

Contents

\bigcirc Motivation (λ-calculus and α-conversion)

O Consideration

O Canonical Expression of $\Lambda /={ }_{\alpha}$-Terms

O Simulating β-reductions through CL

O Future Work

Motivation:

λ-calculus and

$$
\alpha \text {-conversion }
$$

Def (λ-term)
$x \in V: \quad x::=x_{1}\left|x_{2}\right| \cdots$
$F \in \Lambda: \quad F::=x|(F F)|(\lambda x . F)$

Parenthesis are omitted as follows.

$$
\begin{gathered}
F_{1} F_{2} F_{3} \equiv\left(\left(F_{1} F_{2}\right) F_{3}\right) \\
\lambda x y . F \equiv(\lambda x .(\lambda y . F))
\end{gathered}
$$

Def (β-reduction)

$$
(\lambda x . F) G \rightarrow_{1 \beta}[G / x] F
$$

(where $x \in F V(G)$ is not bound in F)

$$
\frac{F_{1} \rightarrow F_{2}}{G F_{1} \rightarrow_{1 \beta} G F_{2}} \frac{F_{1} \rightarrow F_{2}}{F_{1} G \rightarrow_{1 \beta} F_{2} G} \frac{F_{1} \rightarrow_{1 \beta} F_{2}}{\lambda x . F_{1} \rightarrow_{1 \beta} \lambda x . F_{2}}
$$

\rightarrow_{β} : reflexive transitive closure of $\rightarrow_{1 \beta}$
$=_{\beta}$: smallest equivalent relation
which contains $\rightarrow_{1 \beta}$

$$
\begin{aligned}
& (\lambda x y \cdot x y) y \uplus_{\beta} \lambda y \cdot y y \\
& \downarrow_{\alpha} \\
& (\lambda x z \cdot x z) y \rightarrow_{1 \beta} \lambda z \cdot y z
\end{aligned}
$$

Def (α-conversion)
\rightarrow_{α} : converting some bound variables
$={ }_{\alpha}$: smallest equivalence relation which contains \rightarrow_{α}
λ-calculus and a-conversion
$\lambda \beta$ is the pair $\left\langle\Lambda=\alpha,{ }_{\beta}\right\rangle$.

There are many problems relating to $={ }_{\alpha}$.

How can we:
implement the α-conversion operation?
decide the relation $={ }_{\alpha}$?
λ-calculus and a-conversion

Solution strategu for this problem

O canonical representation of terms (de Bluijn index, abstraction with maps...)
$\bigcirc V=F V \biguplus B V$
(providing two sorts of variables)
\bigcirc reconstructing the theory with combinatory terms

Def (Combinatory Term, weak reduction)

$$
C \in \mathrm{CT}: \quad C::=x|\mathrm{~S}| \mathrm{K} \mid(C C)
$$

$$
\begin{gathered}
K C D \rightarrow_{1 w} C \\
\operatorname{SCDE} \rightarrow_{1 w} C E(D E) \\
\frac{F_{1} \rightarrow_{1 w} F_{2}}{G F_{1} \rightarrow_{1 w} G F_{2}} \frac{F_{1} \rightarrow_{1 w} F_{2}}{F_{1} G \rightarrow_{1 w} F_{2} G} \frac{F_{1} \rightarrow_{1 w} F_{2}}{\lambda x . F_{1} \rightarrow_{1 w} \lambda x . F_{2}}
\end{gathered}
$$

$\operatorname{Def}\left(\lambda^{*} x . C\right)$

$$
\begin{aligned}
\lambda^{*} x \cdot x & \equiv \mathrm{SKK} \\
\lambda^{*} x \cdot C & \equiv \mathrm{~K} C \quad \text { if } x \notin F V(C) \\
\lambda^{*} x \cdot C D & \equiv \mathrm{~S}\left(\lambda^{*} x \cdot C\right)\left(\lambda^{*} x \cdot D\right)
\end{aligned}
$$

Note that x does not occur in $\lambda x^{*} . C$.

Theorem

$$
\left(\lambda^{*} x . C\right) D \rightarrow_{w}[D / x] C
$$

We can obtain the term λx^{*}. $x \equiv$ SKK which do the same work as λx.x without using x.

$$
\begin{aligned}
& (\lambda x . x) y \\
& S K(K
\end{aligned}
$$

For this technical advantage, we have to sacrifice the intuitive clarity of the λ notation.

$$
\lambda^{*} x \cdot x y y \equiv \mathrm{~S}(\mathrm{~S}(\mathrm{SKK})(\mathrm{K} y))(\mathrm{K} y)
$$

λ-calculus and a-conversion

Therefore, we try to use CTw as a simulater which simulates $\lambda \beta /={ }_{\alpha}$, and use λ-terms to display the values.

