On a Circuit Model proving the existence of Canards in R²⁺²

27th May, 2014 Tokyo Institute of Technology

Kiyoyuki Tchizawa Institute of Administration Engineering, Ltd.

tableau

- (1) Time-scaled-reduced system
- (2) Pseudo-singular point
- (3) 3-dimensional Canards
- (4) 4-dimensional Canards
- (5) Relative stability
- (6) Circuit model

Slow-fast system in R²⁺¹

 $\epsilon dx/dt = h(x,y,\epsilon)$ $dy/dt = f(x,y,\epsilon)$

x∈R, y∈R², ϵ >0 infinitesimal h: R²⁺¹→R, f: R²⁺¹→R²

assumptions

(A1) $S = \{(x,y) \in \mathbb{R}^3 | h(x,y,0) = 0\}$ is a 2-dim diff manifold, and S intersects

- T = {(x,y) $\in \mathbb{R}^3 |\partial h(x,y,0)/\partial x = 0$ } transversely, so that the pli set
- $PL = \{(x,y) \in S \cap T\}$ is 1-dim diff manifold

(A2) $f_1(x,y,0)$ ≠0 or $f_2(x,y,0)$ ≠0 on (x,y)∈PL

time-scaled-reduced system

On the set S: h(x,y,0)=0, differentiating by t,

 $[\partial h/\partial y] f(x,y,0)+(\partial h/\partial x)dx/dt=0$

Then, the above system restricted on S is

dy/dt = f(x,y,0) $dx/dt = - [\partial h/\partial y] f(x,y,0)/ (\partial h/\partial x)$

where $(x,y) \in S \setminus PL$

• To avoid degeneracy, let us consider the following time-scaled-reduced system:

$$dy/dt = - (\partial h(x,y,0)/\partial x) f(x,y,0)$$
$$dx/dt = [\partial h(x,y,0)/\partial y] f(x,y,0)$$

(A3) \forall (x,y) \in S, $\partial h/\partial y_1 \neq 0$, $\partial h/\partial y_2 \neq 0$ it implies implicit function theorem is applied

$PS = \{(x,y) \in PL | [\partial h / \partial y] f(x,y,0)=0\}$

system are non-degenerate

(A4) all the singular points of the above

Slow-fast system in R²⁺²

$\epsilon dx/dt = h(x,y,\epsilon)$ $dy/dt = f(x,y,\epsilon)$

x∈R², y∈R², ε>0 infinitesimal, h: R⁴⁺¹→ R², f: R⁴⁺¹→ R²

assumptions

(B1) S = { $(x,y) \in \mathbb{R}^4$ | h(x,y,0) = 0} is a 2-dim diff manifold, and S intersects

T = { $(x,y) \in \mathbb{R}^4$ | det[$\partial h(x,y,0)/\partial x$] = 0} transversely, so that the pli set

PL = {(x,y)∈S∩T} is 1-dim diff manifold (B2) $f_1(x,y,0)\neq 0$ or $f_2(x,y,0)\neq 0$ at $(x,y)\in PL$

(B3) \forall (x,y) \in S\PL, rank [∂ h/ ∂ x]=2,

 $\forall (x,y) \in S, \text{ rank } [\partial h / \partial y] = 2$

on the set PL,

 $\partial h_1 / \partial x_2 \neq 0$, or $\partial h_2 / \partial x_1 \neq 0$

On the set S: h(x,y,0)=0, differentiating by t,

 $[\partial h/\partial y] (dy/dt)+[\partial h/\partial x] (dx/dt)=0$

 $dx/dt = -[\partial h/\partial x]^{-1} [\partial h/\partial y] f(x,y,0)$

To avoid degeneracy, we consider the timescaled-reduced system:

dx/dt=

 $-\det[\partial h/\partial x][\partial h/\partial x]^{-1} [\partial h/\partial y] f(x,y,0),$ $\exists g: y = g(x)$

Remark.1

- All the singular points of the time scaled reduced system are contained in the set
 PS =
 - {(x,y) \in PL| -det[∂ h/ ∂ x] [∂ h/ ∂ x]⁻¹ [∂ h/ ∂ y] f(x,y,0)=0}, \exists g: y= g(x) They are called pseudo-singular points in R⁴.

(B4) all the singular points of the time-scaledreduced system are non-degenerate.

