Reduction System for Extensional $\wedge \mu$-Calculus

Koji Nakazawa (Kyoto U.)
(joint work with Tomoharu Nagai)
2014.5 SLACS/NSA

Result

- A new reduction system for (a variant of) $\lambda \mu$-calculus
- confluence
- subject reduction
- strong normalization

Result

- A new reduction system for (a variant of) $\lambda \mu$-calculus
- confluence $\Lambda_{\text {cons }}$
- subject reduction
- strong normalization

Brief History

Brief History

- $\lambda \mu$-calculus [Parigot92]
- proof terms for CND

Brief History

- $\lambda \mu$-calculus [Parigot92]
- proof terms for CND
- η destroys confluence [David\&Py0I]
- $\lambda \mu$ does not enjoy separation thm

Brief History

- $\lambda \mu$-calculus [Parigot92]
- proof terms for CND
- η destroys confluence [David\&PyOI]
- $\lambda \mu$ does not enjoy separation thm
- $\wedge \mu$-calculus [Saurin05, I0]
- separation, confluence, and SN

η and confluence

$\beta \eta$ for λ

$$
\begin{gathered}
\mathrm{t}, \mathrm{u}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}| \mathrm{tu} \\
(\lambda \mathrm{x} . \mathrm{t}) \mathrm{u} \\
\rightarrow_{\beta} \mathrm{t}[\mathrm{x}:=\mathrm{u}] \\
\lambda \mathrm{x} . \mathrm{tx} \rightarrow_{\eta} \mathrm{t} \quad(\mathrm{x} \notin \mathrm{FV}(\mathrm{t}))
\end{gathered}
$$

Theorem (Confluence) $\beta \eta$ is confluent

$\beta \eta \mu$ for $\lambda \mu$

$\mathrm{t}, \mathrm{u}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}| \mathrm{tu}|\mu \mathrm{a} . \mathrm{t}| \mathrm{ta}$
$(\lambda x . t) u \rightarrow_{\beta} t[x:=u]$
$(\mu \mathrm{a} . \mathrm{t}) \mathrm{b} \rightarrow_{\beta} \mathrm{t}[\mathrm{a}:=\mathrm{b}]$
$\lambda x . t x \rightarrow_{\eta} \mathrm{t} \quad(\mathrm{x} \notin \mathrm{FV}(\mathrm{t}))$ $\mu \mathrm{a} . \mathrm{ta} \rightarrow_{\mathrm{n}} \mathrm{t} \quad(\mathrm{a} \notin \mathrm{FV}(\mathrm{t}))$
$(\mu \mathrm{a} . \mathrm{t}) \mathrm{u} \rightarrow_{\mu} \mu \mathrm{b} . \mathrm{t}[\mathrm{va}:=(\mathrm{vu}) \mathrm{b}]$

Example

car $=\lambda x . \mu a . x$

Example

$\operatorname{car}=\lambda x . \mu a . x$

$\operatorname{car} t_{1} t_{2} t_{3} b$

Example

car $=\lambda x . \mu a . x$

car $t_{1} t_{2} t_{3} b$
$=(\lambda x . \mu a . x) t_{1} t_{2} t_{3} b$

Example

$\operatorname{car}=\lambda \mathrm{x} . \mu \mathrm{a} . \mathrm{x}$

car $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{~b}$

$$
\begin{array}{ll}
= & (\lambda x \cdot \mu a \cdot x) t_{1} t_{2} t_{3} b \\
\rightarrow \beta & \left(\mu a \cdot t_{1}\right) t_{2} t_{3} b
\end{array}
$$

Example

car $=\lambda x$. Ha. x

car $t_{1} t_{2} t_{3} b$
$=\left(\lambda x . \mu_{a} \times\right) t_{1} t_{2} t_{3} b$
$\rightarrow \beta$ ($\left.\mu \mathrm{a} . \mathrm{t}_{1}\right) \mathrm{t}_{2} \mathrm{t}_{3} b$
$\rightarrow_{\mu}^{*} \mathrm{t}_{1}\left[\mathrm{va}:=\mathrm{v}_{2} \mathrm{t}_{3} \mathrm{~b}\right] \quad\left(\mathrm{a} \notin \mathrm{t}_{1}\right)$

Example

car $=\lambda x$. Ha. x

car $t_{1} t_{2} t_{3} b$

$$
\begin{aligned}
& =(\lambda x . \mu a . x) t_{1} t_{2} t_{3} b \\
& \rightarrow \beta\left(\mu a . t_{1}\right) t_{2} t_{3} b \\
& \rightarrow^{*}{ }_{\mu} t_{1}\left[v a:=v t_{2} t_{3} b\right] \quad\left(a \notin t_{1}\right) \\
& =t_{1}
\end{aligned}
$$

