Categorical approach to first-order modal logic

Kensuke Kojima

May 26, 2014

Background: Neighborhood-Sheaves?

an objective: to understand

neighborhood-sheaf semantics [Kishida '11]

- a semantics of first-order modal logic (FOML)
- works for modal logic MC (and stronger ones)
- doesn't seem to work for logics weaker than MC
- But why?

N.B. Neighborhood-sheaf semantics is NOT a topos-theoretic semantics for FOML.

This talk

Categorical/coalgebraic model of FOML?

- Intention: by considering general settings we could clarify what is really necessary
- The talk consists of two parts:
 - What do we need to define a semantics of FOML?
 - I How do we construct such a structure?

Semantics of FOML How to Construct Summary Modality and Coalgebra Ferms and Cartesian Category Combining Them Together

Outline

Semantics of FOML

- Modality and Coalgebra
- Terms and Cartesian Category
- Combining Them Together

2) How to Construct ${\mathscr S}$

- Constant Domain Model
- "Sheaves"

3 Summary

Semantics of FOML How to Construct & Summary

Modality and Coalgebra Ferms and Cartesian Category Combining Them Together

What is needed to interpret FOML?

FOML = prop. logic + modality + terms (+ quantifiers)

Modality is interpreted using

- a *T*-coalgebra for a functor T : **Sets** \rightarrow **Sets**, and
- a natural transformation σ : P → P ∘ T (so-called predicate lifting)
 - \mathcal{P} : contravariant powerset functor

Terms are interpreted using

 \bullet a cartesian category ${\mathscr S}$

To combine these structures we need

• a functor $U: \mathscr{S} \to \mathbf{CoAlg}(\mathcal{T})$

Modality and Coalgebra Terms and Cartesian Category Combining Them Together

Kripke frame as coalgebra

Definition (coalgebra)

For a functor T, a T-coalgebra is a morphism $c: X \rightarrow TX$.

Ordinary Kripke frame

Kripke frame is (W, R), where $R \subseteq W \times W$.

Coalgebraic form

Kripke frame is a \mathcal{P} -coalgebra $R: W \to \mathcal{P}W$.

Ordinary and coalgebraic form are equivalent:

$$\mathcal{P}(W \times W) \simeq 2^{W \times W} \simeq (2^W)^W \simeq (\mathcal{P}W)^W$$

Semantics of FOML How to Construct S Summary Modality and Coalgebra Terms and Cartesian Category Combining Them Together

Kripke semantics in coalgebraic form

(W, R): a Kripke frame formulas are interpreted as a subset $[\![\varphi]\!] \subseteq W$

Ordinary Kripke semantics

when R is seen as a relation,

• $w \in \llbracket \Box \varphi \rrbracket$ is defined as $\forall v.(w \ R \ v \implies v \in \llbracket \varphi \rrbracket)$

Coalgebraic form

when R is seen as a map,

• $w \in \llbracket \Box \varphi \rrbracket$ is defined as $R(w) \subseteq \llbracket \varphi \rrbracket$

Semantics of FOML
How to Construct &
SummaryModality ar
Terms and
Combining

Modality and Coalgebra Terms and Cartesian Category Combining Them Together

Modality as Predicate Lifting

- $\llbracket \Box \varphi \rrbracket = \{ w \mid R(w) \subseteq \llbracket \varphi \rrbracket \} = R^{-1} \{ Q \mid Q \subseteq \llbracket \varphi \rrbracket \}$
- define $\sigma : \mathcal{P}X \to \mathcal{P}(\mathcal{P}X)$ by $\sigma(\mathcal{P}) = \{Q \mid Q \subseteq \mathcal{P}\}$
- then $[\![\Box]\!]=R^{-1}\circ\sigma$
- similarly $\tau(P) = \{ Q \mid Q \cap P \neq \emptyset \}$ defines $\llbracket \diamondsuit \rrbracket = R^{-1} \circ \tau$

• topological interior operator is induced from

- ► W: a topological space
- N(w): the set of neighborhoods of $w \in W$

 $\bullet \ \rho(P) = \{ \mathcal{U} \subseteq \mathcal{PPW} \mid P \in \mathcal{U} \}$

as $int(P) = \{w \mid P \in N(w)\} = N^{-1} \circ \rho(P)$ (topological interpretation of S4 modal logic)
 Semantics of FOML
 Modality and Coalgebra

