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Introduction 
Acceleration using FPGA 
 An approach to build custom system appropriate for each 

application 
 Realize custom system within a certain power, or cost budget 
 Customization and optimization must be performed  
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Computation-bound apps 
The clock rate or parallelism 
should be increased 
 

Customization and optimization strategies must be made based 
on the characteristics of platform and the type of applications 

 
Memory-bound apps 
Optimizations for memory is the 
most significant factor 
 

 
Hardware 
Reconfiguration capability, 
Customizability, Device itself 
 

 
Software 
System software, HW compiler, 
API, run-time, library 
 

Types of 
applications 

Characteristics 
of platforms 
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In this paper 

• We present several optimization techniques 
 Targeting for Maxeler’s reconfigurable dataflow engines 
 In terms of memory locality and memory bandwidth 

 
 
 

• For evaluation, we use the Himeno Benchmark 
 Widely known as a memory-bound FP program 

• We compare it with the implementation on GPUs 
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We focus on FPGA accelerator provided by Maxeler,  and  
evaluate its performance for a memory-intensive application 

We demonstrate all key optimizations can be done by  
high-level programming for the Maxeler platform 
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The Himeno Benchmark 

• Developed by Dr. Ryutaro Himeno, RIKEN, Japan 
• A highly memory intensive application kernel 

 Becoming popular in the HPC community to evaluate the worst-case 
performance for memory bandwidth intensive codes  

 The kernel is a linear solver for 3D pressure Poisson equation which 
appears in a Navier-Stokes solver: 
 
 
 

 This Poisson equation is solved using the Jacobi iterative method 
 The performance of this is measured in FLOPS (FLoating-point 

Operations Per Second) 
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Source code of the Himeno benchmark 
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(Only the primary loop region) 

p is pressure, 
a, b, c are coefficient matrices,  
wrk1 is a source term of Poisson equation,  
omega is a relaxation parameter,  
bnd is a control variable for boundaries and objects,  
wrk2 is a temporary working area for computation 
Also, data are represented in single precision floating point format. 

Outermost loop by n 
 

 Triply nested loop  
                           by i,j,k 
 

  Triply nested loop by i,j,k  
 

19-point stencil computation to the 3D array p 

The body of this computational kernel involves 34 FP ops 
So, FLOPS can be measured by dividing it by the total execution time 

Loop nest structure 
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Reconfigurable dataflow engine 

6 

 Dataflow graph is directly mapped into FPGA 
 Computations are performed by forwarding intermediate 

results directly from one functional unit to the next units 
 Memory transfer operations can be dramatically reduced 

compared with instruction-based processor 

mem mem 

ALU 

FIFO
 

ALU 

FIFO
 

ALU 

FIFO
 ALU 

FIFO
 

… 

An overview of  dataflow processing: 
  Its datapath becomes a deeply pipelined structure 

data 

Using inherent locality of dataflow computation, 
we attempt to avoid memory bottleneck 

data 
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An outline of Maxeler’s dataflow engine 

• Kernel code is generated by MaxCompiler 
 Use Java as a meta-programing language 

• The structure of dataflow graph is described  
• Java extensions are used for hardware descriptions 

 MaxCompiler generates FPGA bitstream 
 Data exchange between a host CPU and a dataflow engine is 

performed using a run-time library API (called MaxCompilerRT) 

• The bitstream file (.max) is loaded from the CPU to the engine, 
and the FPGA is configured to the design 
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O. Pell and O. Mencer, “Surviving the end of frequency scaling with reconfigurable dataflow 
computing,” ACM SIGARCH Comput. Archit. News, vol. 39, no. 4, pp. 60–65, Dec. 2011. 