Example

$\mathrm{E}=\left[\mathrm{t} \mathrm{t}_{\mathrm{t}} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}\right.$

Example

$\mathrm{E}=\left[\mathrm{t}_{\mathrm{t}} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}\right.$
E[$[\mathrm{b} . \mathrm{t}]$

Example

$E=[] t_{1} t_{2} \ldots t_{n} a$

E[$[\mathrm{b} . \mathrm{t}$]

$$
=(\mu \mathrm{b} . \mathrm{t}) \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}
$$

Example

$\mathrm{E}=\left[\mathrm{t} \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}\right.$
E[$[\mathrm{b} . \mathrm{t}]$

$$
\begin{aligned}
& =(\mu \mathrm{b} . \mathrm{t}) \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a} \\
& \rightarrow^{*} \mu\left(\mu \mathrm{c} \cdot \mathrm{t}\left[\mathrm{vb}:=\mathrm{v} \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{c}\right]\right) \mathrm{a}
\end{aligned}
$$

Example

$E=[] t_{1} t_{2} \ldots t_{n} a$
E[$[\mathrm{b} . \mathrm{t}]$
$=\quad(\mu \mathrm{b} . \mathrm{t}) \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}$
$\rightarrow{ }_{\mu}^{*}\left(\mu c . t\left[v b:=v t_{\mid} t_{2} \ldots t_{n} c\right]\right) a$
$\rightarrow_{\beta} \mathrm{t}\left[\mathrm{vb}:=\mathrm{vt} \mid \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}\right]$

Example

$E=\square t_{1} t_{2} \ldots, t_{n} a$
E[$\mu \mathrm{b} . \mathrm{t}]$
$=(\mu \mathrm{b} . \mathrm{t}) \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}$
$\rightarrow_{\mu}^{*}\left(\mu \mathrm{c} \cdot \mathrm{t}\left[\mathrm{vb}:=\mathrm{v} \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{c}\right]\right) \mathrm{a}$
$\rightarrow \beta \mathrm{t}\left[\mathrm{vb}:=\mathrm{vt} \mathrm{t}_{1} \ldots \mathrm{t}_{n} \mathrm{a}\right]$
$=\mathrm{t}[\mathrm{vb}:=\mathrm{E}[\mathrm{v}]]$

Example

$E=[] t_{1} t_{2} \ldots t_{n} a \quad$ a stream with initial segment $\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}$ and tail part a
E[$\mu \mathrm{b} . \mathrm{t}]$

$$
\begin{aligned}
& =(\mu b \cdot t) t_{1} t_{2} \ldots t_{n} a \\
& \rightarrow_{\mu}^{*}\left(\mu c \cdot t\left[v b:=v t_{1} t_{2} \ldots t_{n} c\right]\right) a \\
& \rightarrow \beta t\left[v b:=v t_{1} t_{2} \ldots t_{n} a\right] \\
& =t[v b:=E[v]]
\end{aligned}
$$

Example

$E=[] t_{1} t_{2} \ldots t_{n} a \quad$ a stream with initial segment $\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}$ and tail part a
E[$\mu \mathrm{b} . \mathrm{t}]$

$$
\begin{aligned}
& =(\mu \mathrm{b} . \mathrm{t}) \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a} \\
& \rightarrow_{\mu}^{*}\left(\mu \mathrm{c} . \mathrm{t}\left[\mathrm{vb}:=\mathrm{vt} \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{c}\right]\right) \mathrm{a} \\
& \rightarrow \beta \mathrm{t}\left[\mathrm{vb}:=\mathrm{v} \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}\right] \\
& =\quad \mathrm{t}[\mathrm{vb}:=E[\mathrm{v}]] \quad \begin{array}{l}
\mu=\text { function on } \\
\text { streams }
\end{array}
\end{aligned}
$$

η versus μ

λx.($\mu \mathrm{a}, \mathrm{y}) \mathrm{x}$

η versus μ

λx.($\mu \mathrm{a}, \mathrm{y}) \mathrm{x}$

$\mu \mathrm{a} . \mathrm{y}$
$\lambda x .(\mu b . y)$

η versus μ

$\lambda x .(\mu a . y) \mathrm{x}$

$\mu a . y$

???

