Simulating β -reduction in Combinatory Logic

Naosuke Matsuda (Tokyo-Tech) joint work with Yuichi Komori, Fumika Yamakawa

Contents

 \bigcirc Motivation (λ -calculus and α -conversion)

 \bigcirc Consideration

 \bigcirc Canonical Expression of $\Lambda/=_{\alpha}$ -Terms

 \bigcirc Simulating β -reductions through CL

○ Future Work

Motivation: λ -calculus and α -conversion

Def $(\lambda - \text{term})$

 $x \in V : \quad x ::= x_1 \mid x_2 \mid \cdots$ $F \in \Lambda : \quad F ::= x \mid (FF) \mid (\lambda x. F)$

Parenthesis are omitted as follows. $F_1F_2F_3 \equiv ((F_1F_2)F_3)$ $\lambda xy.F \equiv (\lambda x.(\lambda y.F))$

Def (β -reduction)

 $(\lambda x.F)G \rightarrow_{1\beta} [G/x]F$ (where $x \in FV(G)$ is not bound in F) $\frac{F_1 \rightarrow F_2}{GF_1 \rightarrow_{1\beta} GF_2} \quad \frac{F_1 \rightarrow F_2}{F_1G \rightarrow_{1\beta} F_2G} \quad \frac{F_1 \rightarrow_{1\beta} F_2}{\lambda x.F_1 \rightarrow_{1\beta} \lambda x.F_2}$

 $\begin{array}{l} \rightarrow_{\beta} & : \mbox{ reflexive transitive closure of } \rightarrow_{1\beta} \\ =_{\beta} & : \mbox{ smallest equivalent relation} \\ & \mbox{ which contains } \rightarrow_{1\beta} \end{array}$

 $(\lambda xy. xy)y \bigotimes_{\beta} \lambda y. yy$ \downarrow_{α} $(\lambda xz. xz)y \rightarrow_{1\beta} \lambda z. yz$

Def (α -conversion)

- \rightarrow_{α} : converting some bound variables
- $=_{\alpha}$: smallest equivalence relation

which contains \rightarrow_{α}

 $\lambda\beta$ is the pair $\langle \Lambda =_{\alpha} =_{\beta} \rangle$.

There are many problems relating to $=_{\alpha}$.

How can we: implement the α -conversion operation? decide the relation $=_{\alpha}$?

Solution strategy for this problem

 ○ canonical representation of terms (de Bluijn index, abstraction with maps...)
 ○ V = FV ⊎ BV (providing two sorts of variables)
 ○ reconstructing the theory with combinatory terms

Def (Combinatory Term, weak reduction)

 $C \in CT$: C ::= x | S | K | (CC)

 $\begin{array}{c} \text{KCD} \rightarrow_{1w} C\\ \text{SCDE} \rightarrow_{1w} CE(DE)\\\\ \hline F_1 \rightarrow_{1w} F_2 \\ \hline GF_1 \rightarrow_{1w} GF_2 \end{array} \quad \begin{array}{c} F_1 \rightarrow_{1w} F_2\\ \hline F_1 G \rightarrow_{1w} F_2 G \end{array} \quad \begin{array}{c} F_1 \rightarrow_{1w} F_2\\ \hline \lambda x. F_1 \rightarrow_{1w} \lambda x. F_2 \end{array}$

Def $(\lambda^* x. C)$

 $\lambda^* x. x \equiv SKK$ $\lambda^* x. C \equiv KC \quad \text{if } x \notin FV(C)$ $\lambda^* x. CD \equiv S(\lambda^* x. C)(\lambda^* x. D)$

Note that x does not occur in $\lambda x^*.C$.

Theorem

 $(\lambda^* x. C)D \rightarrow_w [D/x]C$

We can obtain the term $\lambda x^* \cdot x \equiv SKK$ which do the same work as $\lambda x \cdot x$ without using x.

$$(\lambda x \cdot x) y$$

S K (<

For this technical advantage, we have to sacrifice the intuitive clarity of the λ -notation.

