
Japan Advanced Institute of Science and Technology

Whole Program Data Dependence Profiling to Unveil
Parallel Regions in the Dynamic Execution

2012 IEEE International Symposium on Workload Characterization
November 5, 2012

Yukinori Sato (JAIST, JST CREST)
Yasushi Inoguchi (JAIST)
Tadao Nakamura (Keio University)

Japan Advanced Institute of Science and Technology

Introduction

App codes become complex
 Lines of code of SPEC2006CPU

program are mostly over 10
thousands

 Hard to read all of them
 Issues for data sharing and

communication among CPU cores

Parallelizing sequential programs
 A critical process for developing high

performance codes
 Trends towards accelerators makes

matter worse

To parallelize and accelerate programs according to scaling of hardware resources,
we must develop a fundamental method that ease the above issues

2

Tools that can guide and support them by identifying parallelism
and dataflow inherent in programs are fairly important

Current obstacles for improving performance

Japan Advanced Institute of Science and Technology

Analyzing data dependencies

• Traditionally static analysis by compilers are dominated
 Data dependence tests

• Such as Banerjee test and Omega test
• Effective only for subscripted array expressions in array references
• Inadequate for the wide use of pointer expressions

 Alias profiling
• Able to detect data dependencies induced by pointers
• Not able to extract dynamic behaviors decided at run time
• Also, it cannot disambiguate dependencies finer than memory blocks

allocated from the malloc

To extract all of data dependencies in execution, we develop a new framework
that can extract dynamic data dependencies across whole program execution.

Static data dependence analysis techniques are limited to particular situations!

3

“Data dependence analysis” is an essential tool for parallelization

Japan Advanced Institute of Science and Technology

In this paper

• Monitoring data dependencies by dynamic binary translation
 DBT uses pre-compiled executable binary code as input
 DBT enables transparent analysis without compelling programmers to read

application program source code.

• Our implementation to minimize profiling overheads
 Data dependencies are analyzed based on regions of dynamic program context, and

represented by Loop-Call Context Tree with Memory dataflow (LCCT+M)
 We present an efficient method that makes use of paging of memory access tables

• We visualize the LCCT+M of actual application programs and present
how we identify loop-, task- and pipeline parallelisms using the LCCT+M

4

We extract dynamic memory dataflow across
whole program execution in order to unveil parallel regions

Japan Advanced Institute of Science and Technology

To profile dynamic data dependencies

5

𝑆𝐷3 [Kim, MICRO2010]
• Focus on loop nest structures, perform stride detection and

compression of data dependencies for array access
• So limited to dependencies among loop iterations
• Whole program data dependence analysis including scalar

memory accesses was not discussed

Pairwise method [Chen, CC2004]

• This compares all addresses of every pair of memory references
• But it needs very expensive pairwise address comparison

throughout the program execution

We need to realize an accurate and light-weight profiling technique that
records accurate data dependencies with reasonable time & memory overhead

The existing dynamic data dependence profiling is inadequate!

Japan Advanced Institute of Science and Technology

An overview of our data dependence profiling

• Using executable binary code as input, we start analysis on DBT system
• At static analysis phase, we insert analysis codes for dynamic analysis
• At runtime analysis phase, we keep track of dynamic data dependencies

 Together with the dynamic context of loop and call activations
 Using memory monitoring table with paging

6

Precompiled
binary code

Static
Analysis

Runtime
Analysis Binary translation LCCT+M

 memory dataflow
 execution context

Our data dependence profiler

Instrumented code

Transparent
Instrumentation

Native execution

Unveil Parallel regions

compile

Output

Input

Identify Regions
for Acceleration

Dynamic Binary Translation System

Loop-, task-, pipeline-parallelisms

Keys to realize efficient profiling

Japan Advanced Institute of Science and Technology

Representing dataflow using LCCT+M

7

 We propose Loop-Call Context Tree with Memory dataflow (LCCT+M) representation
 This can effectively depict dynamic data dependencies across loop iterations and

procedure calls
 For uncovering various types of parallelisms in loop, task and pipeline fashion