(B5) the invariant manifold Inv(h) intersects the set PL transversely

Definition of Canards in R⁴

<u>Def.1</u>

- Let $p \in PS$, and let λ_1 , λ_2 be
- 2 eigenvalues associated with the linearized time-scaled-reduced system.
- It is called saddle,
- if $\lambda_1 < 0 < \lambda_2$ ($\lambda_1 > 0 > \lambda_2$).

It is called node, if $\lambda_1 > \lambda_2 > 0$ ($\lambda_1 < \lambda_2 < 0$) and it is called forcus, if $\lambda = a \pm ib$.

<u>Def.2</u>

- Let $p \in PS$ be saddle or node.
- If the trajectory follows first the attractive surface before $p \in PS$,
- the attractive-repulsive one after PS,
- and then it goes along the slow manifold which is not infinitesimally small,
- it is called a canard in $\ensuremath{\mathsf{R}}^4$

Indirect method

Let the assumption (B3) be satisfied, then the following 2 projected systems into R^3 can be reduced under the conditions dx_1/dt , dx_2/dt are limited.

$$\begin{aligned} \epsilon dx_1/dt &= h_2(x_1, g_2(x_1, y), y, \epsilon) \\ dy/dt &= f(x_1, g_2(x_1, y), y, \epsilon), \\ x_2 &= g_2(x_1, y), \quad h_1(x, y) = 0 \end{aligned}$$

$$\epsilon dx_2/dt = h_1(g_1(x_2,y),x_2,y,\epsilon)$$

 $dy/dt = f(g_1(x_2,y),x_2,y,\epsilon),$
 $x_1 = q_1(x_2,y), h_2(x_1,y) = 0$

<u>Def.3</u>

If there exists a canard in the projected system, it is called a partial canard. If there also exists a canard in the other projected system, it is called a total canard.

<u>Lemmas</u>

<u>Lemma.1</u>

The transversality condition (B1) is established, iff the transversality condition (A1) is satisfied at the common pseudo-singular point.

Lemma.2

The both projected systems have the same pseudo- singular point, if the time-scaled-reduce system satisfies (B3) with $\partial h_1 / \partial x_2 > 0$, $\partial h_2 / \partial x_1 > 0$

Remark.2

In Def.2, it ensures that only one of the eigenvalues of $[\partial h(x,g(x))/\partial x]$ takes zero on PS, that is, trace $[\partial h(x,g(x))/\partial x] < 0$ on PS.

Note that these 2 eigenvalues are negative when the fast vecor field is attractive. When they have different sign, it is attractive-repulsive. When they have positive, it is repulsive.

<u>Theorems</u>

<u>Thm.1</u>

If the system has a single canard, it has partial canard.

<u>Thm.2</u>

Let $p \in PS$ be saddle or node.

If the system has a total canard with conditions:

(i) $\partial h_1 / \partial x_2 > 0$, $\partial h_2 / \partial x_1 > 0$

(ii) det [∂h(x,g(x))/∂x] >0 on the slow manifold before PS, and det [∂h(x,g(x))/∂x] <0 after PS, it has a canard in R⁴.

Direct method

<u>Thm.3</u>

Let $p \in PS$ be saddle or node. If trace $[\partial h(x,g(x))/\partial x] < 0$ on PS, with an efficient local model, the system has a canard in R⁴.

Long Canard

Aide à l'étude d'ur	n champ lent-rapide de R4 (4=2+2)			7.6 W. 2.7	_ 🗆 🗙
Inconnu	degenere	noeud attractif	toyer attractif	col noeud rep	toyer repulsit	centre (lineaire)
y2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	"[]]]]]] "[]]]]]] "[]]]]]] "[]]]]]] "[]]]]] "]]]] "]]]] "]]]] "]]]] "]]] "]]] "]]] "]]]]]					
- 1 ,00,						
- 0.001 1 1 1 1 1 1 1						
-1.00			\times			1111
						1111
-2.00						
10 2 2 2 2 2 2 2	-2.00	A Contraction of the second se	+			

Short Canard

Aide à l'étude d'un	champ lent-rapide de R4 (4	1=2+2]	1.41 (MAR) 1.110			_ 🗆 ×
Inconnu	degenere	noeud attractif	toyer attractif	col neeud re	pulsit toyer repulsit	centre (lineaire)
y2	111222 111222 111222 111222 111222 111222 111222	11111111111111111111111111111111111111				
- 0.00 ¹						
			\times			
2 00						1111111 1111111 11111111 11111111 111111
10 200 2 1 1 1	-2.00	- marine	+			

