
Japan Advanced Institute of Science and Technology

Evaluating Reconfigurable Dataflow Computing
Using the Himeno Benchmark

2012 International Conference on ReConFigurable Computing and FPGAs
5th December, 2012

Yukinori Sato (JAIST, JST CREST)
Yasushi Inoguchi (JAIST)
Wayne Luk (Imperial College London)
Tadao Nakamura (Keio University)

Japan Advanced Institute of Science and Technology

Introduction
Acceleration using FPGA
 An approach to build custom system appropriate for each

application
 Realize custom system within a certain power, or cost budget
 Customization and optimization must be performed

2

Computation-bound apps
The clock rate or parallelism
should be increased

Customization and optimization strategies must be made based
on the characteristics of platform and the type of applications

Memory-bound apps
Optimizations for memory is the
most significant factor

Hardware
Reconfiguration capability,
Customizability, Device itself

Software
System software, HW compiler,
API, run-time, library

Types of
applications

Characteristics
of platforms

Japan Advanced Institute of Science and Technology

In this paper

• We present several optimization techniques
 Targeting for Maxeler’s reconfigurable dataflow engines
 In terms of memory locality and memory bandwidth

• For evaluation, we use the Himeno Benchmark
 Widely known as a memory-bound FP program

• We compare it with the implementation on GPUs

3

We focus on FPGA accelerator provided by Maxeler, and
evaluate its performance for a memory-intensive application

We demonstrate all key optimizations can be done by
high-level programming for the Maxeler platform

Japan Advanced Institute of Science and Technology

The Himeno Benchmark

• Developed by Dr. Ryutaro Himeno, RIKEN, Japan
• A highly memory intensive application kernel

 Becoming popular in the HPC community to evaluate the worst-case
performance for memory bandwidth intensive codes

 The kernel is a linear solver for 3D pressure Poisson equation which
appears in a Navier-Stokes solver:

 This Poisson equation is solved using the Jacobi iterative method
 The performance of this is measured in FLOPS (FLoating-point

Operations Per Second)

4

Japan Advanced Institute of Science and Technology

Source code of the Himeno benchmark

5

(Only the primary loop region)

p is pressure,
a, b, c are coefficient matrices,
wrk1 is a source term of Poisson equation,
omega is a relaxation parameter,
bnd is a control variable for boundaries and objects,
wrk2 is a temporary working area for computation
Also, data are represented in single precision floating point format.

Outermost loop by n

 Triply nested loop
 by i,j,k

 Triply nested loop by i,j,k

19-point stencil computation to the 3D array p

The body of this computational kernel involves 34 FP ops
So, FLOPS can be measured by dividing it by the total execution time

Loop nest structure

Japan Advanced Institute of Science and Technology

Reconfigurable dataflow engine

6

 Dataflow graph is directly mapped into FPGA
 Computations are performed by forwarding intermediate

results directly from one functional unit to the next units
 Memory transfer operations can be dramatically reduced

compared with instruction-based processor

mem mem

ALU

FIFO

ALU

FIFO

ALU

FIFO
 ALU

FIFO

…

An overview of dataflow processing:
 Its datapath becomes a deeply pipelined structure

data

Using inherent locality of dataflow computation,
we attempt to avoid memory bottleneck

data

Japan Advanced Institute of Science and Technology

An outline of Maxeler’s dataflow engine

• Kernel code is generated by MaxCompiler
 Use Java as a meta-programing language

• The structure of dataflow graph is described
• Java extensions are used for hardware descriptions

 MaxCompiler generates FPGA bitstream
 Data exchange between a host CPU and a dataflow engine is

performed using a run-time library API (called MaxCompilerRT)

• The bitstream file (.max) is loaded from the CPU to the engine,
and the FPGA is configured to the design

7

O. Pell and O. Mencer, “Surviving the end of frequency scaling with reconfigurable dataflow
computing,” ACM SIGARCH Comput. Archit. News, vol. 39, no. 4, pp. 60–65, Dec. 2011.

