
Reduction System for
Extensional Λμ-Calculus

Koji Nakazawa (Kyoto U.)	

(joint work with Tomoharu Nagai)	

!

2014.5 SLACS/NSA

Result
• A new reduction system 

for (a variant of) λμ-calculus	

• confluence	

• subject reduction	

• strong normalization

Result
• A new reduction system 

for (a variant of) λμ-calculus	

• confluence	

• subject reduction	

• strong normalization

Λμcons

Brief History

Brief History
• λμ-calculus [Parigot92]	

• proof terms for CND

Brief History
• λμ-calculus [Parigot92]	

• proof terms for CND

• η destroys confluence [David&Py01]	

• λμ does not enjoy separation thm

Brief History
• λμ-calculus [Parigot92]	

• proof terms for CND

• η destroys confluence [David&Py01]	

• λμ does not enjoy separation thm

• Λμ-calculus [Saurin05,10]	

• separation, confluence, and SN

η and confluence

βη for λ
	

 	

 	

 t,u ::= x | λx.t | tu	

!

	

 	

 (λx.t)u →β t[x:=u]	

	

 	

 λx.tx →η t (x∉FV(t))

Theorem (Confluence)	

	

 βη is confluent

βημ for λμ
	

 t,u ::= x | λx.t | tu | μa.t | ta	

!

	

 	

 (λx.t)u →β t[x:=u]	

	

 	

 (μa.t)b →β t[a:=b]	

	

 	

 λx.tx →η t (x∉FV(t))	

	

 	

 μa.ta →η t (a∉FV(t))	

	

 (μa.t)u →μ μb.t[va:=(vu)b]

Example
car = λx.μa.x

Example
car = λx.μa.x

car t1 t2 t3 b

Example
car = λx.μa.x

car t1 t2 t3 b
= (λx.μa.x) t1 t2 t3 b

Example
car = λx.μa.x

car t1 t2 t3 b
= (λx.μa.x) t1 t2 t3 b

	

 	

 	

 →β (μa. t1) t2 t3 b

Example
car = λx.μa.x

car t1 t2 t3 b
= (λx.μa.x) t1 t2 t3 b

	

 	

 	

 →β (μa. t1) t2 t3 b
	

 	

 	

 →*μ t1[va:=v t2 t3 b] (a∉t1)

Example
car = λx.μa.x

car t1 t2 t3 b
= (λx.μa.x) t1 t2 t3 b

	

 	

 	

 →β (μa. t1) t2 t3 b
	

 	

 	

 →*μ t1[va:=v t2 t3 b] (a∉t1)

= t1

Example
E = [] t1 t2 … tn a

Example
E = [] t1 t2 … tn a

E[μb.t]

Example
E = [] t1 t2 … tn a

E[μb.t]
= (μb.t) t1 t2 … tn a

Example
E = [] t1 t2 … tn a

E[μb.t]
= (μb.t) t1 t2 … tn a

	

 	

 	

 →*μ (μc.t[vb:=vt1t2…tnc])a

Example
E = [] t1 t2 … tn a

E[μb.t]
= (μb.t) t1 t2 … tn a

	

 	

 	

 →*μ (μc.t[vb:=vt1t2…tnc])a
	

 	

 	

 →β t [vb:=vt1t2…tna]

Example
E = [] t1 t2 … tn a

E[μb.t]
= (μb.t) t1 t2 … tn a

	

 	

 	

 →*μ (μc.t[vb:=vt1t2…tnc])a
	

 	

 	

 →β t [vb:=vt1t2…tna]

= t[vb := E[v]]

Example
E = [] t1 t2 … tn a

E[μb.t]
= (μb.t) t1 t2 … tn a

	

 	

 	

 →*μ (μc.t[vb:=vt1t2…tnc])a
	

 	

 	

 →β t [vb:=vt1t2…tna]

= t[vb := E[v]]

a stream with  
initial segment t1…tn	

and tail part a

Example
E = [] t1 t2 … tn a

E[μb.t]
= (μb.t) t1 t2 … tn a

	

