Set-theoretical Intuitionistic Proof-irrelevance Model of CIC^{-}

Masahiro Sato

May 26, 2014

Definition of CIC^{-}

Interpretation

Extended Interpretation

Future Works

- CIC is type system of 'Coq'
- Coq is one of the theorem prover
- CIC is a extention of $\mathrm{CC}(\lambda \mathrm{P} \omega)$
- CC is the strongest type system in λ-Cube
- $\mathrm{CIC}=\mathrm{CC}+$ Type $_{i}+$ (Co)Inductive-Type
- $\mathrm{CIC}^{-}=\mathrm{CC}+\mathrm{Type}_{i}$

A semantics of type system

	$t: T$	$f: A \rightarrow B$	$f: \forall x: A \cdot B$
Set theory	t is a element of Set(Class?) T	f is a function from A to B	f is a function which maps a into some element of $B(a)$
Programming	t is a variable whose type is T	f is a function(method) which returns type B with A type argument	f is a dependent type function(method)
Proof theory	t is a proof of a proposition T	f is a proof of a proposition $A \Rightarrow B$	f is a proof of a Proposition $\forall x \in A, B(x)$

Examples of Model of Type Theory

- Set Theory
- Partial Equivalence Relation
- Topological Space
- Coherence Space
- Presheaf

Definition of Term and Context

Definition (Term)

- Type $_{i}$ is a term $(i=0,1,2,3,4, \ldots)$.
- Prop is a term.
- x is a term for $x \in V$.
- If t_{1} and t_{2} is a terms, then $t_{1} t_{2}$ is a term.
- If t and T is a term, and $x \in V$ then, $\lambda x: T . t$ is a term.
- If T_{1} and T_{2} is a term, and $x \in V$ then $\forall x: T_{1} \cdot T_{2}$ is a term.
- If x dosn't freely appear in $B, \forall x: A . B$ is denoted as $A \rightarrow B$.

Definition (Context)

- [] is Context.
- If Γ is Context, T is a term and $x \in V$, then $\Gamma ;(x: T)$ is Context.

Typing-Rule1

$$
\begin{aligned}
& \Gamma \vdash \text { Prop : Type }{ }_{i} \\
& \frac{\Gamma \vdash A: \text { Prop }}{\Gamma \vdash A: \text { Type }_{i}} \\
& \frac{\Gamma \vdash A: \text { Type }_{i}}{\Gamma \vdash A: \operatorname{Type}_{i+1}} \\
& \frac{\Gamma \vdash A: \operatorname{Type}_{i} \quad \Gamma ;(x: A) \vdash B: \operatorname{Type}_{j}}{\Gamma \vdash \forall x: A . B: \operatorname{Type}_{\max (i, j)}} \quad \frac{\Gamma \vdash A: \operatorname{Prop} \quad \Gamma ;(x: A) \vdash B: \text { Type }_{j}}{\Gamma \vdash \forall x: A . B . \mathrm{Type}_{j}} \\
& \frac{\Gamma \vdash A: \operatorname{Type}_{i} \quad \Gamma ;(x: A) \vdash Q: \text { Prop }}{\Gamma \vdash \forall x: A . Q: \text { Prop }} \quad \frac{\Gamma \vdash P: \operatorname{Prop} \quad \Gamma ;(x: A) \vdash Q: \text { Prop }}{\Gamma \vdash \forall x: P . Q: \text { Prop }}
\end{aligned}
$$

Typing-Rule2

$$
\begin{array}{cc}
\begin{array}{cc}
\Gamma ;(x: A) \vdash t: B \quad \Gamma \vdash \forall x: A . B: \text { Type }_{i} \\
\Gamma \vdash \lambda x: A . t: \forall x: A . B & \\
\frac{\Gamma \vdash(x: A) \vdash t: B \quad \Gamma \vdash \forall x: A . B: \text { Prop }}{\Gamma \vdash \lambda x: A . t: \forall x: A . B} \\
\frac{\Gamma \vdash(u v): B[x \backslash v]}{} & \\
\frac{(x: A) \in \Gamma \quad \Gamma \vdash A: \mathrm{Type}_{i}}{\Gamma \vdash x: A} & \frac{(x: A) \in \Gamma \quad \Gamma \vdash A: \text { Prop }}{\Gamma \vdash x: A} \\
\frac{\Gamma \vdash x: A \quad A={ }_{\beta} B}{\Gamma \vdash x: B} &
\end{array}
\end{array}
$$

