Reduction System for Extensional $\Lambda\mu$ -Calculus

Koji Nakazawa (Kyoto U.) (joint work with Tomoharu Nagai)

2014.5 SLACS/NSA

Result

- A new reduction system
 for (a variant of) λμ-calculus
 - confluence
 - subject reduction
 - strong normalization

Result

- A new reduction system
 for (a variant of) λμ-calculus
 - confluence $\Lambda \mu_{cons}$
 - subject reduction
 - strong normalization

- λµ-calculus [Parigot92]
 - proof terms for CND

- λµ-calculus [Parigot92]
 - proof terms for CND
- n destroys confluence [David&Py01]
 - $\lambda\mu$ does not enjoy separation thm

- λµ-calculus [Parigot92]
 - proof terms for CND
- n destroys confluence [David&Py01]
 - $\lambda\mu$ does not enjoy separation thm
- Λµ-calculus [Saurin05,10]
 - separation, confluence, and SN

n and confluence

$\beta\eta$ for λ

t,u ::= x | λ x.t | tu

 $\begin{array}{ll} (\lambda x.t)u & \rightarrow_{\beta} t[x:=u] \\ \lambda x.tx & \rightarrow_{\eta} t & (x \notin FV(t)) \end{array}$

Theorem (Confluence)βη is confluent

$\beta \eta \mu$ for $\lambda \mu$

t, $u ::= x | \lambda x.t | tu | \mu a.t | ta$ $(\lambda x.t)u \rightarrow_{\beta} t[x:=u]$ $(\mu a.t)b \rightarrow_{\beta} t[a:=b]$ $\lambda x.tx \rightarrow_{\eta} t$ $(x \notin FV(t))$ $\mu a.ta \rightarrow_n t \quad (a \notin FV(t))$ $(\mu a.t)u \rightarrow \mu \mu b.t[va:=(vu)b]$

$car = \lambda x. \mu a. x$

$car = \lambda x. \mu a. x$

$car t_1 t_2 t_3 b$

$car = \lambda x. \mu a. x$

$car t_1 t_2 t_3 b$ = ($\lambda x. \mu a. x$) t₁ t₂ t₃ b

$car = \lambda x. \mu a. x$

car t₁ t₂ t₃ b $= (\lambda x. \mu a. x) t_1 t_2 t_3 b$ $\rightarrow_{\beta} (\mu a. t_1) t_2 t_3 b$

$car = \lambda x. \mu a. x$

car t₁ t₂ t₃ b = $(\lambda x.\mu a.x)$ t₁ t₂ t₃ b \rightarrow_{β} ($\mu a. t_1$) t₂ t₃ b \rightarrow_{μ}^{*} t₁[va:=v t₂ t₃ b] (a \notin t₁)

$car = \lambda x. \mu a. x$

car t₁ t₂ t₃ b $= (\lambda x.\mu a.x) t_1 t_2 t_3 b$ $\rightarrow_{\beta} (\mu a. t_1) t_2 t_3 b$ $\rightarrow_{\mu}^* t_1 [va:=v t_2 t_3 b] \quad (a \notin t_1)$ $= t_1$

$E = [] t_1 t_2 \dots t_n a$

$E = [] t_1 t_2 \dots t_n a$

E[µb.t]

$E = [] t_1 t_2 \dots t_n a$

$E[\mu b.t] = (\mu b.t) t_1 t_2 \dots t_n a$

$E = [] t_1 t_2 ... t_n a$

$E[\mu b.t]$ $= (\mu b.t) t_1 t_2 \dots t_n a$ $\rightarrow^*_{\mu} (\mu c.t[vb:=vt_1t_2\dots t_nc])a$

$E = [] t_1 t_2 \dots t_n a$

$E[\mu b.t]$ $= (\mu b.t) t_1 t_2 \dots t_n a$ $\rightarrow^*_{\mu} (\mu c.t[vb:=vt_1t_2...t_nc])a$ $\rightarrow_{\beta} t [vb:=vt_1t_2...t_na]$

$E = [] t_1 t_2 \dots t_n a$

$E[\mu b.t]$ $= (\mu b.t) t_1 t_2 \dots t_n a$ $\rightarrow^*_{\mu} (\mu c.t[vb:=vt_1t_2\dots t_nc])a$ $\rightarrow_{\beta} t[vb:=vt_1t_2\dots t_na]$ = t[vb:=E[v]]

