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.. Background: Neighborhood-Sheaves?

an objective: to understand
neighborhood-sheaf semantics [Kishida ’11]

a semantics of first-order modal logic (FOML)

works for modal logic MC (and stronger ones)

doesn’t seem to work for logics weaker than MC

But why?

N.B. Neighborhood-sheaf semantics is NOT a topos-theoretic
semantics for FOML.
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.. This talk

Categorical/coalgebraic model of FOML?

Intention: by considering general settings we could clarify
what is really necessary

The talk consists of two parts:
...1 What do we need to define a semantics of FOML?
...2 How do we construct such a structure?
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.. What is needed to interpret FOML?

.

......FOML = prop. logic + modality + terms (+ quantifiers)

Modality is interpreted using

a T -coalgebra for a functor T : Sets → Sets, and

a natural transformation σ : P → P ◦ T (so-called
predicate lifting)

! P : contravariant powerset functor

Terms are interpreted using

a cartesian category S

To combine these structures we need

a functor U : S → CoAlg(T )
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.. Kripke frame as coalgebra

.
Definition (coalgebra)
..
......For a functor T , a T -coalgebra is a morphism c : X → TX .

.
Ordinary Kripke frame
..
......Kripke frame is (W ,R), where R ⊆ W ×W .

.
Coalgebraic form
..
......Kripke frame is a P-coalgebra R : W → PW .

Ordinary and coalgebraic form are equivalent:

P(W ×W ) % 2W×W % (2W )W % (PW )W
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.. Kripke semantics in coalgebraic form

(W ,R): a Kripke frame
formulas are interpreted as a subset !ϕ" ⊆ W
.
Ordinary Kripke semantics
..

......

when R is seen as a relation,

w ∈ !!ϕ" is defined as ∀v .(w R v =⇒ v ∈ !ϕ")

.
Coalgebraic form
..

......

when R is seen as a map,

w ∈ !!ϕ" is defined as R(w) ⊆ !ϕ"
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.. Modality as Predicate Lifting

!!ϕ" = {w | R(w) ⊆ !ϕ"} = R−1{Q | Q ⊆ !ϕ"}
define σ : PX → P(PX ) by σ(P) = {Q | Q ⊆ P}
then !!" = R−1 ◦ σ
similarly τ(P) = {Q | Q ∩ P *= ∅} defines !♦" = R−1 ◦ τ
topological interior operator is induced from

! W : a topological space
! N(w): the set of neighborhoods of w ∈ W
! ρ(P) = {U ⊆ PPW | P ∈ U}

as int(P) = {w | P ∈ N(w)} = N−1 ◦ ρ(P)
(topological interpretation of S4 modal logic)
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.. Modality for a general coalgebra

In general,

a functor T : Sets → Sets

a coalgebra c : X → TX

a natural transformation (predicate lifting) σ : P → P ◦T
induces a modality c−1 ◦ σ : PX → P(TX ) → PX .



Semantics of FOML
How to Construct S

Summary

Modality and Coalgebra
Terms and Cartesian Category
Combining Them Together

.. Interpreting terms in a cartesian category

Terms are interpreted as functions (or morphisms).

!t" : Dn → D, if t is a term with n variables
! e.g. !x + y + 2" : N2 → N

!t" is defined as:

constants !c" : 1 → D (given)

m-ary functions !f " : Dm → D (given)

variables !xi" = πi : Dn → D

!f (t1, ..., tm)" is a composition
!f " ◦ 〈!t1", ..., !tm"〉 : Dn → Dm → D

This makes sense in any cartesian category S and object
D ∈ S .
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.. Coalgebras and cartesian category

We use

coalgebra to interpret a modality

cartesian category to interpret terms

related in some way. (N.B. CoAlg(T ) is not cartesian.)
Consider

a functor T : Sets → Sets,

a cartesian category S , and

a functor U : S → CoAlg(T )

a predicate lifting σ : P → P ◦ T
(such that P(|U(·)|) is a hyperdoctrine)
Then we can define a semantics of FOML.
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.. Interpreting FOML

terms are interpreted in S

formula ϕ is interpreted as !ϕ" ⊆ |U(Dn)|
! |U(Dn)| is the underlying set of U(Dn)

∧,∨,¬,→ are set-theoretic operations

! is interpreted as P ◦ σ
∀, ∃ are

∀!ϕ" = {x ∈ |U(Dn)| | (Uπ)−1(x) ⊆ !ϕ"}
∃!ϕ" = {x ∈ |U(Dn)| | (Uπ)−1(x) ∩ !ϕ" *= ∅}

where π : Dn+1 → Dn.
In other words, the right and left adjoints to (Uπ)−1.
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.. Constructing a concrete model of FOML?

A problem: How do we construct a cartesian category S ?

Typically, choose a suitable subcategory of CoAlg(T )/X
for a fixed X ∈ CoAlg(T ).

We will
! describe a constant domain model
! observe how Kripke/neighborhood sheaves are

defined
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.. Constant domain model

Fix c : X → TX .

For a set S , π2 : S ×X → X can be turned into an object
of CoAlg(T )/X :

S × X %
∐

a∈S

X →
∐

a∈S

TX → T

(
∐

a∈S

X

)
% T (S × X )

More concretely, (a, x) 2→ T (ιa)(c(x))
where ιa : X 3 x 2→ (a, x) ∈ S × X .

S ⊆ CoAlg(T )/X consisting of coalgebras of this form
is cartesian, and this S gives a model of FOML.
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.. Kripke/neighborhood sheaves

Occasionally “locally isomorphic” maps D → X form a
cartesian category S ⊆ CoAlg(T )/X .
.
Example
..

......

Kripke sheaf p : D → X is a p-morphism s.t.
∀d ∈ D, p is injective on RD(d)

neighborhood sheaf p : D → X is a p-morphism s.t.
∀d ∈ D, ∃U ∈ ND(d), p is injective on U

.
Fact
..

......

p : D → X is a Kripke/neighborhood sheaf iff
∆ : D → D ×X D is a p-morphism (homomorphism)
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.. Sheaves in CoAlg(T )/X ?

Similar formulation in a more general setting?
.
A Problem
..

......

Given T -hom p : D → X , is D ×X D a T -coalgebra?

we have D ×X D → TD ×TX TD

but not D ×X D → T (D ×X D)

What do we need to define D ×X D → T (D ×X D)?
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.. An observation on sheaves

in Kripke/neighborhood sheaf cases, there are weaker
notion of maps between coalgebras

! graph homs, continuous maps

the categories of Kripke/neighborhood frames and such
maps have pullbacks, hence their slices are cartesian

so D ×X D is equipped with coalgebra structure

define sheaf as p : D → X s.t. ∆ : D → D ×X D is a
homomorphism

S is defined as the subcategory of sheaves

Open question: does this argument work in general?
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.. Related work

Topos semantics for higher-order S4
[Awodey, Kishida, Kotzsch ’14]

uses a certain Heyting-algebra object instead of Ω

geometric morphism induces an S4 modality
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.. Summary and further questions

Summary:

first-order modal logic is interpreted by
! cartesian category S and
! a functor S → CoAlg(T )

Open question:

recipe for constructing S ?

a notion of “sheaf” for coalgebras?
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