λ-calculus and a-conversion

Aim 1

$$
\text { (A1) } \left.\left(F^{*}\right)^{-}={ }_{\alpha} F \quad \text { (and } F={ }_{\alpha} G \Rightarrow\left(F^{*}\right)^{-} \equiv\left(G^{*}\right)^{-}\right)
$$

λ-calculus and a-conversion

Aim 2

$$
\text { (A2) } F \rightarrow_{\beta} G \Rightarrow \exists C \text { s.t. } F^{*} \rightarrow_{w} C, C^{-}={ }_{\alpha} G
$$

Consideration

Consideration

Many methods are proposed for such simulation. But most of them are introduced to simulate the $\Lambda /={ }_{\alpha \beta}$-theory in CL:

$$
\begin{gathered}
\left(F^{*}\right)^{-}={ }_{\alpha \beta} F \\
F={ }_{\beta} G ? \longleftrightarrow F^{*}={ }_{w} G^{*} ?
\end{gathered}
$$

But, our aim is to simulate more precisely.

Consideration

Example (natural interpretation)

$$
\begin{gathered}
x^{C} \equiv x \quad(F G)^{C} \equiv F^{C} G^{C} \quad(\lambda x \cdot F)^{C} \equiv \lambda^{*} x \cdot F^{C} \\
x^{\lambda} \equiv x \quad \mathrm{~K}^{\lambda} \equiv \lambda x y \cdot x \\
S^{\lambda} \equiv \lambda x y z \cdot x z(y z) \quad(C D)^{\lambda} \equiv C^{\lambda} D^{\lambda}
\end{gathered}
$$

Theorem
(1) $\left(F^{C}\right)^{\lambda} \rightarrow_{\alpha \beta} F$
(2) $F \rightarrow_{\beta} G \Rightarrow F^{C} \rightarrow_{w} G^{C}$

Consideration

Example

$$
(\lambda x . y)^{C} \equiv \mathrm{~K} y,
$$

but

$$
(K y)^{\lambda}={ }_{\alpha}(\lambda z x \cdot z) y\left(\rightarrow_{1 \beta} \lambda x \cdot y\right) .
$$

It is provable that this gap is caused bu a difference in arities: Lambda abstraction λx.F works immediately when it gets one object, but combinator K (or S) only works when it gets two (or three) objects.

Canonical Expression of $\Lambda /=\alpha_{\alpha}$-terms

Canonical Expression of $\Lambda /={ }_{\alpha}$-terms

To achieve the aim

$$
(A 1)\left(F^{*}\right)^{-}={ }_{\alpha} F \text {, }
$$

we introduce a new combinator I_{λ}. That is, the definition of combinatory terms is extended as follows:

$$
C \in C T \quad C::=x|\mathrm{~S}| \mathrm{K}\left|\mathrm{I}_{\lambda}\right|(C C)
$$

This idea was introduced by Komori-Yamakawa, and theu showed that this combinator enable us to achieve (A1).

Canonical Expression of $\Lambda /={ }_{\alpha}$-terms

Def

$$
\begin{aligned}
& x^{*} \equiv x \quad(\lambda x . F)^{*} \equiv I_{\lambda}\left(\lambda^{*} x . F^{*}\right) \quad(F G)^{*} \equiv F^{*} G^{*} \\
& x^{-} \equiv x \quad \mathrm{~K}^{-} \equiv \lambda x y \cdot x \\
& \mathrm{~S}^{-} \equiv \lambda x y z \cdot x z(y z) \quad(C D)^{-} \equiv C^{-} D^{-} \\
& \left(\mathrm{I}_{\lambda} C\right)^{-} \equiv \lambda x . D^{-}(x \notin F V(C), D \text { is w-nf of } C x)
\end{aligned}
$$

Note that - is partial (from Λ^{*} into Λ).

Canonical Expression of $\Lambda /=\alpha_{\alpha}$-terms

Theorem (Komori-Yamakawa 2011)

$$
\left(F^{*}\right)^{-}={ }_{\alpha} F
$$

$$
\begin{gathered}
(\lambda x \cdot F)^{*} \equiv \mathrm{I}_{\lambda}\left(\lambda^{*} x \cdot F^{*}\right) \\
\left(\mathrm{I}_{\lambda}\left(\lambda^{*} x \cdot F^{*}\right)\right)^{-}=\alpha \lambda x \cdot\left(F^{*}\right)^{-}={ }_{\alpha} \lambda x \cdot F \\
\overbrace{\left(\lambda^{*} x \cdot F^{*}\right) x \rightarrow_{w} F^{*}: \mathrm{w}-\mathrm{nf}}
\end{gathered}
$$

Simulating β-reductions through CL

Simulating β-reductions through CL

Considering the reduction rule, there are some problems caused bu I_{λ}.
(1) $(\lambda x . F) G \rightarrow_{1 \beta}[G / x] F$, but:

$$
\mathrm{I}_{\lambda}\left(\lambda x \cdot F^{*}\right) G^{*} \rightarrow_{w}\left[G^{*} / x\right] F^{*}
$$