 $E = [] t_1 t_2 \dots t_n a$

a stream with initial segment t₁...t_n and tail part a

 $E[\mu b.t]$ $= (\mu b.t) t_1 t_2 \dots t_n a$ $\rightarrow^*_{\mu} (\mu c.t[vb:=vt_1t_2\dots t_nc])a$ $\rightarrow_{\beta} t [vb:=vt_1t_2\dots t_na]$ = t[vb:=E[v]]

 $E = [] t_1 t_2 \dots t_n a$

a stream with initial segment t₁...t_n and tail part a

E[µb.t] $(\mu b.t) t_1 t_2 ... t_n a$ \rightarrow^*_{μ} ($\mu c.t[vb:=vt_1t_2...t_nc]$)a $\rightarrow_{\beta} t [vb:=vt_1t_2...t_na]$ t[vb := E[v]] $\mu \models function on$ streams

n versus µ

 $\lambda x.(\mu a.y)x$

$\mu a.t \rightarrow_{\nu} \lambda x. \mu b.t [va:=(vx)b]$

Aμ [Saurin05]

t, $u ::= x | \lambda x.t | tu | \mu a.t | ta$ $(\lambda x.t)u \rightarrow_{\beta} t[x:=u]$ $(\mu a.t)b \rightarrow_{\beta} t[a:=b]$ $\lambda x.tx \rightarrow_{\eta} t$ (x \notin FV(t)) $\mu a.ta \rightarrow_{\eta} t \quad (a \notin FV(t))$ $\mu a.t \rightarrow_{\nu} \lambda x. \mu b.t [va:=(vx)b]$

Properties of $\Lambda\mu$

Theorem (Confluence [Saurin05&10]) Λμ is confluent for stream closed terms

Properties of $\Lambda\mu$

Theorem (Confluence [Saurin05&10]) Λμ is confluent for stream closed terms

Theorem (Separation [Saurin05]) t, u: distinct canonical nf $\Rightarrow \exists E s.t. E[t] \rightarrow^* true \& E[u] \rightarrow^* false$

Properties of $\Lambda\mu$

Theorem (Confluence [Saurin05&10]) Λμ is confluent for stream closed terms

Theorem (Separation [Saurin05]) t, u: distinct canonical nf $\Rightarrow \exists E s.t. E[t] \rightarrow^* true \& E[u] \rightarrow^* false$

Theorem (Strong normalization [Saurin10]) Typable terms are strongly normalizable

V is type dependent

$$\mu a.t \rightarrow_{\nu} \lambda x. \mu b.t [va:=(vx)b]$$

 admissible only when the type of a is of the form"A×S"

$\lambda x.t \rightarrow \mu a.t[x:=car a](cdr a)$

with some extension of explicit stream expressions

This work

• a conservative extension of $\Lambda\mu$

• Type indep. reduction for $\Lambda\mu_{cons}$

CR (not only for closed) and SN

Aµcons equational logic

$\Lambda \mu_{cons}$

Terms: $t,u ::= x | \lambda x.t | tu | \mu a.t | tS | car S$ Streams: S ::= a | t::S | cdr S

Axioms:

 $(\lambda x.t)u = t[x:=u]$ $(\mu a.t)S = t[a:=S]$ $\lambda x.tx = t$ (x \notin FV(t)) $\mu a.ta = t$ $(a \notin FV(t))$ t u S = t (u::S)car(t::S) = tcdr(t::S) = S(car S)::(cdr S) = S

$\Lambda \mu_{cons}$

Terms: $t,u ::= x | \lambda x.t | tu | \mu a.t | tS | car S$ Streams: S ::= a | t::S | cdr S

Axioms:

 $(\lambda x.t)u = t[x:=u]$ $(\mu a.t)S = t[a:=S]$ $\lambda x.tx = t$ (x \notin FV(t)) $\mu a.ta = t$ $(a \notin FV(t))$ t u S = t (u::S)car(t::S) = t $t t_1...t_n a = t(t_1::...:t_n::a)$ cdr(t::S) = S(car S)::(cdr S) = S