Circle node: Loop
Box node: Procedure call
Solid line Edge: Control flow

Dashed Red Line Edge:
 Data dependencies between nodes
Dashed Blue Line Edge:
 Dependencies between loop iterations

Japan Advanced Institute of Science and Technology

How to keep track of data dependencies

• We focus on only the true dependence in the paper.
 This is because the essential dependence for parallelization is true

dependence

• To maintain who writes the most recent value in each
accessed address
 We build a table structure referred to as a lastWrite table

8

 To realize the faster access with smaller memory size
 This concept is similar to pages in virtual memory system, where physical

memory space is relocated as a set of fixed sized block (also called a page)

Here, we propose the paging of lastWrite tables

Japan Advanced Institute of Science and Technology

The structure of lastWrite table with paging

• Hash table is used to access lastWrite tables and each of a page includes 8kB address regions
• An element of a lastWrite table is accessed using page offset
• Because a lastWrite table is allocated on-demand only when the memory segment is newly

accessed, we believe this can contribute to saving the total amount of memory

9

Using lastWrite table, we keep track of region-based data dependencies

Japan Advanced Institute of Science and Technology

4. Experiment

System configuration
 Appro 1143H servers composed of four AMD Opteron 8435 CPUs, 128GB memory
 Red Hat Enterprise Linux Server 5.4.

Benchmark programs
 NAS Parallel benchmark 3.3 serial version (NPB3.3) with A class data set
 SPEC CPU2006 with ref data set
 4 programs from INT, 9 programs from FP
 We compiled using GNU Compiler Collection 4.1.2

Conditions

•Analysis includes all of memory access including shared libraries
•Dynamic execution context analysis is performed when the main function is

called and terminated when it returns
•We only focus on dependencies via memory access and ignore these among

registers

We implement our dynamic data dependence profiling on Pin tool set,
and evaluate it using NPB and SPEC CPU benchmark programs

10

Japan Advanced Institute of Science and Technology

The statistics of the obtained LCCT+M

401.bzip.2 429.mcf 456.hmmer 462.libquantum

input data chicken.jpg - retro.hmm -

totalInst 1.80E+11 3.72E+11 2.00E+12 2.24E+12

MemRead 4.88E+10 1.24E+11 1.02E+12 2.22E+11

MemWrite 2.03E+10 3.83E+10 1.80E+11 7.81E+10

RtnNodes 293 356 1660 669

LoopNodes 271 69 130 146

DepEdges 2484 1819 6869 3019

11

The results of data dependence analysis for SPEC 2006 CPU INT

• The amount of memory operation occupies from 30% to 50% of dynamic execution
 The # of data dependencies between instructions will be proportional to the # of

total memory operations
• From the results, we confirm that our data dependence profiling can efficiently handle

data dependencies between nodes in whole program executions

Dynamic context of program execution contributes to
summarizing the dynamic flow of instruction sequences

Japan Advanced Institute of Science and Technology

The execution time overhead

12

• The runtime overheads of our profiling are 47.5x and 38.6x in average for NPB3.3
and SPEC CPU2006

• These are dramatically smaller than 𝑆𝐷3 method [Kim, MICRO2010]
 The runtime overhead of serial version of the 𝑆𝐷3 method is 289x for SPEC CPU2006
 Since the 𝑆𝐷3 method must compress array memory accesses based on their strides, it

will require larger overheads for profiling compared with ours

Fast paging access to lastWrite tables together with LCCT+M
contributes to reducing performance overhead of our profiling

The execution time overhead compared with the native execution time

Japan Advanced Institute of Science and Technology

The memory space overhead

13

• Here, we observe the maximum memory size provided by operating system by checking
the VmPeak size at “/proc/<pid>/status”

• The memory overheads for ours are 16.2x and 17.6x for NPB3.3 and SPEC CPU2006
 This overhead is comparable to the overhead of serial 𝑆𝐷3 method, 13.4x in SPEC CPU2006
 Our profiling can detect data dependencies by scalar memory accesses in addition to these by

array based data accesses

Our profiling can realized within a reasonable overhead
compared with the stride compression based 𝑆𝐷3 method

The memory space overhead compared with the native execution time

Japan Advanced Institute of Science and Technology

Validating the obtained LCCT+M

14

• Compare the obtained LCCT+M with source code
There are seven hot loops (loop-4, 6, 8, 10, 13, 14, 16)

 loop-4, 14, 16 are not dependent upon themselves => potential loop-level parallel regions

As obtained results consist with the original source code, we can confirm that
ours successfully extract and visualize the run-time memory dataflow

• Visualize the LCCT+M focusing only on hot spots
 We set the number of executed instructions as a criteria of the threshold

The LCCT+M of IS (Thr=1.66%).