 How to Construct S
 Terms and Cartesian Ca

 Summary
 Combining Them Toget

Modality as Predicate Lifting

- $\llbracket \Box \varphi \rrbracket = \{ w \mid R(w) \subseteq \llbracket \varphi \rrbracket \} = R^{-1} \{ Q \mid Q \subseteq \llbracket \varphi \rrbracket \}$
- define $\sigma : \mathcal{P}X \to \mathcal{P}(\mathcal{P}X)$ by $\sigma(P) = \{Q \mid Q \subseteq P\}$
- then $\llbracket \Box \rrbracket = R^{-1} \circ \sigma$
- similarly $\tau(P) = \{Q \mid Q \cap P \neq \emptyset\}$ defines $\llbracket \diamondsuit \rrbracket = R^{-1} \circ \tau$

• topological interior operator is induced from

- ► W: a topological space
- N(w): the set of neighborhoods of $w \in W$

 $\bullet \ \rho(P) = \{ \mathcal{U} \subseteq \mathcal{PPW} \mid P \in \mathcal{U} \}$

as $int(P) = \{w \mid P \in N(w)\} = N^{-1} \circ \rho(P)$ (topological interpretation of S4 modal logic) Semantics of FOML
How to Construct &
SummaryModality and Coalgebra
Terms and Cartesian Cate
Combining Them Togethe

Modality as Predicate Lifting

- $\llbracket \Box \varphi \rrbracket = \{ w \mid R(w) \subseteq \llbracket \varphi \rrbracket \} = R^{-1} \{ Q \mid Q \subseteq \llbracket \varphi \rrbracket \}$
- define $\sigma : \mathcal{P}X \to \mathcal{P}(\mathcal{P}X)$ by $\sigma(P) = \{Q \mid Q \subseteq P\}$
- then $\llbracket \Box \rrbracket = R^{-1} \circ \sigma$
- similarly $\tau(P) = \{ Q \mid Q \cap P \neq \emptyset \}$ defines $\llbracket \diamondsuit \rrbracket = R^{-1} \circ \tau$

• topological interior operator is induced from

- ► W: a topological space
- N(w): the set of neighborhoods of $w \in W$

•
$$\rho(P) = \{ \mathcal{U} \subseteq \mathcal{PPW} \mid P \in \mathcal{U} \}$$

as $int(P) = \{w \mid P \in N(w)\} = N^{-1} \circ \rho(P)$ (topological interpretation of S4 modal logic) Semantics of FOML How to Construct S Summary Combin

Modality and Coalgebra Terms and Cartesian Category Combining Them Together

Modality for a general coalgebra

In general,

- a functor $T : \mathbf{Sets} \to \mathbf{Sets}$
- a coalgebra $c: X \to TX$

• a natural transformation (predicate lifting) $\sigma: \mathcal{P} \to \mathcal{P} \circ T$

induces a modality $c^{-1} \circ \sigma : \mathcal{P}X \to \mathcal{P}(TX) \to \mathcal{P}X$.

Semantics of FOML How to Construct \mathscr{S} Summary Modality and Coalgebra Terms and Cartesian Category Combining Them Together

Interpreting terms in a cartesian category

Terms are interpreted as functions (or morphisms).

 $\llbracket t \rrbracket$ is defined as:

- constants $\llbracket c \rrbracket : 1 \to D$ (given)
- *m*-ary functions $\llbracket f \rrbracket : D^m \to D$ (given)

• variables
$$\llbracket x_i \rrbracket = \pi_i : D^n \to D$$

• $\llbracket f(t_1, ..., t_m) \rrbracket$ is a composition $\llbracket f \rrbracket \circ \langle \llbracket t_1 \rrbracket, ..., \llbracket t_m \rrbracket \rangle : D^n \to D^m \to D$

This makes sense in any cartesian category \mathscr{S} and object $D \in \mathscr{S}$.

 Semantics of FOML
 Modality and Coalgebra

 How to Construct S
 Terms and Cartesian Catego

 Summary
 Combining Them Together

Coalgebras and cartesian category

We use

- coalgebra to interpret a modality
- cartesian category to interpret terms

related in some way. (N.B. CoAlg(T) is not cartesian.) Consider

- a functor $T : \mathbf{Sets} \to \mathbf{Sets}$,
- ullet a cartesian category ${\mathscr S}$, and
- a functor $U: \mathscr{S} \to \mathbf{CoAlg}(T)$
- a predicate lifting $\sigma: \mathcal{P} \to \mathcal{P} \circ T$

(such that $\mathcal{P}(|U(\cdot)|)$ is a hyperdoctrine) Then we can define a semantics of FOML. Semantics of FOML How to Construct S Summary Modality and Coalgebra Terms and Cartesian Category Combining Them Together

Interpreting FOML

- \bullet terms are interpreted in ${\mathscr S}$
- formula φ is interpreted as $\llbracket \varphi \rrbracket \subseteq |U(D^n)|$
 - $|U(D^n)|$ is the underlying set of $U(D^n)$
- $\land, \lor, \neg, \rightarrow$ are set-theoretic operations
- \Box is interpreted as $\mathcal{P} \circ \sigma$
- \forall, \exists are

$$\forall \llbracket \varphi \rrbracket = \{ x \in |U(D^n)| \mid (U\pi)^{-1}(x) \subseteq \llbracket \varphi \rrbracket \}$$
$$\exists \llbracket \varphi \rrbracket = \{ x \in |U(D^n)| \mid (U\pi)^{-1}(x) \cap \llbracket \varphi \rrbracket \neq \emptyset \}$$
where $\pi : D^{n+1} \to D^n$.