 	

 	

 →*μ (μc.t[vb:=vt1t2…tnc])a
	

 	

 	

 →β t [vb:=vt1t2…tna]

= t[vb := E[v]]

a stream with  
initial segment t1…tn	

and tail part a

	

 μ ≒ function on	

	

 	

 streams

η versus μ
λx.(μa.y)x

η versus μ
λx.(μa.y)x

μa.y λx.(μb.y)
η μ

η versus μ
λx.(μa.y)x

μa.y λx.(μb.y)
η μ

???

η versus μ
λx.(μa.y)x

μa.y λx.(μb.y)
η μ

???
both are the same	

const. function on streams

A solution [David&Py01]

λx.(μa.y)x

νμa.y λx.(μa.y)
η μ

μa.t →ν λx.μb.t[va:=(vx)b]

A solution [David&Py01]

λx.(μa.y)x

νμa.y λx.(μa.y)
η μ

μa.t →ν λx.μb.t[va:=(vx)b]

a ⟼ t x::b ⟼ t[a := x::b]

Λμ [Saurin05]
	

 t,u ::= x | λx.t | tu | μa.t | ta	

!

	

 (λx.t)u →β t[x:=u]	

	

 (μa.t)b →β t[a:=b]	

	

 λx.tx →η t (x∉FV(t))	

	

 μa.ta →η t (a∉FV(t))	

	

 μa.t →ν λx.μb.t[va:=(vx)b]

Properties of Λμ
Theorem (Confluence [Saurin05&10])	

	

 Λμ is confluent for stream closed terms

Theorem (Separation [Saurin05])	

	

 t, u: distinct canonical nf	

	

 ⇒ ∃ E s.t. E[t] →* true & E[u] →* false

Properties of Λμ
Theorem (Confluence [Saurin05&10])	

	

 Λμ is confluent for stream closed terms

Theorem (Separation [Saurin05])	

	

 t, u: distinct canonical nf	

	

 ⇒ ∃ E s.t. E[t] →* true & E[u] →* false

Properties of Λμ
Theorem (Confluence [Saurin05&10])	

	

 Λμ is confluent for stream closed terms

Theorem (Strong normalization [Saurin10])	

	

 Typable terms are strongly normalizable

ν is type dependent

	

 μa.t →ν λx.μb.t[va:=(vx)b]

• admissible only when 
the type of a is of the form“A×S”

A×S A S

λx.(μa.y)x

μa.y λx.(μb.y)
η μ

We propose

λx.(μa.y)x

μa.y λx.(μb.y)
η μ

λx.t → μa.t[x:=car a](cdr a)

We propose

λx.(μa.y)x

μa.y λx.(μb.y)
η μ

λx.t → μa.t[x:=car a](cdr a)
with some extension of	

explicit stream expressions

We propose

This work
• Λμcons	

• a conservative extension of Λμ	

• Type indep. reduction for Λμcons	

• CR (not only for closed) and SN

Λμcons	

equational logic

Λμcons
 Terms: t,u ::= x | λx.t | tu | μa.t | tS | car S	

Streams: S ::= a | t::S | cdr S

 Axioms:	

	

 (λx.t)u = t[x:=u]	

	

 (μa.t)S = t[a:=S]	

	

 λx.tx = t 	

 (x∉FV(t))	

	

 μa.ta = t 	

 (a∉FV(t))	

	

 t u S = t (u::S)	

	

 car(t::S) = t	

	

 cdr(t::S) = S	

	

 (car S)::(cdr S) = S

Λμcons
 Terms: t,u ::= x | λx.t | tu | μa.t | tS | car S	

Streams: S ::= a | t::S | cdr S

 Axioms:	

	

 (λx.t)u = t[x:=u]	

	

 (μa.t)S = t[a:=S]	

	

 λx.tx = t 	

 (x∉FV(t))	

	

