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Slow-fast system in R2+1

  εdx/dt = h(x,y,ε)

    dy/dt = f(x,y, ε)

    x R,  y R∈ ∈ 2, ε>0  infinitesimal

   h: R2+1→R,  f: R2+1→R2 

                                   



assumptions

(A1) S = {(x,y) R∈ 3 | h(x,y,0) = 0} is a 2-dim diff 
manifold, and S intersects 

   T = {(x,y) R∈ 3 |∂h(x,y,0)/∂x = 0} transversely, 
so that the pli set 

  PL = {(x,y) S∩T} is ∈ 1-dim diff manifold

(A2) f1 (x,y,0)≠0 or f2 (x,y,0)≠0 on (x,y) PL∈



time-scaled-reduced system

On the set S: h(x,y,0)=0, differentiating by t,

 [∂h/∂y] f(x,y,0)+(∂h/∂x)dx/dt=0

Then, the above system restricted on S is

  dy/dt= f(x,y,0)
  dx/dt=− [∂h/∂y] f(x,y,0)/ (∂h/∂x)
  
  where  (x,y) S\PL∈



• To avoid degeneracy, let us consider the 
following time-scaled-reduced system:

     dy/dt =− (∂h(x,y,0)/∂x) f(x,y,0)

     dx/dt = [∂h(x,y,0)/∂y] f(x,y,0)

(A3) (x,y) S, ∂h/∂y∀ ∈ 1≠0, ∂h/∂y2≠0

   it implies implicit function theorem is applied



(A4) all the singular points of the above     
        

        system are non-degenerate

PS = {(x,y) PL| [∂h/∂y] f(x,y,0)=0}∈





Slow-fast system in R2+2

  εdx/dt = h(x,y,ε)

    dy/dt = f(x,y, ε)

    x R∈ 2,  y R∈ 2, ε>0   infinitesimal,

   h: R4+1→R2,  f: R4+1→R2



assumptions

(B1) S = {(x,y) R∈ 4| h(x,y,0) = 0} is a 2-dim diff 
manifold,  and S intersects 

   T = {(x,y) R∈ 4| det[∂h(x,y,0)/∂x ] = 0} 
transversely, so that the pli set 

  PL = {(x,y) S∩T} is ∈ 1-dim diff manifold
(B2) f1 (x,y,0)≠0 or f2 (x,y,0)≠0  at (x,y) PL∈

(B3) (x,y) S\PL,  ∀ ∈ rank [∂h/∂x ]=2,
        ∀(x,y) S,  ∈ rank [∂h/∂y ]=2 
       on the set PL, 
      ∂h1/∂x2≠0, or  ∂h2/∂x1 ≠0



 On the set S: h(x,y,0)=0, differentiating by t,

 [∂h/∂y] (dy/dt)+[∂h/∂x] (dx/dt)=0

 dx/dt=−[∂h/∂x]-1 [∂h/∂y] f(x,y,0)

To avoid degeneracy, we consider the time-
scaled-reduced system:

  dx/dt=

  −det[∂h/∂x][∂h/∂x]-1 [∂h/∂y] f(x,y,0),
            ∃g: y = g(x)





Remark.1
• All the singular points of the time scaled 

reduced system are contained in the set

  PS = 

  {(x,y) PL| −det[∂h/∂x] [∂h/∂x]∈ -1 

   [∂h/∂y] f(x,y,0)=0},  g: y= g(x)∃
  They are called pseudo-singular points in R4.

(B4) all the singular points of the time-scaled-
reduced system are non-degenerate.

(B5) the invariant manifold Inv(h) intersects the set 
PL transversely



Definition of Canards in R4

Def.1
   Let p PS, and let λ∈ 1, λ2 be 

   2 eigenvalues associated with the linearized 
time-scaled-reduced system.

   It is called saddle, 
   if λ1<0< λ2  (λ1 >0> λ2 ).

   It is called node,
   if λ1 >λ2 >0  (λ1 <λ2 <0 )

   and it is called forcus,
   if λ=a±ib .



Def.2
   Let p PS be saddle or node.∈
   If the trajectory follows first the attractive 

surface before p PS, ∈
   the attractive-repulsive one after PS, 
   and then it goes along the slow manifold 

which is not infinitesimally small, 
    it is called a canard in R4



Indirect method

   Let the assumption (B3) be satisfied, then the 
following 2 projected systems into R3 can be 
reduced under the conditions dx1/dt, dx2/dt are 
limited.

