, t-.p = true}, and
ACBD means a state {t4.p = true, t-.p = true}, too.

Theorem proving using partial order reduction

Thread 1 Thread 2
store x <+ 1; storey < 2;
flush x; flush y;
barrier; barrier;

loadry <y loadr, <1 x

Question. ri =2 Ar, =17

Merging triples in backward searches

I1,(G1) {y =2Anr= 1} {load! r| <y} {m =2Anr= 1}

() 6 (n-2nn-1]

storel x 1 ST_O]:‘e2 Yy < 2 IL(G») {r1 =2AXx= 1} {load2 ry «i x} {rl =2Ar= 1}

\ ¥
flujhl X flush? y i} 6 {n=2an=1)
\
barﬂ/ierl barli/ier2 IT'(G") {y =2AX= 1} {load? ry «i x} {y =2Ar = 1}
load' ry —y load® ry i x {7} G {y:2/\r2:1}

IT(G") {y:2/\x:1} {load! r| <y} {r1:2/\x:1}

() o {n-2nx-1]

Semantics of programs with shared memories

load' r < x, (o, s) | (o[r := {xD,], s)

store' x —i e, (0, s) || (o, s[x = {e),])

G,{(o,s) | (o, 5" (o’,s) = (o, s")
G,{(o,s) | (o, 5"

The = on (o, s) is defined as the smallest reflexive and
transitive closure that contains (o, s) = {(o[s | {x}], s \ {x}).

G\{C}L{(o,s) | (o7, s") {C}, (o7, s") | (o, s") C is not ...

G,{(o,s) | (d”,s")

Hoare logic for dependence graphs

Define a dependence graph from a program and an MCM.

E==r|x|x

®:=E=E|E<E|-®|PO>D|Vr.®|Vx.D|VTE D

{[x/r]®} load' r «i x {D}

{[e/X](® A [e/x]D)} store’ x < e {D)

VC e L(G) DG\ C{T} {7}y C{¥}

{@} G {P)
It is sound and relatively complete to the semantics.

Related work

[Owicki & Gries 1976] gives a Hoare logic for parallel
programs.

[Jones 1981] gives a compositional Hoare logic by using the
so-called rely/guarantee method.

[O’Hearn 2007] gives a separation logic for concurrent
programs with shared memories

[Kojima & Igarashi 2013] gives a Hoare logic for Single
Instruction Multiple Data (SIMD) programs.

Summary

e Propose a base model on which we discuss MCMs,

e define a set of formulas to describe MCMs,

— confirm possible to write Iltanium and UPC MCMs.
e develop a model checker generator that takes an MCM, and

e demonstrate some experiments.

e (Give semantics of programs with shared memories,
e define MCMs as translations from programs into graphs, and

e give sound and relatively complete Hoare logic for graphs.