 μa.ta = t 	

 (a∉FV(t))	

	

 t u S = t (u::S)	

	

 car(t::S) = t	

	

 cdr(t::S) = S	

	

 (car S)::(cdr S) = S

t t1…tn a = t(t1:: … ::tn::a)

Λμcons
 Terms: t,u ::= x | λx.t | tu | μa.t | tS | car S	

Streams: S ::= a | t::S | cdr S

 Axioms:	

	

 (λx.t)u = t[x:=u]	

	

 (μa.t)S = t[a:=S]	

	

 λx.tx = t 	

 (x∉FV(t))	

	

 μa.ta = t 	

 (a∉FV(t))	

	

 t u S = t (u::S)	

	

 car(t::S) = t	

	

 cdr(t::S) = S	

	

 (car S)::(cdr S) = S

t t1…tn a = t(t1:: … ::tn::a)

(::) is surjective

Example
nth = Y(λf.μa.λn.	

	

	

 	

 	

 	

 	

 ifzero n then (car a)	

	

	

 	

 	

 	

 	

 	

 	

 	

 	

 else (f (n-1) (cdr a))	

!

!

	

	

 	

 	

 	

 nth S n = car (cdrn S)

Y = fix pt operator in λ

Conservation

Theorem (Conservation)	

	

 For any t,u ∈ Λμ,	

t = u in Λμcons ⇔ t = u in Λμ

Λμcons	

reduction system

Reduction for Λμcons
• “complete” w.r.t. the equality	

• equivalence closure of → is =	

• confluent	

• SR and SN	

• type independent

μ-reduction in Λμcons

(μa.t)u →μ μb.t[va:=(vu)b]

μ-reduction in Λμcons

(μa.t)u →μ μb.t[va:=(vu)b](μa.t)u →μ μb.t[a:=u::b]

μ-reduction in Λμcons

(μa.t)u →μ μb.t[va:=(vu)b]

(μa. … va …)u

(μa.t)u →μ μb.t[a:=u::b]

μ-reduction in Λμcons

(μa.t)u →μ μb.t[va:=(vu)b]

(μa. … va …)u
	

	

 →μ μb. … v(u::b) …

(μa.t)u →μ μb.t[a:=u::b]

μ-reduction in Λμcons

(μa.t)u →μ μb.t[va:=(vu)b]

(μa. … va …)u
	

	

 →μ μb. … v(u::b) …
	

	

 = μb. … (vu)b …

(μa.t)u →μ μb.t[a:=u::b]

New rule

λx.(μa.y)x

μa.y λx.(μb.y)
η μ

λx.t → μa.t[x:=car a](cdr a)

New rule
λx.t → μa.t[x:=car a](cdr a)

New rule
λx.t → μa.t[x:=car a](cdr a)

(λx.t)u

New rule
λx.t → μa.t[x:=car a](cdr a)

(λx.t)u
	

	

 → (μa.t[x:=car a](cdr a))u

New rule
λx.t → μa.t[x:=car a](cdr a)

(λx.t)u
	

	

 → (μa.t[x:=car a](cdr a))u
	

	

 →μ μb.t[x:=car (u::b)](cdr (u::b))

New rule
λx.t → μa.t[x:=car a](cdr a)

(λx.t)u
	

	

 → (μa.t[x:=car a](cdr a))u
	

	

 →μ μb.t[x:=car (u::b)](cdr (u::b))
	

	

 →* μb.t[x:=u]b

New rule
λx.t → μa.t[x:=car a](cdr a)

(λx.t)u
	

	

 → (μa.t[x:=car a](cdr a))u
	

	

 →μ μb.t[x:=car (u::b)](cdr (u::b))
	

	

 →* μb.t[x:=u]b
	

	

 →η t[x:=u]

New rule
λx.t → μa.t[x:=car a](cdr a)

New rule
λx.t → μa.t[x:=car a](cdr a)

λx.tx

New rule
λx.t → μa.t[x:=car a](cdr a)