 $\lambda^* x. xyy \equiv S(S(SKK)(Ky))(Ky)$

Therefore, we try to use CTw as a simulater which simulates $\lambda\beta/=_{\alpha}$, and use λ -terms to display the values.

Aim 1

(A1) $(F^*)^- =_{\alpha} F$ (and $F =_{\alpha} G \Rightarrow (F^*)^- \equiv (G^*)^-$)

Aim 2

(A2) $F \rightarrow_{\beta} G \Rightarrow \exists C \text{ s.t. } F^* \rightarrow_{w} C, C^- =_{\alpha} G$

Many methods are proposed for such simulation. But most of them are introduced to simulate the $\Lambda/=_{\alpha\beta}$ -theory in CL:

 $(F^*)^- =_{\alpha\beta} F$

$$F =_{\beta} G ? \quad \longleftrightarrow \quad F^* =_{w} G^*?$$

But, our aim is to simulate more precisely.

Example (natural interpretation) $x^{C} \equiv x$ $(FG)^{C} \equiv F^{C}G^{C}$ $(\lambda x.F)^{C} \equiv \lambda^{*}x.F^{C}$ $x^{\lambda} \equiv x$ $K^{\lambda} \equiv \lambda xy.x$ $S^{\lambda} \equiv \lambda xyz.xz(yz)$ $(CD)^{\lambda} \equiv C^{\lambda}D^{\lambda}$

Theorem

(1) $(F^{C})^{\lambda} \rightarrow_{\alpha\beta} F$ (2) $F \rightarrow_{\beta} G \Rightarrow F^{C} \rightarrow_{w} G^{C}$

Example

 $(\lambda x. y)^C \equiv Ky,$

but

$$(Ky)^{\lambda} =_{\alpha} (\lambda zx.z)y (\rightarrow_{1\beta} \lambda x.y).$$

It is provable that this gap is caused by a difference in arities: Lambda abstraction $\lambda x.F$ works immediately when it gets one object, but combinator K (or S) only works when it gets two (or three) objects.

To achieve the aim

 $(A1) (F^*)^- =_{\alpha} F,$

we introduce a new combinator $I_\lambda.$ That is, the definition of combinatory terms is extended as follows:

```
C \in CT C ::= x | S | K | I_{\lambda} | (CC)
```

This idea was introduced by Komori-Yamakawa, and they showed that this combinator enable us to achieve (A1).

Def

 $x^* \equiv x \quad (\lambda x.F)^* \equiv I_{\lambda}(\lambda^* x.F^*) \quad (FG)^* \equiv F^*G^*$ $x^- \equiv x \quad K^- \equiv \lambda xy.x$ $S^- \equiv \lambda xyz.xz(yz) \quad (CD)^- \equiv C^-D^ (I_{\lambda}C)^- \equiv \lambda x.D^- \quad (x \notin FV(C), D \text{ is } w\text{-nf of } Cx)$

Note that – is partial (from Λ^* into Λ).

Theorem (Komori-Yamakawa 2011)

$$(F^*)^- =_{\alpha} F$$

$$(\lambda x. F)^* \equiv I_{\lambda}(\lambda^* x. F^*)$$
$$(I_{\lambda}(\lambda^* x. F^*))^- =_{\alpha} \lambda x. (F^*)^- =_{\alpha} \lambda x. F$$
$$(\lambda^* x. F^*) x \to_{w} F^*: w-nf$$

Considering the reduction rule, there are some problems caused by $I_{\lambda}.$

(1) $(\lambda x.F)G \rightarrow_{1\beta} [G/x]F$, but: $I_{\lambda}(\lambda x.F^*)G^* \rightarrow_{w} [G^*/x]F^*$ I_{λ} blocks the intended reductions (2) $\lambda x.((\lambda y. yx)x) \rightarrow_{1\beta} \lambda x. xx$, but: $(\lambda x. (\lambda y. yx)x)^* \equiv I_{\lambda} (\lambda^* x. ((\lambda^*. yx)x)^*)$ $\equiv I_{\lambda} \left(S(KI_{\lambda}) \left(S(KK)) \right) K \right)$ (SKK) λ^* disarranges the form of its inner term and blocks the intended reductions

disarranges the form of its inner term

To get over this problem, we introduce a new combinator L and give the following reduction relation on **CT**.

