Structures vs Prestructures

Kojiro Higuchi*

joint work with

Taishi Kurahashi⁺

*Chiba University +Kisarazu National College of Technology

27 May 2014 @ Tokyo Institute of Technology

- A Generalized Yokoyama-Yoshikawa Theorem
- A Computable Nonstandard Pre-Model of Arithmetic

1. A Generalized Yokoyama-Yoshikawa Theorem

Rice's Theorem and Its Analogies

- In this section, we investigate Rice Property of structures.
- The name "Rice property" came from a famous theorem so-called Rice's Theorem.

Rice Property

- Let N = (N; {f_i; i ∈ I}): a recursive structure, ≡: its (possibly non-rec.) congruence relation.
- Def. N has the Rice property w.r.t. ≡ iff
 ¬∃k ≥ 1∃ non-trivial rec R ⊂ N^k compatible with ≡.

• Here, R: nontrivial iff $R \neq \emptyset, N^k$.

- Prop. \mathcal{N} has the Rice property w.r.t. $\equiv \iff \neg \exists$ non-trivial rec $R \subset N$ compatible with \equiv .
 - $Prf(\Leftarrow)$. We prove by induction on k.
 - Let $R \subset N^{k+1}$: rec. & compatible with \equiv .
 - $\forall \vec{x} \in N^k$, rec. unary relation $R(\vec{x}, y)$ on y must be trivial.
 - \therefore $[\exists y R(\vec{x}, y)] \subset N^k$ is rec & k-ary relation.
 - By IH, it is trivial and so is R.

Rice's Theorem

- Thm(Rice 1953). N has the Rice property w.r.t. ≡_{func},
 i.e., ¬∃ non-trivial rec R ⊂ N compatible with ≡_{func}.
 - Here, $e \equiv_{\text{func}} k$: $\iff \varphi_e = \varphi_k$,
 - φ_e : the rec. partial func. defined by *e*-th Turing machine.

Theories and the Rice Property

- We consider structures associated with formal theories.
- Let T: a rec. axiomatizable theory of the classical logic.
- Def. $\varphi \equiv_{\mathcal{T}} \psi$ iff $\mathcal{T} \vdash \varphi \leftrightarrow \psi$
- Def. *M*(*T*):= (Sent(*T*); ∨, ∧, ¬, ...).
 M(*T*)/ ≡_T is called the Lindenbaum algebra of *T*.
- Fact. $\mathcal{M}(T) / \equiv_T$ is a boolean algebra.

Yokoyama-Yoshikawa Theorem

- Thm(essentially, Bernardi 1981). $\mathcal{M}(PA)$ has the Rice property w.r.t. \equiv_{PA} .
- Let *T*: a rec. axiomatizable theory of the classical logic. Thm(Yokoyama-Yoshikawa 2011). TFAE:
 - $\mathcal{M}(\mathcal{T})$ has the Rice property w.r.t. $\equiv_{\mathcal{T}}$,
 - $\neg \exists$ rec. completion of T.
 - (completion means consistent and complete ext.)
 - $\neg \exists$ rec. $F \subset \text{Sent}(T)$ compatible with \equiv_T s.t. F / \equiv_T is a prime filter of $\mathcal{M}(T) / \equiv_T$.

Generalizing YY Theorem

- If we weaken the logic, we obtain a finer equivalence relation \equiv_{T}' .
- In general, the finer a congruence is, the harder a structure has the Rice property w.r.t. the congruence.
- But we show that YY theorem still holds as long as the Lindenbaum algebras of the logic are distributive lattices.

Generalized YY Theorem

- Let $\mathcal{D} = (D; \lor, \land, \top, \bot)$: a rec. structure,
 - \equiv : congruence s.t. \mathcal{D}/\equiv is a distr. lat. with top and bottom.
- Thm. \exists non-trivial rec. $Q \subset D$ compatible with $\equiv \iff \exists$ rec. P of D compat. with \equiv s.t. P/\equiv is a prime filter.
 - Prf, Idea(\Rightarrow). Let $\{x_n\}_{n\in\mathbb{N}} = D$.
 - We may assume $\perp \not\in Q$ and $x_0 \in Q$.
 - Define "descending" intervals $\{(a_n, b_n)\}_{n \in \mathbb{N}}$ by $(a_0, b_0) := (\bot, x_0)$, and letting $y_n := (a_n \lor x_n) \land b_n$, $(a_{n+1}, b_{n+1}) = \begin{cases} (a_n, y_n) & \text{if } y_n \in Q, \\ (y_n, b_n) & \text{o.w.} \end{cases}$
 - One can check $\vec{P} := \{x_n : y_n \in Q\}$ is compatible with \equiv and P/\equiv is a prime filter.