λx.tx
	

	

 → μa.(tx)[x:=car a](cdr a)

New rule
λx.t → μa.t[x:=car a](cdr a)

λx.tx
	

	

 → μa.(tx)[x:=car a](cdr a)
	

	

 ≡ μa.t(car a)(cdr a)

New rule
λx.t → μa.t[x:=car a](cdr a)

λx.tx
	

	

 → μa.(tx)[x:=car a](cdr a)
	

	

 ≡ μa.t(car a)(cdr a)
	

	

 = μa.t(car a :: cdr a)

New rule
λx.t → μa.t[x:=car a](cdr a)

λx.tx
	

	

 → μa.(tx)[x:=car a](cdr a)
	

	

 ≡ μa.t(car a)(cdr a)
	

	

 = μa.t(car a :: cdr a)
	

	

 → μa.ta

New rule
λx.t → μa.t[x:=car a](cdr a)

λx.tx
	

	

 → μa.(tx)[x:=car a](cdr a)
	

	

 ≡ μa.t(car a)(cdr a)
	

	

 = μa.t(car a :: cdr a)
	

	

 → μa.ta
	

	

 →η t

Reduction for Λμcons

3 Reduction system

3.1 Reduction for untyped Λµcons

Definition 4. The one-step reduction → on terms and streams of Λµcons is the
least compatible relation satisfying the following axioms.

(µα.t)u → t[α := u :: α] (βT)

(µα.t)S → t[α := S] (βS)

λx.t → µα.t[x := carα](cdrα) (exp)

t(u :: S) → tuS (assoc)

car(u :: S) → u (car)

cdr(u :: S) → S (cdr)

µα.tα → t (α ̸∈ FV (t)) (ηS)

(carS) :: (cdrS) → S (η::)

t(carS)(cdrS) → tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →β and →η are defined as the least compatible relations
satisfying the following axioms, respectively.

→β : (βT), (βS), (exp), (assoc), (car), and (cdr)
→η: (ηS), (η::), (η′::), (car), and (cdr)

We also use →∗
β , →+

η , and so on.

Note that the →β-normal forms are characterized by

t ::= a | µα.t a ::= x | cadrnα | at | a(cdrnα).

It is known that näıvely adding the η-rule λx.tx → t to the λµ-calculus
destroys confluence [5]. The counterexample is t = λx.(µα.yβ)x, and then

t →η µα.yβ, t →β λx.µα.yβ.

In order to recover confluence, the rule called (fst) in [20] has been proposed as

µα.t → λx.µα.t[[]α := []xα] (fst).

It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization. Alternatively, we adopt (exp) with a help
of the explicit syntax for streams in Λµcons. The above critical pair is solved as

λx.µα.yβ →exp µγ.(µα.yβ)(cdrγ) →βS µγ.yβ(= µα.yβ).

5

Confluence

Reduction for Λμcons

3 Reduction system

3.1 Reduction for untyped Λµcons

Definition 4. The one-step reduction → on terms and streams of Λµcons is the
least compatible relation satisfying the following axioms.

(µα.t)u → t[α := u :: α] (βT)

(µα.t)S → t[α := S] (βS)

λx.t → µα.t[x := carα](cdrα) (exp)

t(u :: S) → tuS (assoc)

car(u :: S) → u (car)

cdr(u :: S) → S (cdr)

µα.tα → t (α ̸∈ FV (t)) (ηS)

(carS) :: (cdrS) → S (η::)

t(carS)(cdrS) → tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →β and →η are defined as the least compatible relations
satisfying the following axioms, respectively.

→β : (βT), (βS), (exp), (assoc), (car), and (cdr)
→η: (ηS), (η::), (η′::), (car), and (cdr)

We also use →∗
β , →+

η , and so on.

Note that the →β-normal forms are characterized by

t ::= a | µα.t a ::= x | cadrnα | at | a(cdrnα).