η versus μ

λx.($\mu \mathrm{a}, \mathrm{y}) \mathrm{x}$

$\mu \mathrm{a} . \boldsymbol{y}$
$\lambda x .(\mu \mathrm{b} . \mathrm{y})$
,
both are the same const. function on streams

A solution [David\&PyOI]

$\lambda x .(\mu \mathrm{a} . \mathrm{y}) \mathrm{x}$

$\mu \mathrm{a} . \mathrm{y} \xrightarrow[\mathrm{v}]{ } \lambda x .(\mu \mathrm{a} . \mathrm{y})$
$\mu \mathrm{a} . \mathrm{t} \rightarrow{ }_{\mathrm{v}} \lambda \mathrm{x} . \mu \mathrm{b} . \mathrm{t}[\mathrm{va}:=(\mathrm{vx}) \mathrm{b}]$

A solution [David\&Py0I]

$\lambda x .(\mu \mathrm{a} . \mathrm{y}) \mathrm{x}$

$\mu \mathrm{a} . \mathrm{y} \xrightarrow[v]{ } \lambda x .(\mu \mathrm{a} . \mathrm{y})$
$a \longmapsto t$
$\mathrm{x}: \mathrm{b} \longmapsto \mathrm{t}[\mathrm{a}:=\mathrm{x}: \mathrm{b}]$
$\mu \mathrm{a} . \mathrm{t} \rightarrow_{\mathrm{v}} \lambda x . \mu \mathrm{b} . \mathrm{t}[\mathrm{va}:=(\mathrm{vx}) \mathrm{b}]$

$\wedge \mu[$ Saurin05]

$\mathrm{t}, \mathrm{u}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}| \mathrm{tu}|\mu \mathrm{a} . \mathrm{t}| \mathrm{ta}$
$(\lambda x . t) u \rightarrow_{\beta} t[x:=u]$
$(\mu \mathrm{a} . \mathrm{t}) \mathrm{b} \rightarrow_{\beta} \mathrm{t}[\mathrm{a}:=\mathrm{b}]$
$\lambda x . \mathrm{tx} \rightarrow_{\eta} \mathrm{t} \quad(\mathrm{x} \notin \mathrm{FV}(\mathrm{t}))$
Ha.ta $\rightarrow_{\eta} \mathrm{t} \quad(\mathrm{a} \notin \mathrm{FV}(\mathrm{t}))$
$\mu \mathrm{a} . \mathrm{t} \rightarrow_{\mathrm{v}} \lambda \mathrm{x} . \mu \mathrm{b} . \mathrm{t}[\mathrm{va}:=(\mathrm{vx}) \mathrm{b}]$

Properties of $\Lambda \mu$

Theorem (Confluence [Saurin05\& I0]) $\Lambda \mu$ is confluent for stream closed terms

Properties of $\Lambda \mu$

Theorem (Confluence [Saurin05\& 10]) $\Lambda \mu$ is confluent for stream closed terms

Theorem (Separation [Saurin05]) t , u : distinct canonical nf
$\Rightarrow \exists \mathrm{E}$ s.t. $\mathrm{E}[\mathrm{t}] \rightarrow{ }^{*}$ true \& E[u] \rightarrow^{*} false

Properties of $\Lambda \mu$

Theorem (Confluence [Saurin05\& I 0]) $\Lambda \mu$ is confluent for stream closed terms

Theorem (Separation [Saurin05]) t , u: distinct canonical nf
$\Rightarrow \exists \mathrm{E}$ s.t. $\mathrm{E}[\mathrm{t}] \rightarrow^{*}$ true \& E[u] \rightarrow^{*} false
Theorem (Strong normalization [Saurin 10]) Typable terms are strongly normalizable

V is type dependent

$$
\mu_{\mathrm{A} . \mathrm{t}}^{\mathrm{S}} \rightarrow{ }_{v} \lambda{ }^{A} . \mu \mathrm{b}^{\mathrm{S}} . \mathrm{t}[\mathrm{va}:=(\mathrm{vx}) \mathrm{b}]
$$

- admissible only when the type of a is of the form " $A \times S$ "

We propose

$\lambda x .(\mu a . y) \mathrm{x}$

山a.y
$\lambda x .(\mu b . y)$

We propose

$\lambda x .(\mu \mathrm{a} . \mathrm{y}) \mathrm{x}$

$\mu a . y \longleftarrow \lambda x .(\mu \mathrm{b} . \mathrm{y})$
$\lambda x . t \rightarrow \mu \mathrm{a} . \mathrm{t}[\mathrm{x}:=\mathrm{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$

We propose

λx.($\mu \mathrm{a}, \mathrm{y}) \mathrm{x}$

μ а. y
λx.($\mu \mathrm{b} . \mathrm{y}$)
$\lambda x . t \rightarrow \mu a . t[x:=c a r ~ a](c d r ~ a)$
with some extension of explicit stream expressions

This work

- \wedge Hcons
- a conservative extension of $\wedge \mu$
- Type indep. reduction for $\Lambda \mu_{\text {cons }}$
- CR (not only for closed) and SN

$\Lambda \mu_{\text {cons }}$ equational logic

$\wedge \mu_{\text {cons }}$

Terms: t, u ::=x| $\lambda x . \mathrm{t}|\mathrm{tu}| \mu \mathrm{a} . \mathrm{t}|\mathrm{tS}| \mathrm{car} \mathrm{S}$ Streams: S ::= a | t::S |cdr S