Lucons

Terms: $t,u ::= x | \lambda x.t | tu | \mu a.t | tS | car S$ Streams: S ::= a | t::S | cdr S

Axioms:

 $(\lambda x.t)u = t[x:=u]$ $(\mu a.t)S = t[a:=S]$ $\lambda x.tx = t$ (x \notin FV(t)) μ a.ta = t (a \notin FV(t)) t u S = t (u::S)car(t::S) = t $t t_1...t_n a = t(t_1::...:t_n::a)$ cdr(t::S) = S(::) is surjective (car S)::(cdr S) = S

Example

Y = fix pt operator in λ

nth = Y(λ f. μ a. λ n. ifzero n then (car a) else (f (n-1) (cdr a))

$nth S n = car (cdr^n S)$

Conservation

 $\begin{array}{ll} \mbox{Theorem (Conservation)} \\ \mbox{For any } t,u \in \Lambda\mu, \\ t = u \mbox{ in } \Lambda\mu_{cons} & \Leftrightarrow & t = u \mbox{ in } \Lambda\mu \end{array}$

Aµcons reduction system

Reduction for $\Lambda\mu_{cons}$ • "complete" w.r.t. the equality

- equivalence closure of \rightarrow is =
- confluent
- SR and SN
 - type independent

$(\mu a.t)u \rightarrow_{\mu} \mu b.t[va:=(vu)b]$

$(\mu a.t)u \rightarrow_{\mu} \mu b.t[a:=u::b]$

$(\mu a.t)u \rightarrow_{\mu} \mu b.t[a:=u::b]$

(µa. ... va ...)u

$(\mu a.t)u \rightarrow_{\mu} \mu b.t[a:=u::b]$

 $(\mu a. \dots va \dots)u$ $\rightarrow_{\mu} \mu b. \dots v(u:b) \dots$

$(\mu a.t)u \rightarrow_{\mu} \mu b.t[a:=u::b]$

 $(\mu a. \dots va \dots)u$ $\rightarrow_{\mu} \mu b. \dots v(u::b) \dots$ $= \mu b. \dots (vu)b \dots$

$\lambda x.t \rightarrow \mu a.t[x:=car a](cdr a)$

$(\lambda x.t)u$ \rightarrow (µa.t[x:=car a](cdr a))u

$\lambda x.t \rightarrow \mu a.t[x:=car a](cdr a)$

$(\lambda x.t)u$ \rightarrow (µa.t[x:=car a](cdr a))u \rightarrow_{μ} µb.t[x:=car (u::b)](cdr (u::b))

$(\lambda x.t)u$ \rightarrow (µa.t[x:=car a](cdr a))u \rightarrow_{μ} µb.t[x:=car (u::b)](cdr (u::b)) \rightarrow^{*} µb.t[x:=u]b

$\lambda x.t \rightarrow \mu a.t[x:=car a](cdr a)$

New rule

$(\lambda x.t)u \rightarrow (\mu a.t[x:=car a](cdr a))u \rightarrow_{\mu} \mu b.t[x:=car (u::b)](cdr (u::b)) \rightarrow^{*} \mu b.t[x:=u]b \rightarrow_{\eta} t[x:=u]$

$\lambda x.t \rightarrow \mu a.t[x:=car a](cdr a)$

New rule

$\lambda x.t \rightarrow \mu a.t[x:=car a](cdr a)$

- λx.tx
 - $\rightarrow \mu a.(tx)[x:=car a](cdr a) \\ \equiv \mu a.t(car a)(cdr a)$

- \rightarrow µa.(tx)[x:=car a](cdr a)
- = µa.t(car a)(cdr a)
- = $\mu a.t(car a :: cdr a)$

- → µa.(tx)[x:=car a](cdr a)
- = µa.t(car a)(cdr a)
- = $\mu a.t(car a :: cdr a)$
- → µa.ta

$\lambda x.t \rightarrow \mu a.t[x:=car a](cdr a)$

λx.tx

- → µa.(tx)[x:=car a](cdr a)
- = µa.t(car a)(cdr a)
- = $\mu a.t(car a :: cdr a)$
- → µa.ta
- →_η t