 $\begin{array}{c} \mathrm{K}CD \rightarrow_{1} C\\ \mathrm{S}CDE \rightarrow_{1} CE(DE)\\ \mathrm{I}_{\lambda}CD \rightarrow_{1} CD & \cdots & (\mathrm{A})\\ \mathrm{I}_{\lambda}C \rightarrow_{1} \mathrm{L}x(Cx) & (x \notin FV(C)) & \cdots & (\mathrm{B})\\ \\ \frac{F_{1} \rightarrow_{1} F_{2}}{GF_{1} \rightarrow_{1} GF_{2}} & \frac{F_{1} \rightarrow_{1} F_{2}}{F_{1}G \rightarrow_{1} F_{2}G} & \frac{F_{1} \rightarrow_{1} F_{2}}{\lambda x. F_{1} \rightarrow_{1} \lambda x. F_{2}} \end{array}$

 $I_\lambda-\text{reduction}$ (A) removes I_λ and enable us to continue our calculation.

 $(\lambda x. F)G \rightarrow_{1\beta} [G/x]F$

 $I_{\lambda}(\lambda^* x. F^*)G^* \rightarrow_1 (\lambda^* x. F^*)G^*$ $\rightarrow [G^*/x]F^*$

 I_{λ} -reduction (B) arranges the term of the form $\lambda^* x. F^*$, and enable us to continue our calculation.

 $\lambda x. F \rightarrow_{1\beta} \lambda x. G$

 $I_{\lambda}(\lambda^* x. F^*) \rightarrow_1 Lx((\lambda^* x. F^*)x)$ $\rightarrow Lx(F^*)$ $\rightarrow Lx(G^*)$

Because of the work of L-combinator, we have to extend the definition of — as follows:

 $x^{-} \equiv x \quad \mathrm{K}^{-} \equiv \lambda x y. x$ $\mathrm{S}^{-} \equiv \lambda x y z. x z (y z) \quad (CD)^{-} \equiv C^{-}D^{-}$ $(\mathrm{I}_{\lambda}C)^{-} \equiv \lambda x. D^{-} \quad (x \notin FV(C), \ D \text{ is } w\text{-nf of } Cx)$ $(LxC)^{-} \equiv \lambda x. C^{-}$

Example

$$\lambda x. ((\lambda y. y)z) \rightarrow_{\beta} \lambda x. z$$

$$I_{\lambda}(\lambda^{*}x.((\lambda y.y)z)^{*}) \rightarrow_{1} Lx((\lambda^{*}x.((\lambda y.y)z)^{*})x)$$

$$\rightarrow Lx((\lambda y.y)z)^{*}$$

$$\equiv Lx((\lambda^{*}y.y)z)$$

$$\rightarrow_{1} Lx((\lambda^{*}y.y)z)$$

$$\rightarrow Lxz$$

 $(Lxz)^{-} \equiv \lambda x. z$

Note that after we apply the rule $I_{\lambda}C \rightarrow_1 Lx(Cx)$, we cannot transform the subterm Lx. But, with the standardization theorem, we can obtain the following result (aim (A2)).

Theorem

 $F \to G \Rightarrow \exists C \text{ s.t. } F^* \to C \text{ and } C^- =_{\alpha} G$

Especially, if $F \rightarrow_{\beta} G : \beta$ -nf then we can get a term C s.t. $C^{-} =_{\alpha} G$ by following algorithm.

For F^* , do the following procedure until I_{λ} does not occur in term.

Take a leftmost I_{λ} -combinator. If the form is $I_{\lambda}CD$ then we transform it into w-nf of CD. Else the form is $I_{\lambda}C$, and we transform it into LxD where Dis w-nf of Cx.

Future Work

Future Work

Can we the same simulation without using L-combinator?

2.

1.

How can we simulate an arbitrary reduction sequence?

Thank you for listening.