Axioms: $\quad(\lambda x . t) \mathrm{u}=\mathrm{t}[\mathrm{x}:=\mathrm{u}]$
$(\mu \mathrm{a} . \mathrm{t}) \mathrm{S}=\mathrm{t}[\mathrm{a}:=\mathrm{S}]$
$\lambda x . t x=t \quad(x \notin \mathrm{FV}(\mathrm{t}))$
$\mu \mathrm{a} . \mathrm{ta}=\mathrm{t} \quad(\mathrm{a} \notin \mathrm{FV}(\mathrm{t}))$
t u S = t (u: S)
$\operatorname{car}(\mathrm{t}: \mathrm{S})=\mathrm{t}$
$\operatorname{cdr}(\mathrm{t}: \mathrm{S})=\mathrm{S}$
$(\operatorname{car} S)::(\operatorname{cdr} S)=S$

$\wedge \mu_{\text {cons }}$

Terms: $\mathrm{t}, \mathrm{u}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}| \mathrm{tu}|\mu \mathrm{\mu} . \mathrm{t}| \mathrm{tS} \mid \mathrm{car} \mathrm{S}$ Streams: S::= a | t::S |cdr S

Axioms: $\quad(\lambda x . t) \mathrm{u}=\mathrm{t}[\mathrm{x}:=\mathrm{u}]$
$(\mu \mathrm{a} . \mathrm{t}) \mathrm{S}=\mathrm{t}[\mathrm{a}:=\mathrm{S}]$
$\lambda \mathrm{x} . \mathrm{tx}=\mathrm{t} \quad(\mathrm{x} \notin \mathrm{FV}(\mathrm{t}))$
$\mu \mathrm{a} . \mathrm{ta}=\mathrm{t} \quad(\mathrm{a} \notin \mathrm{FV}(\mathrm{t}))$
t u S $=\mathrm{t}$ (u:S)
$\operatorname{car}(\mathrm{t}:: \mathrm{S})=\mathrm{t} \quad \mathrm{t} \quad \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}=\mathrm{t}\left(\mathrm{t} \mid: \ldots::: \mathrm{t}_{\mathrm{n}} \mathrm{a} \mathrm{a}\right)$
$\operatorname{cdr}(\mathrm{t}: \mathrm{S})=\mathrm{S}$
$(\operatorname{car} S)::(\operatorname{cdr} \mathrm{S})=\mathrm{S}$

$\Lambda \mu_{\text {cons }}$

Terms: $\mathrm{t}, \mathrm{u}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}| \mathrm{tu}|\mu \mathrm{a} . \mathrm{t}| \mathrm{tS} \mid \mathrm{car} \mathrm{S}$ Streams: S::= a | t::S | cdr S

Axioms: $\quad(\lambda \mathrm{x} . \mathrm{t}) \mathrm{u}=\mathrm{t}[\mathrm{x}:=\mathrm{u}]$
$(\mu \mathrm{a} . \mathrm{t}) \mathrm{S}=\mathrm{t}[\mathrm{a}:=\mathrm{S}]$
$\lambda \mathrm{x} . \mathrm{tx}=\mathrm{t} \quad(\mathrm{x} \notin \mathrm{FV}(\mathrm{t}))$
$\mu \mathrm{a} . \mathrm{ta}=\mathrm{t} \quad(\mathrm{a} \notin \mathrm{FV}(\mathrm{t}))$
t u S $=\mathrm{t}$ (u:S)
$\operatorname{car}(\mathrm{t}:: \mathrm{S})=\mathrm{t} \quad \mathrm{t} \quad \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}=\mathrm{t}\left(\mathrm{t} \mid: \ldots, \ldots: \mathrm{t}_{n: \mathrm{a}} \mathrm{a}\right)$
$\operatorname{cdr}(\mathrm{t}: \mathrm{S})=\mathrm{S}$
$(::)$ is surjective $(\operatorname{car} S):(\operatorname{cdr} S)=S$

Example

$Y=$ fix pt operator in λ

nth $=Y(\lambda f . \mu a . \lambda n$.

ifzero n then (car a) else (f ($\mathrm{n}-\mathrm{I}$) (cdr a))
nth $\mathrm{S} \mathrm{n}=\operatorname{car}\left(\mathrm{cdr}^{\mathrm{n}} \mathrm{S}\right)$

Conservation

Theorem (Conservation)
For any $\mathrm{t}, \mathrm{u} \in \Lambda \mu$,

$$
\mathrm{t}=\mathrm{u} \text { in } \Lambda \mu_{\text {cons }} \Leftrightarrow \mathrm{t}=\mathrm{u} \text { in } \Lambda \mu
$$