Circle node: Loop
Box node: Procedure call
Solid line Edge: Control flow
Dashed Red line Edge:
 Data dependency between nodes
Dashed Blue line Edge:
 Dependency btw loop itrerations

Japan Advanced Institute of Science and Technology

Unveiling various parallel regions

• In LCCT+M, data dependencies are represented by edges between
its source node to the sink node.

15

To unveil loop-, task-, pipeline-parallelism,
we check dependencies across regions of LCCT+M

Pipeline parallelism
 If the two tasks are dependent via an

edge for one particular direction, these
are potentially pipeline-parallel tasks

func-A

loop A loop D

loop B

func-B loop C

D =1.0 itr

Task A

Task B

we formulate tasks, each of which is a
group of nodes in which a parent node
dominates all of other nodes

Task parallelism
 If there are no dependence, then these

are a potentially task-level parallel region

func-A

loop A loop D

loop B

func-B loop C

D =1.0 itr

Task A

Task B

Japan Advanced Institute of Science and Technology

Unveiling loop-level parallelism

16

Loop-Level parallelism
 We need to identify data dependencies among loop iterations in addition to

among loop regions
 By counting loop trip count, we profile potential loop-level parallel regions

(a) How to detect loop iterations

func-A

loop A loop D

loop B

func-B loop C

D =1.0 itr

Check dependencies among loop iterations

iterations
0

N-1

(b) Data dependencies among loop iterations

Loop iteration depends
on the previous iteration

Check loop iterations are dependent
on the other iterations or not

Monitor head instructions & count tripCnt

Japan Advanced Institute of Science and Technology

Identifying loop-level parallelisms

17

The LCCT+M of CG (Thr=0.63%)

• In loop nests of (loop-26, 27) and (loop-32, 33), each nodes is independent
from the others

We find that we can profile potentially parallel loops from nested loops

Japan Advanced Institute of Science and Technology

For identifying task-, and pipeline-parallelisms

18

We find that we can form tasks and profile potentially pipeline-parallel tasks

The LCCT+M of 456.hmmer [input data=retro.hmm] (Thr=0.74%).

Japan Advanced Institute of Science and Technology

Conclusions
• We have presented a dynamic data dependence profiling technique

 For analyzing various types of parallelisms across the whole program
execution

 Transparent profiling on a dynamic binary translator
 A locality-aware table structure with paging
 LCCT+M (Loop-Call Context Tree with Memory dataflow)

• We have implemented our mechanism and evaluated it using NPB
and SPEC CPU 2006 benchmark suite.
 From the results, we have confirmed that we can successfully extract data

dependencies within reasonable time and space overheads
 We also have visualized the LCCT+M using its hot spot and confirmed that

we can identify potential loop-, task-, and pipeline-parallelisms from
arbitrary binary codes

• For future work,
 we are planning to apply our mechanism to speculative loop

parallelization and runtime loop transformation for further productive
utilization of parallel computing system

19

	Slide Number 1
	Introduction
	Analyzing data dependencies
	In this paper
	To profile dynamic data dependencies
	An overview of our data dependence profiling
	Representing dataflow using LCCT+M
	How to keep track of data dependencies
	The structure of lastWrite table with paging
	4. Experiment
	The statistics of the obtained LCCT+M
	The execution time overhead
	The memory space overhead
	Validating the obtained LCCT+M
	Unveiling various parallel regions
	Unveiling loop-level parallelism
	Identifying loop-level parallelisms
	For identifying task-, and pipeline-parallelisms
	Conclusions