Reduction for $\Lambda\mu_{cons}$

$$\begin{array}{ll} (\mu\alpha.t)u \rightarrow t[\alpha := u :: \alpha] & (\beta_T) \\ (\mu\alpha.t)S \rightarrow t[\alpha := S] & (\beta_S) \\ \lambda x.t \rightarrow \mu\alpha.t[x := \mathsf{car}\alpha](\mathsf{cdr}\alpha) & (\mathsf{exp}) \\ t(u :: S) \rightarrow tuS & (\mathsf{assoc}) \\ \mathsf{car}(u :: S) \rightarrow u & (\mathsf{car}) \\ \mathsf{cdr}(u :: S) \rightarrow S & (\mathsf{cdr}) \\ \mu\alpha.t\alpha \rightarrow t & (\alpha \notin FV(t)) & (\eta_S) \\ \mathsf{ar}S) :: (\mathsf{cdr}S) \rightarrow S & (\eta_{::}) \\ t(\mathsf{car}S)(\mathsf{cdr}S) \rightarrow tS & (\eta_{::}) \end{array}$$

(c

Reduction for $\Lambda\mu_{cons}$

$(\mu\alpha.t)u \to t[\alpha := u :: \alpha]$	(eta_T)
$(\mu\alpha.t)S \to t[\alpha := S]$	(eta_S)
$\lambda x.t \to \mu \alpha.t [x := car \alpha](cdr \alpha)$	(exp)
$t(u::S) \to tuS$	(assoc)
car(u::S) o u	(car)
$cdr(u::S)\to S$	(cdr)
$\mu\alpha.t\alpha \to t \qquad (\alpha \not\in FV(t))$	(η_S)
(carS)::(cdrS) o S	$(\eta_{::})$
t(carS)(cdrS) o tS	$(\eta_{::}')$

๛๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	
$(\mu\alpha.t)u \to t[\alpha:=u::\alpha]$	(β_T)
$(\mu\alpha.t)S \to t[\alpha:=S]$	(eta_S)
$\lambda x.t \to \mu \alpha.t [x:= car\alpha](cdr\alpha)$	(exp)
$t(u::S) \to tuS$	(assoc)
$car(u::S) \to u$	(car)
$cdr(u::S)\to S$	(cdr)
$\mu\alpha.t\alpha \to t \qquad (\alpha \not\in FV(t))$	(η_S)
$(carS) :: (cdrS) \to S$	$(\eta_{::})$
$t(carS)(cdrS) \to tS$	$(\eta'_{::})$

B

- Confluence of B
- Confluence of E
- B and E commute

jednosti ka da da se	and the factor of the second states
$(\mu\alpha.t)u \to t[\alpha := u :: \alpha]$	(eta_T)
$(\mu\alpha.t)S \to t[\alpha:=S]$	(eta_S)
$\lambda x.t \to \mu \alpha.t [x:= car\alpha](cdr\alpha)$	(exp)
$t(u::S) \to tuS$	(assoc)
car(u::S) o u	(car)
$cdr(u::S)\to S$	(cdr)
$\mu\alpha.t\alpha \to t \qquad (\alpha \not\in FV(t))$	(η_S)
$(carS) :: (cdrS) \to S$	$(\eta_{::})$
$t(carS)(cdrS) \to tS$	$(\eta'_{::})$

easy by Newman's lemma

B

Confluence of B

Confluence of E

• B and E commute

i con sin a con a con
(β_T)
(eta_S)
(exp)
(assoc)
(car)
(cdr)
(η_S)
$(\eta_{::})$
$(\eta'_{\cdot\cdot})$

easy by Newman's Iemma

B

a little complicated due to non-linear rules

Confluence of B

Confluence of E

B and E commute
Confluence

B $(\mu\alpha.t)u \to t[\alpha := u :: \alpha]$ (β_T) $(\mu\alpha.t)S \to t[\alpha := S]$ (β_S) $\lambda x.t \rightarrow \mu \alpha.t [x := \operatorname{car} \alpha](\operatorname{cdr} \alpha)$ (exp) $t(u :: S) \to tuS$ (assoc) $\operatorname{car}(u::S) \to u$ (car) $\mathsf{cdr}(u::S) \to S$ (cdr $\mu \alpha . t \alpha \to t$ $(\alpha \in$ by "generalized complete development" $(\mathsf{car}S) :: (\mathsf{cdr}S) \to S$ $t(\operatorname{car} S)(\operatorname{cdr} S) \to tS$ Confluence of B easy by Newman's lemma Confluence of E a little complicated B and E commute due to non-linear rules