$\Lambda_{\text {cons }}$
 reduction system

Reduction for $\Lambda \mu_{\text {cons }}$

- "complete" w.r.t. the equality
- equivalence closure of \rightarrow is $=$
- confluent
- SR and SN
- type independent

μ-reduction in $\Lambda \mu_{\text {cons }}$

$(\mu \mathrm{a} . \mathrm{t}) \mathrm{u} \rightarrow \mu \mu \mathrm{b} . \mathrm{t}[\mathrm{va}:=(\mathrm{vu}) \mathrm{b}]$

μ-reduction in $\Lambda \mu_{\text {cons }}$

$(\mu \mathrm{a} . \mathrm{t}) \mathrm{u} \rightarrow \mu \mu \mathrm{b} . \mathrm{t}[\mathrm{a}:=\mathrm{u}: \mathrm{b}]$

μ-reduction in $\Lambda \mu_{\text {cons }}$

$(\mu \mathrm{a} . \mathrm{t}) \mathrm{u} \rightarrow_{\mu} \mu \mathrm{b} . \mathrm{t}[\mathrm{a}:=\mathrm{u}: \mathrm{b}]$

($\mu \mathrm{a} . \mathrm{I} . \mathrm{va} . .)$.

μ-reduction in $\Lambda \mu_{\text {cons }}$

$(\mu \mathrm{a} . \mathrm{t}) \mathrm{u} \rightarrow \mu \mathrm{\mu b} . \mathrm{t}[\mathrm{a}:=\mathrm{u}: \mathrm{b}]$

($\mu \mathrm{a} . \mathrm{} . .\mathrm{va} . .)$.

$$
\rightarrow_{\mu} \mu \mathrm{b} . \ldots \mathrm{v}(\mathrm{u}: \mathrm{b}) \ldots
$$

μ-reduction in $\Lambda \mu_{\text {cons }}$

$(\mu \mathrm{a} . \mathrm{t}) \mathrm{u} \rightarrow \mu \mathrm{\mu b} . \mathrm{t}[\mathrm{a}:=\mathrm{u}: \mathrm{b}]$

($\mu \mathrm{a} . \mathrm{} . .\mathrm{va} . .)$.

$$
\begin{aligned}
& \rightarrow_{\mu} \mu \mathrm{b} . \ldots \mathrm{v}(\mathrm{u}: \mathrm{b}) \ldots \\
& =\quad \mu \mathrm{b} . \ldots(\mathrm{vu}) \mathrm{b} \ldots
\end{aligned}
$$

New rule

$\lambda x .(\mu a . y) \mathrm{x}$

$\mu \mathrm{a.y} \longleftarrow \lambda x .(\mu \mathrm{b} . \mathrm{y})$
$\lambda x . t \rightarrow \mu \mathrm{a} . \mathrm{t}[\mathrm{x}:=\mathrm{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$

New rule

$\lambda x . t \rightarrow \mu$ a.t[x:=car a](cdr a)

New rule

$\lambda x . t \rightarrow \mu a . t[x:=c a r a](c d r a)$

($\lambda x . t) \mathrm{u}$

New rule

$\lambda x . t \rightarrow \mu \mathrm{a} . \mathrm{t}[\mathrm{x}:=\mathrm{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$

($\lambda x . t) \mathrm{u}$

$$
\rightarrow(\mu \mathrm{a} . \mathrm{t}[\mathrm{x}:=\operatorname{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})) \mathrm{u}
$$

New rule

$\lambda x . t \rightarrow \mu$ a.t[x:=car a](cdr a)

($\lambda x . t) \mathrm{u}$
\rightarrow ($\mu \mathrm{a} . \mathrm{t}[\mathrm{x}:=\operatorname{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})) \mathrm{u}$
$\rightarrow_{\mu} \mu \mathrm{b} . \mathrm{t}[\mathrm{x}:=\mathrm{car}(\mathrm{u}: \mathrm{b})](\mathrm{cdr}(\mathrm{u}: \mathrm{b}))$

New rule

$\lambda x . t \rightarrow \mu$ a.t[x:=car a](cdr a)

($\lambda \times . t) \mathrm{u}$
\rightarrow ($\mu \mathrm{a} . \mathrm{t}[\mathrm{x}:=\operatorname{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$)u
$\rightarrow \mu \mu \mathrm{b} . \mathrm{t}[\mathrm{x}:=\mathrm{car}(\mathrm{u}: \mathrm{b})](\mathrm{cdr}(\mathrm{u}: \mathrm{b}))$
$\rightarrow{ }^{*} \mu \mathrm{~b} . \mathrm{t}[\mathrm{x}:=\mathrm{u}] \mathrm{b}$