Using a high-level description language for Maxeler platform,
we optimize design focusing on memory locality and bandwidth

A high-level HW synthesis platform

Japan Advanced Institute of Science and Technology

Optimization strategies for dataflow engine
We present the following 4 optimization strategies

8

Making use of fine-grained parallelism
in dataflow graph, temporal parallelism
by pipelining dataflow paths

Optimization (A):
Directly forwarding data

Optimization (B):
Organizing highly regular data stream

Optimization (C):
Utilizing available HW resources

Optimization (D):
Communication btw CPU and FPGA

The regularity of the flow of data is
strongly emphasized so that deeply
pipeline processing can be performed
without fatal pipeline stalls

By unrolling independent loops, we
build multiple parallel pipes in a kernel

When partitioning the code regions for
an FPGA accelerator, the amount of
communication must be investigated
carefully

Based on these 4 strategies together with domain knowledge
and experience for apps, we optimize the kernel

Japan Advanced Institute of Science and Technology

Optimizing the Himeno benchmark (1)
• Perform Optimization (A) to improve locality of memory access

 We cascade multiple sequential points of the stencil computation
 This enables to keep more intermediate results within pipelines and

mitigates heavy memory traffic of a stencil program

9

x

y

z

Stencil window (7-point)

3D data (p: pressure)

Problem size Data size [MB]
S 65 x 65 x 129 2.1
M 129 x 129 x 257 16.3
L 257 x 257 x 513 129.3

Cascading the next point
An overview of cascading:
 Since sequential points of a stencil computation often access
 the same data, we can reuse points appeared previously

Japan Advanced Institute of Science and Technology

Optimizing the Himeno benchmark (2)

• Perform Optimization (B) by converting data stream into 1-D
 To create a window for stencil computation, we need to access the

adjacent values in a 3D array structure
 We use stream.offset (Maxeler API) to feed data into a kernel
 MaxCompiler transforms the stream.offset into an FIFO buffer on FPGA

10

Stencil window (7-point) Window of the data stream

current

stream.offset(-1)stream.offset(1)
stream.offset(-ymax)

stream.offset(-zmax)
stream.offset(ymax)

stream.offset(-zmax)

… … … …

Delivered to
nodes in kernel

Converting 3-D data accesses into 1-D stream:
 By specifying a relative distance from the current
 stream data, we can obtain the past or the future data.

Japan Advanced Institute of Science and Technology

Optimizing the Himeno benchmark (3)
• Perform Optimization (C) by configuring the # of pipes

 We adjust the # of pipes to maximize parallelism and resource
utilization of an FPGA chip

 Here, we refer the body of a custom dataflow pipeline as a pipe
 By unrolling loop iterations based on degree of cascading of stencil

computations, we realize the parameterized kernel

11

Parameterized kernel design:
 We can transparently translate the parameterized loop to
 unrolled multiple parallel pipes

data
Input stream

Output stream

Pipe
0

Pipe
1

Pipe
ppn-1

…

…

…

kernel
= loop body

A snapshot of the parametarable kernel code

data

// adjust the parallel pipe number (ppn)
HWVar input[ppn];
for (int m=0; m < ppn; m++){

HWVar x = input[m] + input[m];
x=x*x;
HWVar y = x & input[m];

}

…

Use Java variables as
parameters for the pipe config

Japan Advanced Institute of Science and Technology

Optimizing the Himeno benchmark (4)
• Perform Optimization (D) by building 3 scenarios for the

stream communications

12

PCIe-** design nn-itr-** design DRAM-** design
• Data stream via PCIe bus
• Simple
• But data transfer via PCIe

bus will be bottleneck

• Data stream via internal buffer
• Consume BRAM equal to the

size of array ‘p’

• Data stream via on-board
DRAM

• Require memory adr gen

Japan Advanced Institute of Science and Technology

Performance evaluation

Methodology
 Maxeler MaxWorkstation

 Intel Core i7-870 2.93GHz CPU, CentOS
 The MAX3 acceleration card

• Virtex-6 SX475T FPGA, 24GB DDR3 memory
• PCI express gen2 x8 interface

 MaxCompiler version 2012.1
 Generate host code using gcc.4.1.2 with ‘-O3’

 Experimental conditions
 Set FPGA operating frequency as 100MHz (system default)
 Constant array values are generated using ternary-if logic

13

Japan Advanced Institute of Science and Technology

Evaluation results

Verification of our designs
 Compare the output values of p from the FPGA with those of

the original CPU implementation across all of design
 As a result, we confirmed that all of these two are completely

the same [accurate implementation]
 Also, we could implement our design smoothly

14

The productivity of Maxeler platform with support for IEEE floating
point format enables accurate and smooth implementations

Japan Advanced Institute of Science and Technology

Stream communication via PCIe

15

• From the result, we find that the perf. is not
increased even if we scale the # of pipes

• The data transfer via the PCIe bus becomes
the bottleneck

PCIe-** desing

Performance result

• Communication via PCIe bus
• The data stream is driven by the

triply-nested i,j,k loop
• Simple implementation
• But data transfer via PCIe bus

will be bottleneck

Japan Advanced Institute of Science and Technology

Data stream via an internal buffer

• The data stream is driven by
the outermost loop

• For keeping the values from
the previous loop iteration,
we use stream.offset for
inserting a special buffer