 εdx1/dt = h2 (x1,g2(x1,y),y, ε)

     dy/dt= f (x1,g2(x1,y), y, ε),

         x2=g2(x1,y),   h1(x,y)=0

 εdx2/dt = h1 (g1(x2,y),x2,y, ε)

     dy/dt= f (g1(x2,y),x2,y, ε),

         x1=g1(x2,y),   h2(x,y)=0



 Def.3

   If there exists a canard in the projected 
system, it is called a partial canard.

   If there also exists a canard in the other

   projected system, it is called a total canard.



Lemmas

Lemma.1
    The transversality condition (B1) is established, 
    iff the transversality condition (A1) is satisfied 
    at the common pseudo-singular point.

Lemma.2
    The both projected systems have the same 
    pseudo- singular point, if the time-scaled-reduce 

system satisfies (B3) with 
   ∂h1/∂x2>0,   ∂h2/∂x1 >0



Remark.2

    In Def.2, it ensures that only one of the eigenvalues 
of [∂h(x,g(x))/∂x] takes zero on PS, that is,

    trace [∂h(x,g(x))/∂x ] <0   on PS.

   
    Note that these 2 eigenvalues are negative when the 

fast vecor field is attractive. When they have different 
sign, it is attractive-repulsive. When they have 
positive, it is repulsive.



Theorems
Thm.1
   If the system has a single canard, it has 
   partial canard.

Thm.2
   Let p PS be saddle or node.∈
If the system has a total canard with conditions:
      (i) ∂h1 /∂x2>0,  ∂h2 /∂x1 >0

      (ii) det [∂h(x,g(x))/∂x ] >0 on the slow      
          manifold before PS, and 
           det [∂h(x,g(x))/∂x ] <0 after PS, 
          it has a canard in R4.



Direct method

Thm.3

   Let p PS be saddle or node.∈
   If  trace [∂h(x,g(x))/∂x ] <0   on PS,

   with an efficient local model, the system 
has a canard in R4.



Long Canard



Short Canard



Relative Stability 1



Relative Stability 2





Circuit Model

          L1 di1/dt = E1 - R1 i1 - v1

          C1 dv1/dt = i1- g(v1) + γ(v1- v2)

               g(v1) = -v1+ v1
3/3

          L2 di2/dt = E2 - R2 i2 - v2

          C2 dv2/dt = i2- g(v2) + γ(v2- v1)

               g(v2) = -v2 + v2
3/3

               ik→yk, vk→xk, ik→yk,  k=1,2

                                 C→ε
        C1=C2=a,  E1=E2=0,  R1=R2=b,  L1=L2=c,

                                  γ=-1



 　　      εdx/dt = h(x,y,ε)
         　  dy/dt = f(x,y, ε)
                     ε/a→ε   

             εdx1/dt = y1 + x2 - x1
3/3 

             εdx2/dt = y2 + x1 - x2
3/3

               dy1/dt = - x1- by1

             dy2/dt = - x2- by2



• invariant manifold: 
     Inv ={(x1,x2,y1,y2)| x1- x2=0, y1- y2=0}

• time scaled reduced system:                      
     dx1/dt = - x2

2 (x1+ b(-x2+x1
3/3) ) 

                       - (x2+ b(-x1+x2
3/3) )

     dx2/dt = - (x1+ b(-x2+x1
3/3) ) 

                    - x1
2 (x2+ b(-x1+x2

3/3) )  

• pseudo singular point:
     P0= ( ±(3/b+0.5√(9/b2-4))/2)1/2, 
                   ±(3/b-0.5√(9/b2-4))/2)1/2     

 when   b≈3/2,  P0≈( ±1, ±1 ) is saddle 



slow manifold on the set Inv:
       y1 = - x1 +x1

3/3

the intersection with  dy1/dt =0, ie., by1 = x1      

         P0= (1, 1)  when  b=3/2

• trace [∂h(1,1)/∂x ] = -2
• det [∂h(1,1)/∂x ] =0

−1 −3 + 4b / 3
−3+ 4b / 3 −1





÷
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