It is known that näıvely adding the η-rule λx.tx → t to the λµ-calculus
destroys confluence [5]. The counterexample is t = λx.(µα.yβ)x, and then

t →η µα.yβ, t →β λx.µα.yβ.

In order to recover confluence, the rule called (fst) in [20] has been proposed as

µα.t → λx.µα.t[[]α := []xα] (fst).

It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization. Alternatively, we adopt (exp) with a help
of the explicit syntax for streams in Λµcons. The above critical pair is solved as

λx.µα.yβ →exp µγ.(µα.yβ)(cdrγ) →βS µγ.yβ(= µα.yβ).

5

B

E

Confluence

• Confluence of B	

• Confluence of E	

• B and E commute

3 Reduction system

3.1 Reduction for untyped Λµcons

Definition 4. The one-step reduction → on terms and streams of Λµcons is the
least compatible relation satisfying the following axioms.

(µα.t)u → t[α := u :: α] (βT)

(µα.t)S → t[α := S] (βS)

λx.t → µα.t[x := carα](cdrα) (exp)

t(u :: S) → tuS (assoc)

car(u :: S) → u (car)

cdr(u :: S) → S (cdr)

µα.tα → t (α ̸∈ FV (t)) (ηS)

(carS) :: (cdrS) → S (η::)

t(carS)(cdrS) → tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →β and →η are defined as the least compatible relations
satisfying the following axioms, respectively.

→β : (βT), (βS), (exp), (assoc), (car), and (cdr)
→η: (ηS), (η::), (η′::), (car), and (cdr)

We also use →∗
β , →+

η , and so on.

Note that the →β-normal forms are characterized by

t ::= a | µα.t a ::= x | cadrnα | at | a(cdrnα).

It is known that näıvely adding the η-rule λx.tx → t to the λµ-calculus
destroys confluence [5]. The counterexample is t = λx.(µα.yβ)x, and then

t →η µα.yβ, t →β λx.µα.yβ.

In order to recover confluence, the rule called (fst) in [20] has been proposed as

µα.t → λx.µα.t[[]α := []xα] (fst).

It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization. Alternatively, we adopt (exp) with a help
of the explicit syntax for streams in Λµcons. The above critical pair is solved as

λx.µα.yβ →exp µγ.(µα.yβ)(cdrγ) →βS µγ.yβ(= µα.yβ).

5

B

E

Confluence

• Confluence of B	

• Confluence of E	

• B and E commute

3 Reduction system

3.1 Reduction for untyped Λµcons

Definition 4. The one-step reduction → on terms and streams of Λµcons is the
least compatible relation satisfying the following axioms.

(µα.t)u → t[α := u :: α] (βT)

(µα.t)S → t[α := S] (βS)

λx.t → µα.t[x := carα](cdrα) (exp)

t(u :: S) → tuS (assoc)

car(u :: S) → u (car)

cdr(u :: S) → S (cdr)

µα.tα → t (α ̸∈ FV (t)) (ηS)

(carS) :: (cdrS) → S (η::)

t(carS)(cdrS) → tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →β and →η are defined as the least compatible relations
satisfying the following axioms, respectively.

→β : (βT), (βS), (exp), (assoc), (car), and (cdr)
→η: (ηS), (η::), (η′::), (car), and (cdr)

We also use →∗
β , →+

η , and so on.

Note that the →β-normal forms are characterized by

t ::= a | µα.t a ::= x | cadrnα | at | a(cdrnα).

It is known that näıvely adding the η-rule λx.tx → t to the λµ-calculus
destroys confluence [5]. The counterexample is t = λx.(µα.yβ)x, and then

t →η µα.yβ, t →β λx.µα.yβ.

In order to recover confluence, the rule called (fst) in [20] has been proposed as

µα.t → λx.µα.t[[]α := []xα] (fst).

It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization. Alternatively, we adopt (exp) with a help
of the explicit syntax for streams in Λµcons. The above critical pair is solved as

λx.µα.yβ →exp µγ.(µα.yβ)(cdrγ) →βS µγ.yβ(= µα.yβ).