Merit of "Prop"

- "Prop" enables to represent of higher order logic
- The type of "Predicate on Type 'A"' is $A \rightarrow$ Prop
- $\forall P: A \rightarrow$ Prop, $Q(P)$: Prop
- "Prop" represent other logical symbol as following:
- $\perp:=\forall P$: Prop. P
- $\neg A:=A \rightarrow \perp$
- $\exists x: A . B:=\forall P:$ Prop. $(\forall x: A,(B(x) \rightarrow P)) \rightarrow P$
- $A \wedge B:=\forall P$: Prop. $(A \rightarrow B \rightarrow P) \rightarrow P$
- $A \vee B:=\forall P$: Prop. $(A \rightarrow P) \rightarrow(B \rightarrow P) \rightarrow P$
- $A \leftrightarrow B:=A \rightarrow B \wedge B \rightarrow A$
- $x=_{A} y:=\forall P:$ Prop, $P x \leftrightarrow P y$

Definition (Propositional Term and Proof Term)

The term P is called Propositional term in Γ iff $\Gamma \vdash P$: Prop is derivable. And more, The term t is called Proof term in Γ iff $\Gamma \vdash t: P$ is derivable for some P which is Propositional term in Γ.

Definition (Provable Propositional term)
Let P be Propositional term in $\Gamma . P$ is called Provable Propositional term if there exists therm t such that $\Gamma \vdash t: P$ is derivable.

Definition of CIC^{-}

Interpretation

Extended Interpretation

Future Works

Idea of Model

- Soundness of CIC^{-}is showed by B.Werner.
- He shows following theorem in his paper "Sets in Types, Types in Sets"

Theorem (Soundness)

- If $\Gamma \vdash t: T$ is derivable, then $\llbracket \Gamma \vdash t \rrbracket(\gamma) \in \llbracket \Gamma \vdash T \rrbracket(\gamma)$ for all $\gamma \in \llbracket \Gamma \rrbracket$
- If $\Gamma \vdash t_{1}: T$ and $t_{1} \rightarrow_{\beta} t_{2}$, then $\llbracket \Gamma \vdash t_{1} \rrbracket(\gamma)=\llbracket \Gamma \vdash t_{2} \rrbracket(\gamma)$ for all $\gamma \in \llbracket \Gamma \rrbracket$
Where $\llbracket \Gamma \vdash T \rrbracket$ is a function whose domain is $\llbracket \Gamma \rrbracket$

Preparation(Dependent Function)

Definition (Dependent Function)
Let A be a set, and $B(a)$ is a set with parameter $a \in A$.
$\bigotimes_{a \in A} B(a):=\left\{p \in A \times \bigcup_{a \in A} B(a) \mid \forall a, b,(a, b) \in p \Rightarrow b \in B(a)\right\}$
$\prod_{a \in A} B(a):=\left\{f \subset \bigotimes_{a \in A} B(a) \mid \forall a \in A, \exists!b \in B(a),(a, b) \in f\right\}$
Dependent Function is a function with range $B(a)$ with a parameter $a \in A$, i.e.

$$
f \in \prod_{a \in A} B(a) \Rightarrow \forall a \in A, f(a) \in B(a)
$$

Preparation(Universe)

Definition (Universe)
Let $\mathcal{U}(i)$ be i-th Grothendieck Universe, i.e.

- $\mathcal{U}(i)$ is Grothendieck Universe for each i
- $\mathcal{U}(i) \in \mathcal{U}(i+1)$ for each i

Lemma
$A \in \mathcal{U}(i)$ and $B(a) \in \mathcal{U}(i)$ for each $a \in A$ imply
$\prod_{a \in A} B(a) \in \mathcal{U}(i)$.