Theories of a weaker logical system

- Cor(Generalized YY Theorem). For a rec. axiomatizable theory (*T*, *F*) of a logical system whose Lindenbaum algebra is a distr. lat. with top and bot., TFAE:
 - $\mathcal{M}(T, F)$ has the Rice property w.r.t. $\equiv_{(T,F)}$,
 - ¬∃ rec. completion of (T, F). (Completion means a pair T' ⊃ T and F' ⊃ F compatible with ≡_(T,F) s.t. T'/ ≡_(T,F) is a prime filter and F'/ ≡_(T,F) is its complement.)
- This ends the first section.

2. A Computable Nonstandard Pre-Model of Arithmetic

Tennenbaum's Theorem

- Thm(Tennenbaum 1959). $\neg \exists$ rec. nonstandard $\mathcal{M} \models$ PA.
- Thm(McAloon 1982). $\neg \exists$ rec. nonstandard $\mathcal{M} \models I\Delta_0$.
- We shall show:

Thm. \exists "simple" rec. $\mathcal{M} \exists$ (non-rec.) congruence \equiv s.t. \mathcal{M}/\equiv is a nonstandard model of $I\Delta_0$.

- Def. PrimRec: the set of symbols of the prim. rec. func. PrimRec₁: the set of symbols of the unary prim. rec. func.
- We can think PrimRec, PrimRec₁ are rec. sets.
- Def. Term: the set of all terms starting from elements in PrimRec₁ and built up by means of elements in PrimRec. *PR*:= (Term; {(*t* → *f*(*t*)) : *f* ∈ PrimRec}).
- Prop. \mathcal{PR} is a rec. structure.

Filters

- Def. For a filter $\mathcal{F} \subset \operatorname{Pow}(\mathbb{N})$, $\forall^{\mathcal{F}} n, P(n) \text{ iff } \{n \in \mathbb{N} : P(n)\} \in \mathcal{F}.$
- Note that
 - $\mathbb{N} \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$ means $\forall^{\mathcal{F}} n, \top$ and $\exists^{\mathcal{F}} n, \top$ hold;
 - Closed under super set and intersection means $[\forall^{\mathcal{F}}n, P(n)] \land [\forall^{\mathcal{F}}n, Q(n)] \iff [\forall^{\mathcal{F}}n, [P(n) \land Q(n)]].$
- Def. Let $\mathcal{F}, \mathcal{S} \subset \operatorname{Pow}(\mathbb{N})$. \mathcal{F} : *S*-ultra filter iff \mathcal{F} is a filter and
 - $A \in S \Longrightarrow A \in F \lor \mathbb{N} \setminus A \in F$.
- Def. ultra filter = $Pow(\mathbb{N})$ -ultra filter. This means $\forall^{\mathcal{F}}n, P(n) \iff \exists^{\mathcal{F}}n, P(n)$.
- Def. filter *F*: principal iff ∃*A*, *F* = {*B* ⊂ N : *B* ⊃ *A*}. This means ∀^{*F*}*n*, *P*(*n*) ⇔ ∀*n* ∈ *A*, *P*(*n*). Otherwise, *F* is non-principal.

Congruences via Filters

- Def. Let $\mathcal{F} \subset \operatorname{Pow}(\mathbb{N})$ be a filter and $t, s \in \operatorname{Term}$. $t \equiv_{\mathcal{F}} s : \iff \forall^{\mathcal{F}} n, \mathbb{N} \models t(n) = s(n).$
- Prop. \forall filter \mathcal{F} , $\equiv_{\mathcal{F}}$ is a congruence relation of \mathcal{PR} .
- Def. PrimRecSet: the set of all prim. rec. sets.
- The main theorem of this section is: Thm. Let *F* be a non-principal PrimRecSet-ultra filter. *PR*/ ≡_{*F*} is a nonstandard model of IΔ₀(PrimRec).

Łoś' Theorem

Let U: a ultra filter. Thm(Łoś). For all formula φ(x) and f ∈ N^N, TFAE:
N^N/≡_U ⊨ φ(f),
∀^Un, N ⊨ φ(f)). (We may write [φ(f(x)) ⇔ ∀^Ux, φ(f(x))].)
In PR/≡_F, we interpret t ≤ s as ∃x, t + x = s.
Let F: a PrimRecSet-ultra filter. Lem(restricted Łoś' theorem). For all φ(x) ∈ Δ₀ and t ∈ Term, TFAE:

•
$$\mathcal{PR} / \equiv_{\mathcal{F}} \models \varphi(\vec{t}),$$

• $\forall^{\mathcal{F}} n, \mathbb{N} \models \varphi(\vec{t}(n)).$

A Proof of Ristricted Łoś' Theorem

Let *F* be a PrimRecSet-ultra filter.
 Lem(restricted Łoś' theorem). For all φ(*x*) ∈ Δ₀ and *t* ∈ Term, TFAE:

•
$$\mathcal{PR} / \equiv_{\mathcal{F}} \models \varphi(\vec{t}),$$

•
$$\forall^{\mathcal{F}} n, \mathbb{N} \models \varphi(t(n)).$$

• Prf. We show by induction on the complexity of formulas φ .

