Set-theoretical Intuitionistic Proof-irrelevance
Model of CIC™

Masahiro Sato

May 26, 2014



Definition of CIC™

Interpretation

Extended Interpretation

Future Works



CIC

» CIC is type system of ‘Coq’
» Coq is one of the theorem prover
» CIC is a extention of CC(APw)

» CC is the strongest type system in A-Cube
» CIC = CC 4 Type; + (Co)Inductive-Type
» CIC™ = CC + Type;




A semantics of type system

‘ H t:T f:A—=B ‘ f:Vx: AB ‘
t is a element [ is a function fis a function which maps a
Set theory of Set(Class?) T' from A to B into some element of B(a)

Programming

t is a variable
whose type is T'

f is a function(method)
which returns type B
with A type argument

f is a dependent
type function(method)

Proof theory

t is a proof
of a proposition T'

f is a proof of
a proposition A = B

fis a proof of
a Proposition Vz € A, B(x)




Examples of Model of Type Theory
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Definition of Term and Context

Definition (Term)

» Type; isaterm (i =0,1,2,3,4,...).
» Prop is a term.

» xrisatermforxz V.

» If t1 and ¢ is a terms, then t1t9 is a term.
» Iftand T is a term, and = € V then, Az : T.t is a term.
» If 77 and T is a term, and z € V then Vx : T1.T5 is a term.

» If 2 dosn't freely appear in B, Va : A.B is denoted as A — B.

Definition (Context)

» [] is Context.

» If ' is Context, T"is a term and z € V, then I'; (z : T') is
Context.



Typing-Rulel

I' = Prop : Type; '+ Type; : Type; 41
'+ A: Prop ' A: Type;
I'F A: Type; 'k A:Type; 14

'~ A:Type;, I'j(z:A)FB:Type; T'FA:Prop I'(xz:A)kF B:Type;

I'EVa: A.B: Type I'Vz: A.B.Type;

max(%,5)

I'-A:Type; T(x:A)FQ:Prop I'kP:Prop T;(z:A)tFQ :Prop
I'FVz: A.Q : Prop I'Vz: P.Q : Prop




Typing-Rule2

Ti(z:A)Ft: B T'HVa: AB: Type

Ii(z:A)Ft: B T'FVz:AB:Prop

I'tXx:At:Vr:AB

'tu:Vr:AB Throv:A
'k (wv) : Blz\v]

(x:A)eTl’ Tk A:Type;
F'Fz:A

F'Fz:A A=4B
I'x:B

I'tXx:At:Vz:AB

(x:A)el’ Tk A:Prop
'Fz:A




Merit of “Prop”

> “Prop” enables to represent of higher order logic

» The type of "Predicate on Type 'A"" is A — Prop
» VP : A — Prop,Q(P) : Prop

> “Prop” represent other logical symbol as following:
» | :=VP:Prop.P

“A=A— 1

Jz: A.B:=VP:Prop.(Vx : A, (B(z) - P)) - P

AANB:=VYP:Prop(A—B—P)—>P

AV B:=VYP:Prop.(A— P)— (B—P) =P

A<+ B:=A—-BAB— A

=4y :=VP:Prop, Px < Py

vV VY VY VY VY



Definition (Propositional Term and Proof Term)

The term P is called Propositional term in I' iff I' = P : Prop is
derivable. And more, The term ¢ is called Proof term in IT" iff
'+t : P is derivable for some P which is Propositional term in T'.

Definition (Provable Propositional term)

Let P be Propositional term in I'. P is called Provable
Propositional term if there exists therm ¢ such that ' ¢ : P is
derivable.



Interpretation



Idea of Model

» Soundness of CIC™ is showed by B.Werner.

» He shows following theorem in his paper “Sets in Types,
Types in Sets”

Theorem (Soundness)

» IfT =t :T is derivable, then [T & t](y) € [T+ T](~) for all
v e [r]

» IfT'Ft;: T and t1 —g ta, then [I'F t1](y) = [I'F t2](v) for
all v € [I']

Where [I' = T is a function whose domain is [I']



Preparation(Dependent Function)

Definition (Dependent Function)
Let A be a set, and B(a) is a set with parameter a € A.

&X)B(a) = {peAx|]Bla)|Va,b,(a,b) €p=>be Bla)}
a€A acA

[[B@) = {fcQBla)|VacAMe Ba),(ab) € f}
acA a€eA

Dependent Function is a function with range B(a) with a
parameter a € A, i.e.

fe]] Bla)=Vac A, f(a) € Bla)
a€A



Preparation(Universe)

Definition (Universe)

Let (7)) be i-th Grothendieck Universe, i.e.
» U(i) is Grothendieck Universe for each i
» U(i) € U(i+ 1) for each i

Lemma
A € U(i) and B(a) € U(i) for each a € A imply
[laea Bla) € U(i).