5

B

E
easy	

by Newman’s lemma

Confluence

• Confluence of B	

• Confluence of E	

• B and E commute

3 Reduction system

3.1 Reduction for untyped Λµcons

Definition 4. The one-step reduction → on terms and streams of Λµcons is the
least compatible relation satisfying the following axioms.

(µα.t)u → t[α := u :: α] (βT)

(µα.t)S → t[α := S] (βS)

λx.t → µα.t[x := carα](cdrα) (exp)

t(u :: S) → tuS (assoc)

car(u :: S) → u (car)

cdr(u :: S) → S (cdr)

µα.tα → t (α ̸∈ FV (t)) (ηS)

(carS) :: (cdrS) → S (η::)

t(carS)(cdrS) → tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →β and →η are defined as the least compatible relations
satisfying the following axioms, respectively.

→β : (βT), (βS), (exp), (assoc), (car), and (cdr)
→η: (ηS), (η::), (η′::), (car), and (cdr)

We also use →∗
β , →+

η , and so on.

Note that the →β-normal forms are characterized by

t ::= a | µα.t a ::= x | cadrnα | at | a(cdrnα).

It is known that näıvely adding the η-rule λx.tx → t to the λµ-calculus
destroys confluence [5]. The counterexample is t = λx.(µα.yβ)x, and then

t →η µα.yβ, t →β λx.µα.yβ.

In order to recover confluence, the rule called (fst) in [20] has been proposed as

µα.t → λx.µα.t[[]α := []xα] (fst).

It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization. Alternatively, we adopt (exp) with a help
of the explicit syntax for streams in Λµcons. The above critical pair is solved as

λx.µα.yβ →exp µγ.(µα.yβ)(cdrγ) →βS µγ.yβ(= µα.yβ).

5

B

E
easy	

by Newman’s lemma

a little complicated	

due to non-linear rules

Confluence

• Confluence of B	

• Confluence of E	

• B and E commute

3 Reduction system

3.1 Reduction for untyped Λµcons

Definition 4. The one-step reduction → on terms and streams of Λµcons is the
least compatible relation satisfying the following axioms.

(µα.t)u → t[α := u :: α] (βT)

(µα.t)S → t[α := S] (βS)

λx.t → µα.t[x := carα](cdrα) (exp)

t(u :: S) → tuS (assoc)

car(u :: S) → u (car)

cdr(u :: S) → S (cdr)

µα.tα → t (α ̸∈ FV (t)) (ηS)

(carS) :: (cdrS) → S (η::)

t(carS)(cdrS) → tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →β and →η are defined as the least compatible relations
satisfying the following axioms, respectively.

→β : (βT), (βS), (exp), (assoc), (car), and (cdr)
→η: (ηS), (η::), (η′::), (car), and (cdr)

We also use →∗
β , →+

η , and so on.

Note that the →β-normal forms are characterized by

t ::= a | µα.t a ::= x | cadrnα | at | a(cdrnα).

It is known that näıvely adding the η-rule λx.tx → t to the λµ-calculus
destroys confluence [5]. The counterexample is t = λx.(µα.yβ)x, and then

t →η µα.yβ, t →β λx.µα.yβ.

In order to recover confluence, the rule called (fst) in [20] has been proposed as

µα.t → λx.µα.t[[]α := []xα] (fst).

It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization. Alternatively, we adopt (exp) with a help
of the explicit syntax for streams in Λµcons. The above critical pair is solved as

λx.µα.yβ →exp µγ.(µα.yβ)(cdrγ) →βS µγ.yβ(= µα.yβ).