Using a high-level description language for Maxeler platform, 
we optimize design focusing on memory locality and bandwidth 

A high-level HW synthesis platform 



Japan Advanced Institute of Science and Technology 

Optimization strategies for dataflow engine 
We present the following 4 optimization strategies 
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Making use of fine-grained parallelism 
in dataflow graph, temporal parallelism 
by pipelining dataflow paths 

Optimization (A):  
Directly forwarding data  

Optimization (B):  
Organizing highly regular data stream 

Optimization (C):  
Utilizing available HW resources 

Optimization (D):  
Communication btw CPU and FPGA 

The regularity of the flow of data is 
strongly emphasized so that deeply 
pipeline processing can be performed 
without fatal pipeline stalls 

By unrolling independent loops, we 
build multiple parallel pipes in a kernel 

When partitioning the code regions for 
an FPGA accelerator, the amount of 
communication must be investigated 
carefully 

Based on these 4 strategies together with domain knowledge 
and experience for apps,  we optimize the kernel 
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Optimizing the Himeno benchmark (1) 
• Perform Optimization (A) to improve locality of memory access 

 We cascade multiple sequential points of the stencil computation   
 This enables to keep more intermediate results within pipelines and 

mitigates heavy memory traffic of a stencil program 
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x

y

z

Stencil window (7-point)

3D data (p: pressure)

Problem size Data size [MB]
S 65 x 65 x 129 2.1 
M 129 x 129 x 257 16.3 
L 257 x 257 x 513 129.3 

Cascading the next point
An overview of cascading: 
  Since sequential points of a stencil computation often access 
  the same data, we can reuse points appeared previously 
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Optimizing the Himeno benchmark (2) 

• Perform Optimization (B) by converting data stream into 1-D 
 To create a window for stencil computation, we need to access the 

adjacent values in a 3D array structure 
 We use stream.offset (Maxeler API) to feed data into a kernel 
 MaxCompiler transforms the stream.offset into an FIFO buffer on FPGA 
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Stencil window (7-point) Window of the data stream

current

stream.offset(-1)stream.offset(1)
stream.offset(-ymax)

stream.offset(-zmax)
stream.offset(ymax)

stream.offset(-zmax)

… … … …

Delivered to 
nodes in kernel

Converting 3-D data accesses into 1-D stream: 
  By specifying a relative distance from the current  
  stream data, we can obtain the past or the future data.  
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Optimizing the Himeno benchmark (3) 
• Perform Optimization (C) by configuring the # of pipes 

 We adjust the # of pipes to maximize parallelism and resource 
utilization of an FPGA chip 

 Here, we refer the body of a custom dataflow pipeline as a pipe 
 By unrolling loop iterations based on degree of cascading of stencil 

computations, we realize the parameterized kernel 
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Parameterized kernel design: 
  We can transparently translate the parameterized loop to  
  unrolled multiple parallel pipes 

data
Input stream

Output stream

Pipe
# 0

Pipe
# 1

Pipe
# ppn-1

…

…

…

kernel
= loop body 

A snapshot of the parametarable kernel code

data

// adjust the parallel pipe number (ppn)
HWVar input[ppn];
for ( int m=0; m < ppn; m++ ){

HWVar x = input[m] + input[m];
x=x*x;
HWVar y = x & input[m];

}

…

Use Java variables as 
parameters for the pipe config 
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Optimizing the Himeno benchmark (4) 
• Perform Optimization (D) by building 3 scenarios for the 

stream communications 
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PCIe-** design nn-itr-** design DRAM-** design 
• Data stream via PCIe bus 
• Simple  
• But data transfer via PCIe 

bus will be bottleneck 

• Data stream via internal buffer 
• Consume BRAM equal to the 

size of array ‘p’ 

• Data stream via on-board 
DRAM 

• Require memory adr gen 
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Performance evaluation 

Methodology 
 Maxeler MaxWorkstation 

 Intel Core i7-870 2.93GHz CPU, CentOS 
 The MAX3 acceleration card 

• Virtex-6 SX475T FPGA, 24GB DDR3 memory 
• PCI express gen2 x8 interface 

 MaxCompiler version 2012.1  
 Generate host code using gcc.4.1.2 with ‘-O3’  

 Experimental conditions 
 Set FPGA operating frequency as 100MHz (system default) 
 Constant array values are generated using ternary-if logic 
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Evaluation results 

