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Slow-fast system in R?*!

edx/dt = h(x,y,€)
dy/dt = f(x,y, €)

XER, yER? >0 infinitesimal
h: R"-R, i R"->R?



assumptions

(A1) S ={(x,y)€R?}| h(x,y,0) = 0} is a 2-dim diff
manifold, and S intersects

T = {(x,y)ER?|Ah(x,y,0)/0x = 0} transversely,
so that the pli set

PL = {(x,y)ESnT}is 1-dim diff manifold

(A2) f,(x,y,0)%0 or f,(x,y,0)#Z0 on (x,y)&PL



time-scaled-reduced system
On the set S: h(x,y,0)=0, differentiating by t,
[9h/ay] f(x,y,0)+(ah/ax)dx/dt=0
Then, the above system restricted on S Is

dy/dt= f(x,y,0)
dx/dt=- [oh/dy] f(X,y,0)/ (dh/dx)

where (x,y)&S\PL



* To avoid degeneracy, let us consider the
following time-scaled-reduced system:

dy/dt =— (dh(x,y,0)/0x) f(x,y,0)
dx/dt = [oh(X,y,0)/dy] f(x,y,0)

(A3) V(x,y)ES, dh/dy#0, oh/ay,#0
it implies implicit function theorem is applied



(A4) all the singular points of the above

system are non-degenerate

PS = {(x,y)&PL| [oh/dy] f(X,y,0)=0}






Slow-fast system Iin R?*2

edx/dt = h(x,y,€)
dy/dt = f(x,y, €)

X&R?!, y&eR? €0 Infinitesimal,
h: R"-R?, . R" - R?



assumptions

(B1) S = {(x,y)€R! h(x,y,0) =0} is a 2-dim diff
manifold, and S intersects

T ={(X,y)€RY det|oh(x,y,0)/0x ] = 0}
transversely, so that the pli set

PL ={(x,y)&SnT} is 1-dim diff manifold
(B2) f,(x,y,0)%0 or f,(x,y,0)#0 at (x,y)&PL
(B3) V(x,y)&S\PL, rank [oh/dx |=2,

V(x,y)&S, rank [oh/dy |=2
on the set PL,
oh,/ox,#0, or dh,/ox, #0



On the set S: h(x,y,0)=0, differentiating by t,
[oh/dy] (dy/dt)+[oh/ox] (dx/dt)=0
dx/dt=—[oh/ax]" [0h/dy] f(x,y,0)

To avoid degeneracy, we consider the time-
scaled-reduced system:

dx/dt=
—det[oh/ox][oh/dx]" [oh/dy] f(x,y,0),
39: y = 9(x)






Remark.1

* All the singular points of the time scaled
reduced system are contained in the set

PS =
[(x,y)EPL| —det[oh/dx] [oh/dx]’

[oh/dy] 1(x,y,0)=0}, 3g: y=g(x)
They are called pseudo-singular points in R

(B4) all the singular points of the time-scaled-
reduced system are non-degenerate.

(B5) the invariant manifold Inv(h) intersects the set
PL transversely



Definition of Canards in R*

Def.1

Let p€PS, and let A, A, be

2 eigenvalues associated with the linearized
time-scaled-reduced system.

It is called saddle,

If A<O< A, (A>0>A,).

It is called node,

If A, >A, >0 (A, <A, <0)

and it is called forcus,

If A=azib .



Def.2

Let p&PS be saddle or node.

If the trajectory follows first the attractive
surface before p&PS,

the attractive-repulsive one after PS,

and then it goes along the slow manifold
which Is not infinitesimally small,

It IS called a canard in R*



Indirect method

Let the assumption (B3) be satisfied, then the
following 2 projected systems into R} can be
reduced under the conditions dx/dt, dx,/dt are

limited.

delldt = h2 (Xl’g2(xl’y)’y1 8)

dy/dt=f (X,,9,(X,¥): Y, €),
X=9,(X,y), hy(X,y)=0

edx,/dt = h,(9,(X,,Y). XY, €)

dy/dt= 1 (g,(x,,¥), XY, €),
¥x=a(x vy hi((x v)=0



Def.3

If there exists a canard in the projected
system, it is called a partial canard.

If there also exists a canard in the other
projected system, it is called a total canard.



| emmas

Lemma.l

The transversality condition (B1) is established,
Iff the transversality condition (Al) is satisfied
at the common pseudo-singular point.

Lemma.’2

The both projected systems have the same

pseudo- singular point, if the time-scaled-reduce
system satisfies (B3) with

oh/ox,>0, oh/dx, >0



Remark.2

In Def.2, it ensures that only one of the eigenvalues
of [0h(x,g(X))/0x] takes zero on PS, that is,

trace [0h(x,g(x))/0x ] <O on PS.

Note that these 2 eigenvalues are negative when the
fast vecor field is attractive. When they have different
sign, it is attractive-repulsive. When they have
positive, it Is repulsive.



Theorems

Thm.1
If the system has a single canard, it has
partial canard.

Thm.2
Let p&PS be saddle or node.
If the system has a total canard with conditions:
(1) oh,/ox,>0, oh,/ox, >0
(1) det [0h(X,g(X))/0x | >0 on the slow
manifold before PS, and
det [0h(X,g(X))/ox ] <O after PS,
It has a canard in R




Direct method

Thm.3
Let p&PS be saddle or node.
If trace [0h(X,g(X))/0x ] <0 on PS,

with an efficient local model, the system
has a canard in R




Long Canard
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Short Canard

I Aide a I'étude d'un champ lent-rapide de R4 [4=2+2]
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Relative Stability 1
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Relative Stabllity 2
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Circuit Model

L di/dt=E- R, I,- Vv,
C, dv/dt = i- g(v,) + (v, V)
g(Vl) = -Vt V13/ 3
L, di/dt = E,- R, I,-V,
C, dv/dt =i g(v,) + y(v;- V)
g(Vz) =V, * V23/ 3
=Y, V.~ X, >y, k=1,2
C-¢
C=C=a, E~E~=0, R=R=b, L=L=c,



edx/dt = h(x,y,€)
dy/dt = f(x,y, €)
gla—¢

edx/dt =y, + x,- X, /3
edx/dt =y, + X, - X,/3
dy/dt = - x- by,
dy,/dt = - x,- by,



e |nvariant manifold:
Inv ={(X,X,,¥,,¥,)| X- X=0, y,- y,=0}

* time scaled reduced system:
dx/dt = - x (X, + b(-x,+x/3) )
) (X2+ b('X1+X23/ 3) )
dx,/dt = - (X, + b(-x,+x//3) )
) Xl2 (X2+ b('X1+X23/ 3))

* pseudo singular point:
P,= ( £(3/b+0.5V(9/b>4))/2)%,
+(3/b-0.5V(9/b-4))/2)"
when b=3/2, P~=( %1, +1) Is saddle



slow manifold on the set Inv:
Y, = - X, +X,13

the intersection with dy,/dt =0, ie., by,= X

-1 —3+4p/3 U

P0: (1, 1) when b=3/2 H-3+4b/3 -1 0

e trace [0h(1,1)/0x ] = -2
e det [0h(1,1)/0x ] =0
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