• Once the host CPU transfers
the initial data stream, data
stream from the previous
iteration is fed into the pipes
directly

In order to avoid the data transfer overhead,
we attempt to feed output data directly to the input

nn-itr-** design

Japan Advanced Institute of Science and Technology

The results obtained by data stream via an internal buffer

Evaluation Results
• This design can linearly increase its performance when we scale

the # of pipes
• The data transfer bandwidth bottleneck can be avoided
• We successfully build and run the design with 48 pipes
• The 48-pipe design with 110MHz achieves 155.1 GFLOPS

Due to the size of BRAM, configurations with larger data set cannot be implemented

nn-itr-** design

3.0 6.0
12.1

24.2
48.3

96.6

144.9
155.1

0.0

30.0

60.0

90.0

120.0

150.0

180.0

1 2 4 8 16 32 48 48

of pipes (parallelism)

Pe
rf

or
m

an
ce

 [GFLOPS]

Pe
rf

or
m

an
ce

@110MHz
S data set, @100MHz

Japan Advanced Institute of Science and Technology

Data stream via on-board DRAM

• The data stream is driven by
the triply-nested i,j,k loop
similar to the ’PCIe-**’ design

• This design can make use of
higher on-board DRAM
memory bandwidth compared
with the PCIe design

• Iterations are processed
without any data transfer to
the CPU memory once the
initial input data are loaded

In order to apply larger data sets,
we attempt to use on-board DRAM devices

DRAM-** design

Japan Advanced Institute of Science and Technology

The results obtained by data stream via on-board DRAM

Evaluation Results
• This design can accept larger data sets (up to L: 129.3MB) and

increase its performance according to the # of pipes
• We cannot build the 48 pipe designs due to HW overhead for

memory address generators
• We can see start-up overhead of the kernel pipelinein smaller

data set
• 32-pipe design with L data set can achieve 97.6 GFLOPS

DRAM-** design

Japan Advanced Institute of Science and Technology

4.5
13.6

51.2

155.1

97.6

0.0

30.0

60.0

90.0

120.0

150.0

180.0

CPU(1 core)
icc -fast

GPU+pgcc GPU+CUDA
[Phillips2010]

nn-irt-48
 (S)

DRAM-32
 (L)

[GFLOPS]
Pe

rf
or

m
an

ce

Comparison with the state-of-the-art GPU

[Phillips 2010] E. Phillips and M. Fatica, “Implementing the himeno benchmark with CUDA on GPU
clusters,” in IEEE Int’l Symp. on Parallel Distributed Processing, 2010, pp. 1 –10.

In single acceleration board config, ours
can achieve 3 times higher performance
compared with [Phillips2010]

Japan Advanced Institute of Science and Technology

Conclusions

• We have presented several optimization techniques for designs
targeting reconfigurable dataflow engines
 especially focus on memory locality and memory bandwidth
 Also present how such techniques can be used in optimizing the Himeno

Benchmark that requires large memory bandwidth

• From the results of evaluation
 We have confirmed that specialized dataflow pipeline designs contribute

to improving the actual performance of applications
 Found that our implementation can outperform the recent GPU

implementations in their achieved GFLOPS
 Demonstrated that we can achieve competitive performance gain

without low-level HDL coding

21

We describe a memory bound application program on an FPGA
accelerator based on a reconfigurable dataflow computing platform

Japan Advanced Institute of Science and Technology

Future work & Acknowledgment
Current and future work

 Extending the set of optimization strategies and
benchmarks for our approach

 Exploring methods for automating the application of such
optimization strategies

 Studying how our approach can be improved to support
power and energy optimization

Acknowkedgment

22

This work was supported in part by the JSPS ”Institutional Program for
Young Researcher Overseas Visits”, by UK EPSRC, by the European Union
Seventh Framework Programme under Grant agreement number 248976,
257906 and 287804, by the HiPEAC NoE, by the Maxeler University Program,
and by Xilinx.

	Slide Number 1
	Introduction
	In this paper
	The Himeno Benchmark
	Source code of the Himeno benchmark
	Reconfigurable dataflow engine
	An outline of Maxeler’s dataflow engine
	Optimization strategies for dataflow engine
	Optimizing the Himeno benchmark (1)
	Optimizing the Himeno benchmark (2)
	Optimizing the Himeno benchmark (3)
	Optimizing the Himeno benchmark (4)
	Performance evaluation
	Evaluation results
	Stream communication via PCIe
	Data stream via an internal buffer
	The results obtained by data stream via an internal buffer
	Data stream via on-board DRAM
	The results obtained by data stream via on-board DRAM
	Comparison with the state-of-the-art GPU
	Conclusions
	Future work & Acknowledgment