Interpretation(Context)

Definition (Interpretation of Judgement)

- []] $:=()$
- $\llbracket \Gamma ;(x: A) \rrbracket:=\{(\gamma, \alpha) \mid \alpha \in \llbracket \Gamma \vdash A \rrbracket(\gamma)\}$

Interpretation(Judgement)

Definition (Interpretation of Judgement)

- $\llbracket \Gamma \vdash t \rrbracket(\gamma):=0 \quad$ (If t is Proof term in Γ)
- $\llbracket \Gamma \vdash \operatorname{Type}_{i} \rrbracket(\gamma):=\mathcal{U}(i)$
- $\llbracket \Gamma \vdash \operatorname{Prop} \rrbracket(\gamma):=\{0,1\}=\{\phi,\{\phi\}\}$
- $\llbracket \Gamma \vdash \lambda x: A . T \rrbracket(\gamma):=\{(\alpha, \llbracket \Gamma ;(x: A) \vdash T \rrbracket(\gamma, \alpha)) \mid \alpha \in \llbracket \Gamma \vdash A \rrbracket(\gamma)\}$
- $\llbracket \Gamma \vdash t_{1} t_{2} \rrbracket(\gamma):=\llbracket \Gamma \vdash t_{1} \rrbracket(\gamma)\left(\llbracket \Gamma \vdash t_{2} \rrbracket(\gamma)\right)$
- $\llbracket \Gamma \vdash x_{i} \rrbracket(\gamma):=\gamma_{i}$
- $\llbracket \Gamma \vdash \forall x: A . B \rrbracket(\gamma)$
- := $\llbracket \Gamma ;(x: A) \vdash B \rrbracket(\gamma, 0) \llbracket \Gamma \vdash A \rrbracket(\gamma)$
(when A, B are both Propositional term)
- $:=\min \{\llbracket \Gamma ;(x: A) \vdash B \rrbracket(\alpha, \gamma) \mid \alpha \in \llbracket \Gamma \vdash A \rrbracket(\gamma)\}$
(when B is Propositional term)
- $:=\prod_{\llbracket \alpha \in \Gamma \vdash A \rrbracket(\gamma)} \llbracket \Gamma ;(x: A) \vdash B \rrbracket(\gamma, \alpha)$
(Otherwise)

> Definition of CIC^{-}

> Interpretation

Extended Interpretation

Future Works

- Above model is 'Classical Model'
- In this model, PEM is true
- $\llbracket \Gamma \vdash \forall P: \operatorname{Prop}, P \vee P \rrbracket(\gamma)=1$
- Can we create the model which is PEM is NOT true?
- Expand the interpretation of Prop from $\{0,1\}$ into general topological space.

Notation of topological space

Let $(X, \mathcal{O}(X))$ be a topological space.

- $\mathbb{I}:=X$
- $\mathbb{O}:=\phi$
- $\bigsqcup S:=\bigcup S$
- $\Pi S:=\bigsqcup\{t \mid \forall s \in S, t \subset s\}=(\bigcap S)^{\circ}$
- $b^{a}:=\bigsqcup\{t \mid t \sqcap a \leq b\}$

Point condition

Let p be a point of X such that following condition holds.

$$
\begin{equation*}
\bigcap \mathcal{N}(p) \text { is open set. } \tag{1}
\end{equation*}
$$

where $\mathcal{N}(p)$ is open neighborhood, i.e.

$$
\mathcal{N}(p):=\{O \in \mathcal{O}(X) \mid p \in O\}
$$

We will consider the model with parameter $p(\in X)$ satisfying above condition.