- Atomic t = s: just by the definition of $\equiv_{\mathcal{F}}$.
- $\varphi \wedge \psi$: since $[\forall^{\mathcal{F}} n, ...] \wedge [\forall^{\mathcal{F}} n, ...] \iff [\forall^{\mathcal{F}} n, [... \wedge ...]]$
- $\neg \varphi$: note $\{n \in \mathbb{N} : \mathbb{N} \models \varphi(\overrightarrow{t(n)})\} \in \operatorname{PrimRecSet}$ so that $[\forall^{\mathcal{F}}n, ...] \iff [\exists^{\mathcal{F}}n, ...]$. Thus $[\neg \forall^{\mathcal{F}}n, ...] \iff [\forall^{\mathcal{F}}n, \neg ...]$
- ∃y ≤ s(x), φ(y, x): to prove the latter condition implies the former, we need a choice function, but in PR/ ≡, we have a choice n → (μk ≤ s(t(n)))[N ⊨ φ(k, t(n))]!!!

$\mathcal{PR} / \equiv_{\mathcal{F}} \models \mathsf{Basic} \mathsf{Axioms}$

- Let \mathcal{F} : a PrimRecSet-ultra filter. Let $\mathcal{U} \supset \mathcal{F}$: a ultra filter.
- Lem(restricted Łoś' theorem). For all $\varphi(\vec{x}) \in \Delta_0$ and $\vec{t} \in \text{Term}$, TFAE:

•
$$\mathbb{N}^{\mathbb{N}} / \equiv_{\mathcal{U}} \models \varphi(\vec{t}),$$

•
$$\mathcal{PR} / \equiv_{\mathcal{F}} \models \varphi(\overline{t}),$$

•
$$\forall^{\mathcal{F}} n, \mathbb{N} \models \varphi(\underline{t(n)}),$$

• $\forall^{\mathcal{U}} n, \mathbb{N} \models \varphi(\overline{t(n)}).$

• Cor. $\mathbb{N} \prec_{\Delta_0} \mathcal{PR} / \equiv_{\mathcal{F}} \prec_{\Delta_0} \mathbb{N}^{\mathbb{N}} / \equiv_{\mathcal{U}} \text{and } \mathbb{N} \prec \mathbb{N}^{\mathbb{N}} / \equiv_{\mathcal{U}}$.

- Cor. $\mathbb{N} \prec_{\Pi_1} \mathcal{PR} / \equiv_{\mathcal{F}}$. Thus $\mathcal{PR} / \equiv_{\mathcal{F}} \models I\Delta_0(\operatorname{PrimRec})$.
- Prop. If *F* is non-principal, then *PR*/ ≡_{*F*} is nonstandard.
 ∴ *n* → (*x* → *n*) is the unique embedding from N to *PR*/ ≡_{*F*}. Thus *x* → *x* is nonstandard element in *PR*/ ≡_{*F*}.

An Etra Property

- Let \mathcal{F} : non-principal.
- Thm. \mathcal{PR} has the Rice property w.r.t. $\equiv_{\mathcal{F}}$.

Future Works

- Question. $\mathcal{PR} \equiv_{\mathcal{F}} \not\models I\Sigma_1$?
- We would like to develop separating technik for systems of arithmetic $I\Sigma_n$ and $I\Delta_n$ and to investigate weaker systems as our future works.

That's all, thank you!

$\mathcal{PR} = \mathcal{F} \models L\Delta_0(PrimRec)$

- We can prove $\mathcal{PR}/\equiv_{\mathcal{F}}$ satisfies $\mathrm{L}\Delta_0(\mathrm{PrimRec})$ directly.
- Lem. For all $\operatorname{PrimRecSet}$ -ultra filter \mathcal{F} , $\mathcal{PR} / \equiv_{\mathcal{F}}$ satisfies Δ_0 Least Number Principle.
 - Prf(Sketch). Let $\varphi \in \Delta_0(\text{PrimRec})$ and $\vec{t} \in \text{Term}$.
 - Suppose that $\mathcal{PR} = \exists x, \varphi(x, \vec{t}).$
 - Choose f s.t. $\mathcal{PR} / \equiv_{\mathcal{F}} \models \varphi(f, \vec{t})$.
 - Define a prim. rec. func. g by $g(n) := (\mu k \le f(n))[\mathbb{N} \models \varphi(k, \overrightarrow{t(n)})].$
 - Using Restricted Łoś's Theorem, it is shown that g is the least element in $\mathcal{PR} / \equiv_{\mathcal{F}} \text{s.t. } \varphi(g, \vec{t})$ is true.
- Thm. Let \mathcal{F} be a non-principal PrimRecSet-ultra filter. $\mathcal{PR} / \equiv_{\mathcal{F}}$ is a nonstandard model of $I\Delta_0(PrimRec)$.