I_{λ} blocks the intended reductions
(2) $\lambda x \cdot((\lambda y \cdot y x) x) \rightarrow_{1 \beta} \lambda x \cdot x x$, but:

$$
\begin{aligned}
& (\lambda x \cdot(\lambda y \cdot y x) x)^{*} \equiv I_{\lambda}\left(\lambda^{*} x \cdot\left(\left(\lambda^{*} \cdot y x\right) x\right)^{*}\right) \\
& \left.\equiv \mathrm{I}_{\lambda}\left(\mathrm{S}\left(\mathrm{~S}_{\left(\mathrm{KI}_{\lambda}\right)}\right)(\mathrm{S}(\mathrm{~K}(\mathrm{SKK}))) \mathrm{K}\right)\right)(\mathrm{SKK})
\end{aligned}
$$

λ^{*} disarranges the form of its inner term and blocks the intended reductions

Simulating β-reductions through CL

To get over this problem, we introduce a new combinator L and give the following reduction relation on CT.

$$
\begin{gathered}
\mathrm{KCD} \rightarrow_{1} C \\
\mathrm{~S} C D E \rightarrow_{1} C E(D E) \\
\mathrm{I}_{\lambda} C D \rightarrow_{1} C D \\
\cdots
\end{gathered}
$$

Simulating β-reductions through CL

I_{λ}-reduction (A) removes I_{λ} and enable us to continue our calculation.

$$
\begin{aligned}
(\lambda x . F) G & \rightarrow_{1 \beta}[G / x] F \\
\mathrm{I}_{\lambda}\left(\lambda^{*} x . F^{*}\right) G^{*} & \rightarrow_{1}\left(\lambda^{*} x . F^{*}\right) G^{*} \\
& \rightarrow\left[G^{*} / x\right] F^{*}
\end{aligned}
$$

Simulating β-reductions through CL

I_{λ}-reduction (B) arranges the term of the form $\lambda^{*} x . F^{*}$, and enable us to continue our calculation.

$$
\begin{aligned}
\lambda x . F & \rightarrow_{1 \beta} \lambda x \cdot G \\
\mathrm{I}_{\lambda}\left(\lambda^{*} x \cdot F^{*}\right) & \rightarrow_{1} L x\left(\left(\lambda^{*} x \cdot F^{*}\right) x\right) \\
& \rightarrow L x\left(F^{*}\right) \\
& \rightarrow L x\left(G^{*}\right)
\end{aligned}
$$

Simulating β-reductions through CL

Because of the work of L -combinator, we have to extend the definition of - as follows:

$$
\begin{gathered}
x^{-} \equiv x \quad \mathrm{~K}^{-} \equiv \lambda x y \cdot x \\
\mathrm{~S}^{-} \equiv \lambda x y z \cdot x z(y z) \quad(C D)^{-} \equiv C^{-} D^{-} \\
\left(\mathrm{I}_{\lambda} C\right)^{-} \equiv \lambda x \cdot D^{-}(x \notin F V(C), D \text { is } w-\mathrm{nf} \text { of } C x) \\
(L x C)^{-} \equiv \lambda x \cdot C^{-}
\end{gathered}
$$

Simulating β-reductions through CL

Example

$$
\begin{gathered}
\lambda x \cdot((\lambda y \cdot y) z) \rightarrow_{\beta} \lambda x \cdot z \\
I_{\lambda}\left(\lambda^{*} x \cdot((\lambda y \cdot y) z)^{*}\right) \rightarrow_{1} L x\left(\left(\lambda^{*} x \cdot((\lambda y \cdot y) z)^{*}\right) x\right) \\
\rightarrow L x((\lambda y \cdot y) z)^{*} \\
\equiv \\
\rightarrow_{1} L x\left(\left(\lambda^{*} y \cdot y\right) z\right) \\
\rightarrow \\
\left.\operatorname{lin}^{*}\left(\lambda^{*} y \cdot y\right) z\right) \\
\\
(L x z)^{-} \equiv \lambda x \cdot z
\end{gathered}
$$

Simulating β-reductions through CL

Note that after we applu the rule $\mathrm{I}_{\lambda} C \rightarrow_{1} \mathrm{~L} x(C x)$, we cannot transform the subterm Lx. But, with the standardization theorem, we can obtain the following result (aim (A2)).

Theorem

$$
F \rightarrow G \Rightarrow \exists C \text { s.t. } F^{*} \rightarrow C \text { and } C^{-}={ }_{\alpha} G
$$

Simulating β-reductions through CL

Especiallu, if $F \rightarrow_{\beta} G: \beta$-nf then we can get a term C s.t. $C^{-}={ }_{\alpha} G$ bu following algorithm.

For F^{*}, do the following procedure until I_{λ} does not occur in term.

Take a leftmost I_{λ}-combinator. If the form is $\mathrm{I}_{\lambda} C D$ then we transform it into w-nf of $C D$. Else the form is $I_{\lambda} C$, and we transform it into $L x D$ where D is $w-\mathrm{nf}$ of $C x$.

Future Work

Future Work

1.

Can we the same simulation without using L-combinator?
2.

How can we simulate an arbitrary reduction sequence?

Thank you for listening.