5

B

E
easy	

by Newman’s lemma

a little complicated	

due to non-linear rules

by “generalized complete development”

Confluence of B
• By “generalized complete development”

Theorem [Dehornoy+08, Komori+13]	

	

 (A,→): abstract rewriting system	

	

 if there exists (・)+ : A→A s.t.	

a → b ⇒ b →* a+ →* b+	

	

 then (A,→) is confluent

Confluence of B

The reduction system will be adapted to the typed Λµcons without any restriction
of types, and subject reduction and strong normalization will be proved.

We can easily see that the usual β- and η-rules in the λ-calculus ((λx.t)u →∗

t[x := u] and λx.tx →∗ t for x ̸∈ FV (t)) are derivable, and hence the βη-
reduction of the λ-calculus and the reduction of Parigot’s λµ-calculus including
the renaming and the η-rules for µ-abstractions can be simulated in Λµcons.
Furthermore, the following holds.

Proposition 3. The equivalence closure of → coincides to =Λµcons .

3.2 Confluence

We prove confluence of → by (1) confluence of →β , (2) confluence of →η, and
(3) commutativity of them. In contrast to the Λµ-calculus [20], the result is
not restricted to stream closed terms, and hence we also have Church-Rosser
theorem as a corollary of confluence.

Proposition 4. →β and →η are respectively confluent.

Proof. (β) By a generalized notion of complete development, which is indepen-
dently introduced in [7, 11]. We define the complete development (·)† for the
reduction →β as follows.

x† = x α† = α

(λx.t)† = µα.t†[x := carα](cdrα) (cdr(t :: S))† = S†

(µα.t)† = µα.t† (cdrS)† = cdrS† (otherwise)

((µα.t)u)† = µα.t†[α := u† :: α] (t :: S)† = t† :: S†

(tu)† = t†u† (otherwise)

((µα.t)S)† = t†[α := S†]

((µα.t)uS)† = t†[α := u† :: S†]

(t(u :: S))† = t†u†S† (t ̸= µ-abst.)

(tS)† = t†S† (otherwise)

(car(t :: S))† = t†

(carS)† = carS† (otherwise)

Then, we can prove that t →β u implies u →∗
β t† →∗

β u†, from which the
confluence follows. The only non-trivial point is that we exceptionally define
((µα.t)uS)† = t†[α := u† :: S†] (not (µα.t†[α := u† :: α])S†), since we have
to show that ((µα.t)(u :: S))† →∗ ((µα.t)uS)†, the left-hand side of which is
t†[α := (u :: S)†] = t†[α := u† :: S†].

(η) Since →η is clearly strongly normalizing, it is sufficient to prove local
confluence. It is straightforward.

6

Confluence of Λμcons

Theorem (Confluence)	

	

 Λμcons is confluent

Confluence of Λμcons

Theorem (Confluence)	

	

 Λμcons is confluent

not restricted to	

stream closed terms

Confluence of Λμcons

Theorem (Confluence)	

	

 Λμcons is confluent

Theorem (Separation)	

	

 t, u: distinct nf	

	

 ⇒ ∃ E s.t. E[t] →* true & E[u] →* false

not restricted to	

stream closed terms

Typed Λμcons

Theorem (Subject reduction)	

	

 Γ | Δ├ t : A & t → u ⇒ Γ | Δ├ u : A

Typed Λμcons

Theorem (Subject reduction)	

	

 Γ | Δ├ t : A & t → u ⇒ Γ | Δ├ u : A

Theorem (Strong normalization)	

	

 any typable term is strongly normalizable

Conclusion

Result
• Λμcons	

• a conservative extension of Λμ	

• reduction for Λμcons	

• CR, SR, and SN

Other topics
• Stream models [N&Katsumata12]	

• S = D × S & D = S → D	

• Λμcons is sound and complete

Other topics
• Stream models [N&Katsumata12]	

• S = D × S & D = S → D	

• Λμcons is sound and complete

• Friedman’s theorem for typed Λμcons	

• extensional equality is characterized 
by any “full” stream model

Further direction
• Categorical stream models	

• Logical aspect of typed Λμcons	

• Combinatory calculus
corresponding to Λμcons	

• Application for program with
streams