Relative Stability 1

Relative Stability 2

KHYOYUKI TCHIZAWA

Circuit model

K. Tchizawa, H.Mild, H.Nishino, On the existence of a duck solution in Goodwin's nonlinear trainess cycle model. Nonlinear Analysis 63 (2005), e2553-e2558 A.K.Zvonkin, M.X.Shubin, Non-stendord analysis and sugular perturbations of ordinary differential equations, Russian Math 39 (1984), 69-131.

2-2-2 SOTOKANDA CHIYODA-KU, TORYO, 101-0921, JAPAI

Circuit Model

$$\begin{split} L_{1} & di_{1}/dt = E_{1} - R_{1} i_{1} - v_{1} \\ C_{1} & dv_{1}/dt = i_{1} - g(v_{1}) + \gamma(v_{1} - v_{2}) \\ & g(v_{1}) = -v_{1} + v_{1}^{3}/3 \\ L_{2} & di_{2}/dt = E_{2} - R_{2} i_{2} - v_{2} \\ C_{2} & dv_{2}/dt = i_{2} - g(v_{2}) + \gamma(v_{2} - v_{1}) \\ & g(v_{2}) = -v_{2} + v_{2}^{3}/3 \\ & i_{k} \rightarrow y_{k}, v_{k} \rightarrow x_{k}, i_{k} \rightarrow y_{k}, k=1,2 \\ & C \rightarrow \epsilon \\ C_{1} = C_{2} = a, E_{1} = E_{2} = 0, R_{1} = R_{2} = b, L_{1} = L_{2} = c, \end{split}$$

$$\epsilon dx/dt = h(x,y,\epsilon)$$

 $dy/dt = f(x,y, \epsilon)$
 $\epsilon/a \rightarrow \epsilon$

$$\epsilon dx_1/dt = y_1 + x_2 - x_1^3/3$$

 $\epsilon dx_2/dt = y_2 + x_1 - x_2^3/3$
 $dy_1/dt = -x_1 - by_1$
 $dy_2/dt = -x_2 - by_2$

- invariant manifold: $Inv = \{(x_1, x_2, y_1, y_2) | x_1 - x_2 = 0, y_1 - y_2 = 0\}$
- time scaled reduced system: $dx_{1}/dt = -x_{2}^{2}(x_{1}+b(-x_{2}+x_{1}^{3}/3))$ $-(x_{2}+b(-x_{1}+x_{2}^{3}/3))$ $dx_{2}/dt = -(x_{1}+b(-x_{2}+x_{1}^{3}/3))$ $-x_{1}^{2}(x_{2}+b(-x_{1}+x_{2}^{3}/3))$
- pseudo singular point: $P_0 = (\pm (3/b+0.5\sqrt{(9/b^2-4)})/2)^{1/2}, \pm (3/b-0.5\sqrt{(9/b^2-4)})/2)^{1/2}$ when $b\approx 3/2$, $P_0 \approx (\pm 1, \pm 1)$ is saddle

slow manifold on the set Inv: $y_1 = -x_1 + x_1^3/3$

the intersection with $dy_1/dt = 0$, ie., $by_1 = x_1$ $P_0 = (1, 1)$ when b=3/2 $\begin{pmatrix} -1 & -3+4b/3 \\ -3+4b/3 & -1 & 7 \end{pmatrix}$

- trace $[\partial h(1,1)/\partial x] = -2$
- det [∂h(1,1)/∂x] =0

References

- (1) A. Vanderbauwhede, Center Manifold, Normal Forms and Elementary Bifurcations, Dynamics Reported, vol. 2, John Wiley & Sons Ltd and B.G.Teubuer (1989)
- (2) M.Wechselberger, À propos de Canards, Transactions of the American Math. Society, vol. 364, no. 6, pp 3289-3309 (2012)
- (3) K.T, On Relative Stability in 4-dim Duck Solution, J.Maths & System Sciences, vol. 2, no. 9, pp 558-563 (2012)
- (4) K.T, On the Two Methods for Finding 4-dim Duck Solutions, Applied Maths, vol. 5, no. 1, pp 16-24 (2014)