Interpretation(Context)

Definition (Interpretation of Judgement)

> [01:=0
> [0 (- Al = A{(y,0)|e € [T+ A](7)}



Interpretation(Judgement)

Definition (Interpretation of Judgement)

TEt)(y):=0 (If tis Proof term in T")
FFTypeﬂ( ) = U(i)

> [
> [
> [I'F Prop](v) := {0,1} = {¢, {¢}}
> [0F Aa s ATI() = {( [T (2 : A) F TI(3,0))la € [0 F ()
> [DFtito](7) = [CF 6] () ([T F 2] ()
> [T a]() =
> [[FVa: A.B](7)
> i= I3 (@ A) F B(y,0)FA10)

(when A, B are both Propositional term)
» = min{ [ (2 : A) F Bl(a,7) | a € [T+ A](7) }

(when B is Propositional term)

= HHQEFFA]](W) [T (2 A) F B](y, )
(Otherwise)



Extended Interpretation



idea

» Above model is 'Classical Model’
» In this model, PEM is true
» [ +VP:Prop,PV P](y)=1
» Can we create the model which is PEM is NOT true?

» Expand the interpretation of Prop from {0,1} into general
topological space.



Notation of topological space

Let (X, O(X)) be a topological space.

» I:=X
» O:=¢
» | |S:=US

» 1S :={t|Vse S, tcst=(NS)°
» b= {t|tMNa<b}



Point condition

Let p be a point of X such that following condition holds.
ﬂ/\/(p) is open set. (1)
where N (p) is open neighborhood, i.e.
N(p) :={0 € O(X)|p € O}

We will consider the model with parameter p(€ X) satisfying
above condition.



Interpretation(Context)

Definition (Strict Interpretation of Judgement)

[T E A)(v)n{p} (A is Propositional Term)

[T F A](v) (otherwise)

=)

[TF A (y) = {

Definition (Interpretation of Context)

> [01:=0
> [0z A=Ay, 0)la € [T'F A)(7)}



Interpretation(Judgement)

Definition (Interpretation of Judgement)

> [CHt)(y):=p (If tis Proof term in T")

> [CF Type ﬂ( ) :=U(i)

> [T+ Prop](y) := O(X)

> [P E Xz AT](y) == {(o [[3 (2 : A) F T](v,0))|a € [T F A](7)}
> [[F tita](v) := [T F 2] (3) ([T + 22l (7))

> [CFzi](y) =

> [

'+ Vz: A.B](7)
> = I3 (@2 A) = B](y, )41
(when A, B are both Propositional term)
» = min{[[; (z: A) F B](a,7)|a € [T F AJ(7)}
(when B is Propositional term)
= Hae[[FFA]]’('y) [T; (2 A) F B](v, )
(Otherwise)



Soundness

Theorem
Following conditions hold:
> [TF1]=¢

> [ AABI(y) = (I'F AJ(v) 1 ([T F Bl(v))
>[I AV B](y) = (' A](v) U ([T F Bl(v))
> [F32:AQI = || [Gi:A)FQl(,«e

a€[I'=A](v)

Theorem (Soundness)

» IfT'F ¢ : T is derivable, then [T+ t](v) € [T+ T](~) for all
v € [I1]
» IfT'++¢1:T and t; —B to, then [[F F tl]](’y) = [[F = tQ]](’y) for
all v € [I']
» If P is provable propositional term in T, then p € [T+ P](v).



Example

> Let (X7 O(X)) - (17 {07 1})727 = 0.
» This is jsut Classicaly Model.
» Let (X,0(X)) =(2,{0,1,2}),p=1
» If Pis true, then 1 € [ P] since [+ P] =2
» 1¢[FVP:Prop, PV —P] since [- VP : Prop,pV -P] =1



The reason of point condition

The reason of the condition “(N(p) is open set” s ...
» This condition is needed in proof of soundness

> Let P be Propositional term

» If P is true, then p € [I" - P](v) should hold.

» The condition that p € [['; (x : A) F P](y, «) iff

p € [T FVa: A.P](«) is needed.

But...

L+ Ve : A.Pl(y) = (I (& A) - Pl(r.a)la e [+
AN}

p €[5 (x: A) F P](y,«) dose NOT imply
p€[lFVa: AP](v)

vy

v



Paradox

J.Reynolds showed following theorem in his paper “Polymorphism
is not set-theoretical”

Theorem

If P is Propositional term, 2 < 4{ [I' - t](y) | 't : P} causes
paradox.

But | create the model which is any proof term is interpreted to
JUST ONE element. Hence, this model is interpreted as if [I' - P]
has only one element.



Future Works



Future Work

» Remove the point condition.
> Is the point condition really needed in proof of soundness?
> Is there any counterexample?
» Prove the completeness of this model.
» For any topological space (X, O(X)), p(€ X) with point
condition, if P is propositional term, p € [I" - P](v) implies P
is provable propositional term?

» If ' p;: Pand ' - p2 : P where P is Propositional term,

then [T'F p1](v) = [T F p2](7)
» I'F Py < Py implies [I'F Pi](y) = [T F P](y).

» Find “how much this model is complete?”
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