Interpretation(Context)

Definition (Strict Interpretation of Judgement)

$$
\llbracket \Gamma \vdash A \rrbracket^{\prime}(\gamma):= \begin{cases}\llbracket \Gamma \vdash A \rrbracket(\gamma) \cap\{p\} & \text { (A is Propositional Term) } \\ \llbracket \Gamma \vdash A \rrbracket(\gamma) & \text { (otherwise) }\end{cases}
$$

Definition (Interpretation of Context)

- []] $:=()$
- $\left\lceil\Gamma ;(x: A) \rrbracket:=\{(\gamma, \alpha) \mid \alpha \in \llbracket \Gamma \vdash A]^{\prime}(\gamma)\right\}$

Interpretation(Judgement)

Definition (Interpretation of Judgement)

- $\llbracket \Gamma \vdash t \rrbracket(\gamma):=p \quad$ (If t is Proof term in $\Gamma)$
- $\llbracket \Gamma \vdash \operatorname{Type}_{i} \rrbracket(\gamma):=\mathcal{U}(i)$
- $\llbracket \Gamma \vdash \operatorname{Prop} \rrbracket(\gamma):=\mathcal{O}(X)$
- $\llbracket \Gamma \vdash \lambda x: A . T \rrbracket(\gamma):=\{(\alpha, \llbracket \Gamma ;(x: A) \vdash T \rrbracket(\gamma, \alpha)) \mid \alpha \in \llbracket \Gamma \vdash A \rrbracket(\gamma)\}$
- $\llbracket \Gamma \vdash t_{1} t_{2} \rrbracket(\gamma):=\llbracket \Gamma \vdash t_{1} \rrbracket(\gamma)\left(\llbracket \Gamma \vdash t_{2} \rrbracket(\gamma)\right)$
- $\llbracket \Gamma \vdash x_{i} \rrbracket(\gamma):=\gamma_{i}$
- $\llbracket \Gamma \vdash \forall x: A . B \rrbracket(\gamma)$
- := $\llbracket \Gamma ;(x: A) \vdash B \rrbracket(\gamma, p)^{\llbracket \Gamma \vdash A \rrbracket(\gamma)}$
(when A, B are both Propositional term)
- $:=\min \{\llbracket \Gamma ;(x: A) \vdash B \rrbracket(\alpha, \gamma) \mid \alpha \in \llbracket \Gamma \vdash A \rrbracket(\gamma)\}$
(when B is Propositional term)
- $:=\prod_{\alpha \in \llbracket \Gamma \vdash A \rrbracket^{\prime}(\gamma)} \llbracket \Gamma ;(x: A) \vdash B \rrbracket(\gamma, \alpha)$
(Otherwise)

Soundness

Theorem
Following conditions hold:

- $\llbracket \Gamma \vdash \perp \rrbracket=\phi$
- $\llbracket \Gamma \vdash A \wedge B \rrbracket(\gamma)=(\llbracket \Gamma \vdash A \rrbracket(\gamma)) \sqcap(\llbracket \Gamma \vdash B \rrbracket(\gamma))$
- $\llbracket \Gamma \vdash A \vee B \rrbracket(\gamma)=(\llbracket \Gamma \vdash A \rrbracket(\gamma)) \sqcup(\llbracket \Gamma \vdash B \rrbracket(\gamma))$
- $\llbracket \Gamma \vdash \exists x: A \cdot Q \rrbracket(\gamma)=\bigsqcup_{\alpha \in \llbracket \vdash \vdash A \rrbracket(\gamma)} \llbracket \Gamma ;(x: A) \vdash Q \rrbracket(\gamma, \alpha)$

Theorem (Soundness)

- If $\Gamma \vdash t: T$ is derivable, then $\llbracket \Gamma \vdash t \rrbracket(\gamma) \in \llbracket \Gamma \vdash T \rrbracket(\gamma)$ for all $\gamma \in \llbracket \Gamma \rrbracket$
- If $\Gamma \vdash t_{1}: T$ and $t_{1} \rightarrow_{\beta} t_{2}$, then $\llbracket \Gamma \vdash t_{1} \rrbracket(\gamma)=\llbracket \Gamma \vdash t_{2} \rrbracket(\gamma)$ for all $\gamma \in \llbracket \Gamma \rrbracket$
- If P is provable propositional term in Γ, then $p \in \llbracket \Gamma \vdash P \rrbracket(\gamma)$.