New rule

$\lambda x . t \rightarrow \mu a . t[x:=c a r a](c d r a)$

($\lambda \times . t) \mathrm{u}$
\rightarrow (μ a.t[x:=car a](cdr a))u
$\rightarrow \mu \mu \mathrm{b} . \mathrm{t}[\mathrm{x}:=\mathrm{car}(\mathrm{u}: \mathrm{b})](\mathrm{cdr}(\mathrm{u}: \mathrm{b}))$
$\rightarrow{ }^{*} \mu \mathrm{~b} . \mathrm{t}[\mathrm{x}:=\mathrm{u}] \mathrm{b}$
$\rightarrow_{\mathrm{n}} \mathrm{t}[\mathrm{x}:=\mathrm{u}]$

New rule

$\lambda x . t \rightarrow \mu$ a.t[x:=car a](cdr a)

New rule

$\lambda x . t \rightarrow \mu a . t[x:=c a r a](c d r a)$

$\lambda x . t x$

New rule

$\lambda x . t \rightarrow \mu \mathrm{a} . \mathrm{t}[\mathrm{x}:=\mathrm{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$

$\lambda x . t x$
$\rightarrow \mu \mathrm{a} .(\mathrm{tx})[\mathrm{x}:=\mathrm{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$

New rule

$\lambda x . t \rightarrow \mu$ att $[\mathrm{x}:=\mathrm{car} \mathrm{a}$] $(\mathrm{cdra} \mathrm{a})$

$\lambda \underset{\rightarrow}{\lambda}$.tx
$\rightarrow \mu \mathrm{a} .(\mathrm{tx})[\mathrm{x}:=\mathrm{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$
$\equiv \mu \mathrm{a} . \mathrm{t}(\mathrm{car} \mathrm{a})(\mathrm{cdr} \mathrm{a})$

New rule

$\lambda x . t \rightarrow \mu$ a.t[x:=car a](cdr a)

λx.tx

$\equiv \mu \mathrm{a} . \mathrm{t}(\mathrm{car} \mathrm{a})(\mathrm{cdr} \mathrm{a})$
$=\mu \mathrm{a} . \mathrm{t}(\mathrm{car} \mathrm{a}:: \mathrm{cdr} \mathrm{a})$

New rule

$\lambda x . t \rightarrow \mu$ a.t[x:= car a](cdr a)

λx.tx
$\rightarrow \mu \mathrm{a} .(\mathrm{tx})[\mathrm{x}:=\mathrm{car} \mathrm{a}](\mathrm{cdr} \mathrm{a})$
$\equiv \mu \mathrm{a} . \mathrm{t}(\mathrm{car} \mathrm{a})(\mathrm{cdr} \mathrm{a})$
$=\mu \mathrm{a} . \mathrm{t}(\mathrm{car} \mathrm{a}:: \mathrm{cdr} \mathrm{a})$
$\rightarrow \mu a . t a$

New rule

$\lambda x . t \rightarrow \mu$ att $[\mathrm{x}:=\mathrm{car} \mathrm{a}$] $(\mathrm{cdra} \mathrm{a})$

$\lambda \underset{\rightarrow}{\lambda}$.tx

$\equiv \mu \mathrm{a} . \mathrm{t}(\mathrm{car} \mathrm{a})(\mathrm{cdr} \mathrm{a})$
$=\mu \mathrm{a} . \mathrm{t}(\mathrm{car} \mathrm{a}:: \mathrm{cdr} \mathrm{a})$
$\rightarrow \mu \mathrm{a} . \mathrm{ta}$
$\rightarrow_{\mathrm{n}} \mathrm{t}$

Reduction for $\Lambda \mu_{\text {cons }}$

$$
\begin{aligned}
(\mu \alpha . t) u & \rightarrow t[\alpha:=u:: \alpha] \\
(\mu \alpha . t) S & \rightarrow t[\alpha:=S] \\
\lambda x . t & \rightarrow \mu \alpha \cdot t[x:=\operatorname{car} \alpha](\operatorname{cdr} \alpha) \\
t(u:: S) & \rightarrow t u S \\
\operatorname{car}(u:: S) & \rightarrow u \\
\operatorname{cdr}(u:: S) & \rightarrow S \\
\mu \alpha . t \alpha & \rightarrow t \quad(\alpha \notin F V(t)) \\
(\operatorname{car} S)::(\operatorname{cdr} S) & \rightarrow S \\
t(\operatorname{car} S)(\operatorname{cdr} S) & \rightarrow t S
\end{aligned}
$$