Confluence of B

• By "generalized complete development"

Theorem [Dehornoy+08, Komori+13] (A, \rightarrow) : abstract rewriting system if there exists $(\cdot)^+ : A \rightarrow A$ s.t. $a \rightarrow b \Rightarrow b \rightarrow^* a^+ \rightarrow^* b^+$ then (A, \rightarrow) is confluent

Confluence of B

$$\begin{aligned} x^{\dagger} &= x & \alpha^{\dagger} &= \alpha \\ (\lambda x.t)^{\dagger} &= \mu \alpha.t^{\dagger} [x := \operatorname{car}\alpha](\operatorname{cdr}\alpha) & (\operatorname{cdr}(t :: S))^{\dagger} &= S^{\dagger} \\ (\mu \alpha.t)^{\dagger} &= \mu \alpha.t^{\dagger} & (\operatorname{cdr}S)^{\dagger} &= \operatorname{cdr}S^{\dagger} & (\operatorname{otherwise}) \\ ((\mu \alpha.t)u)^{\dagger} &= \mu \alpha.t^{\dagger} [\alpha := u^{\dagger} :: \alpha] & (t :: S)^{\dagger} &= t^{\dagger} :: S^{\dagger} \\ (tu)^{\dagger} &= t^{\dagger}u^{\dagger} & (\operatorname{otherwise}) \\ ((\mu \alpha.t)S)^{\dagger} &= t^{\dagger} [\alpha := S^{\dagger}] \\ ((\mu \alpha.t)uS)^{\dagger} &= t^{\dagger} [\alpha := u^{\dagger} :: S^{\dagger}] \\ (t(u :: S))^{\dagger} &= t^{\dagger} u^{\dagger}S^{\dagger} & (t \neq \mu \text{-abst.}) \\ (tS)^{\dagger} &= t^{\dagger}S^{\dagger} & (\operatorname{otherwise}) \\ \operatorname{car}(t :: S))^{\dagger} &= t^{\dagger} \\ (\operatorname{car}S)^{\dagger} &= \operatorname{car}S^{\dagger} & (\operatorname{otherwise}) \end{aligned}$$

Confluence of $\Lambda\mu_{cons}$

Theorem (Confluence) $\Lambda\mu_{cons}$ is confluent

Confluence of $\Lambda \mu_{cons}$

Theorem (Confluence) $\Lambda \mu_{cons}$ is confluent

not restricted to stream closed terms

Confluence of $\Lambda \mu_{cons}$

Theorem (Confluence) $\Lambda \mu_{cons}$ is confluent

not restricted to stream closed terms

Theorem (Separation) t, u: distinct nf $\Rightarrow \exists E s.t. E[t] \rightarrow^* true \& E[u] \rightarrow^* false$

Typed $\Lambda \mu_{cons}$

Theorem (Subject reduction) $\Gamma \mid \Delta \vdash t : A \& t \rightarrow u \implies \Gamma \mid \Delta \vdash u : A$

Typed $\Lambda \mu_{cons}$

Theorem (Subject reduction) $\Gamma \mid \Delta \vdash t : A \& t \rightarrow u \implies \Gamma \mid \Delta \vdash u : A$

Theorem (Strong normalization) any typable term is strongly normalizable

Conclusion

Result

- a conservative extension of $\Lambda\mu$
- reduction for $\Lambda \mu_{cons}$
 - CR, SR, and SN

Other topics Stream models [N&Katsumata | 2]

- $S = D \times S$ & $D = S \rightarrow D$
- $\Lambda\mu_{cons}$ is sound and complete

• Stream models [N&Katsumata12]

• $S = D \times S$ & $D = S \rightarrow D$

- $\Lambda\mu_{cons}$ is sound and complete
- Friedman's theorem for typed $\Lambda \mu_{cons}$
 - extensional equality is characterized by any "full" stream model

Further direction

- Categorical stream models
- Logical aspect of typed $\Lambda \mu_{cons}$
- Combinatory calculus corresponding to $\Lambda\mu_{cons}$
- Application for program with streams