Example

- Let $(X, \mathcal{O}(X))=(1,\{0,1\}), p=0$.
- This is jsut Classicaly Model.
- Let $(X, \mathcal{O}(X))=(2,\{0,1,2\}), p=1$
- If P is true, then $1 \in \llbracket \vdash P \rrbracket$ since $\llbracket \vdash P \rrbracket=2$
- $1 \notin \llbracket \vdash \forall P$: Prop, $P \vee \neg P \rrbracket$ since $\llbracket \vdash \forall P$: Prop, $p \vee \neg P \rrbracket=1$

The reason of point condition

The reason of the condition " $\cap \mathcal{N}(p)$ is open set" is ...

- This condition is needed in proof of soundness
- Let P be Propositional term
- If P is true, then $p \in \llbracket \Gamma \vdash P \rrbracket(\gamma)$ should hold.
- The condition that $p \in \llbracket \Gamma ;(x: A) \vdash P \rrbracket(\gamma, \alpha)$ iff $p \in \llbracket \Gamma \vdash \forall x: A . P \rrbracket(\alpha)$ is needed.
- But...
- $\llbracket \Gamma \vdash \forall x: A . P \rrbracket(\gamma)=(\bigcap\{\llbracket \Gamma ;(x: A) \vdash P \rrbracket(\gamma, \alpha) \mid \alpha \in \llbracket \Gamma \vdash$ $A \rrbracket(\gamma)\})^{\circ}$
- $p \in \llbracket \Gamma ;(x: A) \vdash P \rrbracket(\gamma, \alpha)$ dose NOT imply $p \in \llbracket \Gamma \vdash \forall x: A . P \rrbracket(\gamma)$

Paradox

J.Reynolds showed following theorem in his paper "Polymorphism is not set-theoretical"

Theorem
If P is Propositional term, $2 \leqq \sharp\{\llbracket \Gamma \vdash t \rrbracket(\gamma) \mid \Gamma \vdash t: P\}$ causes paradox.
But I create the model which is any proof term is interpreted to JUST ONE element. Hence, this model is interpreted as if $\llbracket \Gamma \vdash P \rrbracket$ has only one element.

Definition of CIC^{-}
 Interpretation
 Extended Interpretation

Future Works

Future Work

- Remove the point condition.
- Is the point condition really needed in proof of soundness?
- Is there any counterexample?
- Prove the completeness of this model.
- For any topological space $(X, \mathcal{O}(X)), p(\in X)$ with point condition, if P is propositional term, $p \in \llbracket \Gamma \vdash P \rrbracket(\gamma)$ implies P is provable propositional term?
- If $\Gamma \vdash p_{1}: P$ and $\Gamma \vdash p_{2}: P$ where P is Propositional term, then $\llbracket \Gamma \vdash p_{1} \rrbracket(\gamma)=\llbracket \Gamma \vdash p_{2} \rrbracket(\gamma)$
- $\Gamma \vdash P_{1} \leftrightarrow P_{2}$ implies $\llbracket \Gamma \vdash P_{1} \rrbracket(\gamma)=\llbracket \Gamma \vdash P_{2} \rrbracket(\gamma)$.
- Find "how much this model is complete?"

Reference

[1] Werner, Benjamin. "Sets in types, types in sets." Theoretical aspects of computer software. Springer Berlin Heidelberg, 1997.
[2] Miquel, Alexandre, and Benjamin Werner. "The not so simple proof-irrelevant model of CC." Types for proofs and programs. Springer Berlin Heidelberg, 2003. 240-258.
[3] Reynolds, John C. "Polymorphism is not set-theoretic." Springer Berlin Heidelberg, 1984.
[4] Pierce, Benjamin C. "Types and programming languages." MIT press, 2002.
[5] Barendregt, Henk, W. Dekkers, and RICHARD Statman. "Lambda calculus with types." Handbook of logic in computer science 2 (1992): 118-310.
[6] MacLane, Saunders, and leke Moerdijk. "Sheaves in geometry and logic: A first introduction to topos theory." Springer, 1992.
[7] Gierz, Gerhard, ed. "Continuous lattices and domains." Vol. 93. Cambridge University Press, 2003.