Confluence

Reduction for $\Lambda \mu_{\text {cons }}$

B

$$
\begin{align*}
(\mu \alpha . t) u & \rightarrow t[\alpha:=u:: \alpha] \tag{T}\\
(\mu \alpha . t) S & \rightarrow t[\alpha:=S] \\
\lambda x . t & \rightarrow \mu \alpha \cdot t[x:=\operatorname{car} \alpha](\operatorname{cdr} \alpha) \\
t(u:: S) & \rightarrow t u S
\end{align*}
$$

$$
\begin{array}{ll}
\operatorname{car}(u:: S) \rightarrow u \\
\operatorname{cdr}(u:: S) \rightarrow S & (\mathrm{car}) \\
(\mathrm{cdr})
\end{array}
$$

$$
\mu \alpha . t \alpha \rightarrow t \quad(\alpha \notin F V(t))
$$

$\left(\eta_{S}\right)$
$(\operatorname{car} S)::(\operatorname{cdr} S) \rightarrow S$
$\left(\eta_{::}\right)$
$t(\operatorname{car} S)(\mathrm{cdr} S) \rightarrow t S$

Confluence

$\begin{aligned} & (\mu \alpha . t) u \rightarrow t[\alpha:=u:: \alpha] \\ & (\mu \alpha . t) S \rightarrow t[\alpha:=S] \\ & \quad \lambda x . t \rightarrow \mu \alpha . t[x:=\operatorname{car} \alpha](\operatorname{cdr} \alpha) \\ & t(u:: S) \rightarrow t u S \end{aligned}$	$\begin{array}{r} \left(\beta_{T}\right) \\ \left(\beta_{S}\right) \\ (\text { exp }) \\ \text { (assoc) } \end{array}$
$\operatorname{car}(u:: S) \rightarrow u$	(car)
$\operatorname{cdr}(u:: S) \rightarrow S$	(cdr)
$\begin{aligned} \mu \alpha \cdot t \alpha & \rightarrow t \quad(\alpha \notin F V(t)) \\ (\operatorname{car} S)::(\mathrm{cdr} S) & \rightarrow S \\ t(\operatorname{car} S)(\mathrm{cdr} S) & \rightarrow t S \end{aligned}$	$\begin{aligned} & \left(\eta_{S}\right) \\ & \left(\eta_{::}\right) \\ & \left(\eta_{::}^{\prime}\right) \end{aligned}$

E

- Confluence of B
- Confluence of E
- B and E commute

Confluence

B $(\mu \alpha . t) u \rightarrow t[\alpha:=u:: \alpha]$
$(\mu \alpha . t) S \rightarrow t[\alpha:=S]$
$\lambda x . t \rightarrow \mu \alpha . t[x:=\operatorname{car} \alpha](\operatorname{cdr} \alpha)$
$t(u:: S) \rightarrow t u S$

E

easy

- Confluence of B
by Newman's lemma
- Confluence of E
- B and E commute

Confluence

B

$(\mu \alpha . t) u$	$\rightarrow t[\alpha:=u:: \alpha]$	$\left(\beta_{T}\right)$
$(\mu \alpha . t) S$	$\rightarrow t[\alpha:=S]$	$\left(\beta_{S}\right)$
$\lambda x . t$	$\rightarrow \mu \alpha . t[x:=\operatorname{car} \alpha](\operatorname{cdr} \alpha)$	(\exp)
$t(u:: S)$	$\rightarrow t u S$	(assoc)
$\operatorname{car}(u:: S)$	$\rightarrow u$	(car)
$\operatorname{cdr}(u:: S)$	$\rightarrow S$	(cdr)
$\mu \alpha . t \alpha$	$\rightarrow t$	$\left(\eta_{S}\right)$
$(\operatorname{car} S)::(\operatorname{cdr} S)$	$\rightarrow S$	$\left(\eta_{::}\right)$
$t(\operatorname{car} S)(\operatorname{cdr} S)$	$\rightarrow t S$	$\left(\eta_{::}^{\prime}\right)$

E
easy

- Confluence of B
by Newman's lemma
- Confluence of E
a little complicated due to non-linear rules \quad B and E commute

Confluence

B

$(\mu \alpha . t) u \rightarrow t[\alpha:=u:: \alpha]$	$\left(\beta_{T}\right)$
$(\mu \alpha . t) S \rightarrow t[\alpha:=S]$	$\left(\beta_{S}\right)$
$\lambda x . t \rightarrow \mu \alpha . t[x:=\operatorname{car} \alpha](\operatorname{cdr} \alpha)$	(\exp)
$t(u:: S) \rightarrow t u S$	$($ assoc $)$
$\operatorname{car}(u:: S) \rightarrow u$	$(c a r)$

$(\operatorname{car} S)::(\operatorname{cdr} S) \rightarrow S$
 by "generalized complete development"

$t(\mathrm{car} S)(\mathrm{cdr} S) \rightarrow t S$
easy

- Confluence of B
by Newman's lemma
- Confluence of E
a little complicated due to non-linear rules $\quad \mathrm{B}$ and E commute

Confluence of B

- By "generalized complete development"

Theorem [Dehornoy+08, Komori+13]
$(\mathrm{A}, \rightarrow)$: abstract rewriting system if there exists $(\cdot)^{+}: A \rightarrow A$ s.t.