Verification of our designs 
 Compare the output values of p from the FPGA with those of 

the original CPU implementation across all of design 
 As a result, we confirmed that all of these two are completely 

the same           [accurate implementation] 
 Also, we could implement our design smoothly 
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The productivity of Maxeler platform with support for IEEE floating 
point format enables accurate and smooth implementations 
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Stream communication via PCIe 
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• From the result, we find that the perf. is not 
increased even if we scale the # of pipes  

• The data transfer via the PCIe bus becomes 
the bottleneck 

PCIe-** desing 

Performance result 

• Communication via PCIe bus 
• The data stream is driven by the 

triply-nested i,j,k loop 
• Simple implementation 
• But data transfer via PCIe bus 

will be bottleneck 
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Data stream via an internal buffer 

• The data stream is driven by 
the outermost loop 

• For keeping the values from 
the previous loop iteration, 
we use stream.offset for 
inserting a special buffer 

• Once the host CPU transfers 
the initial data stream, data 
stream from the previous 
iteration is fed into the pipes 
directly 

In order to avoid the data transfer overhead,  
we attempt to feed output data directly to the input 

nn-itr-** design 
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The results obtained by data stream via an internal buffer 

Evaluation Results 
• This design can linearly increase its performance when we scale 

the # of pipes 
• The data transfer bandwidth bottleneck can be avoided  
• We successfully build and run the design with 48 pipes 
• The 48-pipe design with 110MHz achieves 155.1 GFLOPS 

Due to the size of BRAM, configurations with larger data set cannot be implemented 

nn-itr-** design 

3.0  6.0  
12.1  

24.2  
48.3  

96.6  

144.9  
155.1  

0.0

30.0

60.0

90.0

120.0

150.0

180.0

1 2 4 8 16 32 48 48

# of pipes (parallelism) 

Pe
rf

or
m

an
ce

 

 [GFLOPS] 

Pe
rf

or
m

an
ce

 

@110MHz 
S data set, @100MHz 



Japan Advanced Institute of Science and Technology 

Data stream via on-board DRAM 

• The data stream is driven by 
the triply-nested i,j,k loop 
similar to the ’PCIe-**’ design 

• This design can make use of 
higher on-board DRAM 
memory bandwidth compared 
with the PCIe design 

• Iterations are processed 
without any data transfer to 
the CPU memory once the 
initial input data are loaded 

In order to apply larger data sets,  
we attempt to use on-board DRAM devices 

DRAM-** design 
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The results obtained by data stream via on-board DRAM 

Evaluation Results 
• This design can accept larger data sets (up to  L: 129.3MB) and 

increase its performance according to the # of pipes 
• We cannot build the 48 pipe designs due to HW overhead for 

memory address generators 
• We can see start-up overhead of the kernel pipelinein smaller 

data set 
• 32-pipe design with L data set can achieve 97.6 GFLOPS  

DRAM-** design 
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Comparison with the state-of-the-art GPU 

[Phillips 2010]  E. Phillips and M. Fatica, “Implementing the himeno benchmark with CUDA on GPU 
clusters,” in IEEE Int’l Symp. on Parallel Distributed Processing, 2010, pp. 1 –10. 

In single acceleration board config, ours 
can achieve 3 times higher performance 
compared with [Phillips2010]  
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Conclusions 

• We have presented several optimization techniques for designs 
targeting reconfigurable dataflow engines 
 especially focus on memory locality and memory bandwidth 
 Also present how such techniques can be used in optimizing the Himeno 

Benchmark that requires large memory bandwidth 

• From the results of evaluation 
 We have confirmed that specialized dataflow pipeline designs contribute 

to improving the actual performance of applications 
 Found that our implementation can outperform the recent GPU 

implementations in their achieved GFLOPS 
 Demonstrated that we can achieve competitive performance gain 

without low-level HDL coding 
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We describe a memory bound application program on an FPGA 
accelerator based on a reconfigurable dataflow computing platform 
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Future work & Acknowledgment 
Current and future work 

 Extending the set of optimization strategies and 
benchmarks for our approach 

 Exploring methods for automating the application of such 
optimization strategies 

 Studying how our approach can be improved to support 
power and energy optimization 
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