In other words, the right and left adjoints to $(U\pi)^{-1}$.

Semantics of FOML How to Construct Summary

Constant Domain Mode "Sheaves"

Outline

Semantics of FOML

- Modality and Coalgebra
- Terms and Cartesian Category
- Combining Them Together

2 How to Construct \mathscr{S}

- Constant Domain Model
- "Sheaves"

3 Summary

Semantics of FOML How to Construct *S* Summary

Constructing a concrete model of FOML?

- A problem: How do we construct a cartesian category \mathscr{S} ?
 - Typically, choose a suitable subcategory of CoAlg(T)/X for a fixed X ∈ CoAlg(T).
 - We will
 - describe a constant domain model
 - observe how Kripke/neighborhood sheaves are defined

`

Constant domain model

• Fix
$$c: X \to TX$$
.

For a set S, π₂ : S × X → X can be turned into an object of CoAlg(T)/X:

$$S \times X \simeq \prod_{a \in S} X \to \prod_{a \in S} TX \to T\left(\prod_{a \in S} X\right) \simeq T(S \times X)$$

More concretely, $(a, x) \mapsto T(\iota_a)(c(x))$ where $\iota_a : X \ni x \mapsto (a, x) \in S \times X$.

• $\mathscr{S} \subseteq \mathbf{CoAlg}(\mathcal{T})/X$ consisting of coalgebras of this form is cartesian, and this \mathscr{S} gives a model of FOML.

Semantics of FOML How to Construct \mathscr{S} Summary

Constant Domain Mode "**Sheaves**"

Kripke/neighborhood sheaves

Occasionally "locally isomorphic" maps $D \to X$ form a cartesian category $\mathscr{S} \subseteq \mathbf{CoAlg}(T)/X$.

Example

- Kripke sheaf $p: D \to X$ is a p-morphism s.t. $\forall d \in D, p$ is injective on $R_D(d)$
- neighborhood sheaf $p: D \to X$ is a p-morphism s.t. $\forall d \in D, \exists U \in N_D(d), p \text{ is injective on } U$

Fact

 $p: D \to X$ is a Kripke/neighborhood sheaf iff $\Delta: D \to D \times_X D$ is a p-morphism (homomorphism) Semantics of FOML How to Construct \mathscr{S} Summary

Constant Domain Mode "Sheaves"

Sheaves in CoAlg(T)/X?

Similar formulation in a more general setting?

A Problem

- Given T-hom $p: D \to X$, is $D \times_X D$ a T-coalgebra?
 - we have $D \times_X D \to TD \times_{TX} TD$
 - but not $D \times_X D \to T(D \times_X D)$

What do we need to define $D \times_X D \to T(D \times_X D)$?

Semantics of FOML How to Construct *S* Summary

An observation on sheaves

- in Kripke/neighborhood sheaf cases, there are weaker notion of maps between coalgebras
 - graph homs, continuous maps
- the categories of Kripke/neighborhood frames and such maps have pullbacks, hence their slices are cartesian
- so $D \times_X D$ is equipped with coalgebra structure
- define sheaf as $p: D \to X$ s.t. $\Delta: D \to D \times_X D$ is a homomorphism
- $\bullet \ \mathscr{S}$ is defined as the subcategory of sheaves

Open question: does this argument work in general?

Outline

Semantics of FOML

- Modality and Coalgebra
- Terms and Cartesian Category
- Combining Them Together

2) How to Construct ${\mathscr S}$

- Constant Domain Model
- "Sheaves"

Related work

Topos semantics for higher-order S4 [Awodey, Kishida, Kotzsch '14]

- $\bullet\,$ uses a certain Heyting-algebra object instead of $\Omega\,$
- geometric morphism induces an S4 modality

Summary and further questions

Summary:

- first-order modal logic is interpreted by
 - cartesian category ${\mathscr S}$ and
 - a functor $\mathscr{S} \to \mathbf{CoAlg}(\mathcal{T})$

Open question:

- recipe for constructing \mathscr{S} ?
- a notion of "sheaf" for coalgebras?