$$
\mathrm{a} \rightarrow \mathrm{~b} \Rightarrow \mathrm{~b} \rightarrow^{*} \mathrm{a}^{+} \rightarrow^{*} \mathrm{~b}^{+}
$$

then $(\mathrm{A}, \rightarrow)$ is confluent

Confluence of B

$$
\begin{array}{rlrl}
x^{\dagger} & =x & \alpha^{\dagger} & =\alpha \\
(\lambda x . t)^{\dagger} & =\mu \alpha \cdot t^{\dagger}[x:=\operatorname{car} \alpha](\operatorname{cdr} \alpha) & (\operatorname{cdr}(t:: S))^{\dagger} & =S^{\dagger} \\
(\mu \alpha \cdot t)^{\dagger} & =\mu \alpha \cdot t^{\dagger} & (c d r S)^{\dagger} & \left.=\operatorname{cdr} S^{\dagger} \quad \text { (otherwise) }\right) \\
((\mu \alpha . t) u)^{\dagger} & =\mu \alpha \cdot t^{\dagger}\left[\alpha:=u^{\dagger}:: \alpha\right] & (t:: S)^{\dagger}=t^{\dagger}:: S^{\dagger} \\
(t u)^{\dagger} & =t^{\dagger} u^{\dagger} \quad(\text { otherwise }) & & \\
((\mu \alpha . t) S)^{\dagger} & =t^{\dagger}\left[\alpha:=S^{\dagger}\right] \\
((\mu \alpha \cdot t) u S)^{\dagger} & =t^{\dagger}\left[\alpha:=u^{\dagger}:: S^{\dagger}\right] \\
(t(u:: S))^{\dagger} & =t^{\dagger} u^{\dagger} S^{\dagger} \quad(t \neq \mu \text {-abst.) } & & \\
(t S)^{\dagger} & =t^{\dagger} S^{\dagger} \quad(\text { otherwise }) & & \\
(\operatorname{car}(t:: S))^{\dagger} & =t^{\dagger} & & \\
(\operatorname{car} S)^{\dagger} & =\operatorname{car} S^{\dagger} \quad(\text { otherwise }) & &
\end{array}
$$

Confluence of $\wedge \mu_{\text {cons }}$

Theorem (Confluence)
$\Lambda \mu_{\text {cons }}$ is confluent

Confluence of $\wedge \mu_{\text {cons }}$

Theorem (Confluence)

not restricted to stream closed terms
$\Lambda \mu_{\text {cons }}$ is confluent

Confluence of $\wedge \mu_{\text {cons }}$

Theorem (Confluence)

not restricted to stream closed terms $\Lambda \mu_{\text {cons }}$ is confluent

Theorem (Separation)
t , u: distinct nf
$\Rightarrow \exists \mathrm{E}$ s.t. $\mathrm{E}[\mathrm{t}] \rightarrow^{*}$ true $\& E[u] \rightarrow^{*}$ false

Typed $\Lambda \mu_{\text {cons }}$

Theorem (Subject reduction)

$$
\Gamma|\Delta \vdash \mathrm{t}: \mathrm{A} \& \mathrm{t} \rightarrow \mathrm{u} \Rightarrow \Gamma| \Delta \vdash \mathrm{u}: \mathrm{A}
$$

Typed $\wedge \mu_{\text {cons }}$

Theorem (Subject reduction)

$$
\Gamma|\Delta \vdash \mathrm{t}: \mathrm{A} \& \mathrm{t} \rightarrow \mathrm{u} \Rightarrow \Gamma| \Delta \vdash \mathrm{u}: \mathrm{A}
$$

Theorem (Strong normalization) any typable term is strongly normalizable

Conclusion

Result

- $\wedge \mu_{\text {cons }}$
- a conservative extension of $\Lambda \mu$
- reduction for $\Lambda \mu_{\text {cons }}$
- CR, SR, and SN

Other topics

- Stream models [N\&Katsumata 12]
- $\mathrm{S}=\mathrm{D} \times \mathrm{S}$ \& $\mathrm{D}=\mathrm{S} \rightarrow \mathrm{D}$
- $\wedge \mu_{\text {cons }}$ is sound and complete

Other topics

- Stream models [N\&Katsumatal2]
- $S=D \times S \quad \& \quad D=S \rightarrow D$
- $\Lambda \mu_{\text {cons }}$ is sound and complete
- Friedman's theorem for typed $\Lambda \mu_{\text {cons }}$
- extensional equality is characterized by any "full" stream model

Further direction

- Categorical stream models
- Logical aspect of typed $\Lambda \mu_{\text {cons }}$
- Combinatory calculus corresponding to $\Lambda \mu_{\text {cons }}$
- Application for program with streams

