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Introduction 

App codes become complex 
 Lines of code of SPEC2006CPU 

program are mostly over 10 
thousands 

 Hard to read all of them 
 Issues for data sharing and 

communication among CPU cores 

Parallelizing sequential programs 
 A critical process for developing high 

performance codes 
 Trends towards accelerators makes 

matter worse 

To parallelize and accelerate programs according to scaling of hardware resources, 
we must develop  a fundamental method  that ease the above issues 
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Tools that can guide and support them by identifying parallelism 
and dataflow inherent in programs are fairly important 

Current obstacles for improving performance 
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Analyzing data dependencies 

• Traditionally static analysis by compilers are dominated 
 Data dependence tests  

• Such as Banerjee test and Omega test 
• Effective only for subscripted array expressions in array references 
• Inadequate for the wide use of pointer expressions 

 Alias profiling 
• Able to detect data dependencies induced by pointers 
• Not able to extract dynamic behaviors decided at run time 
• Also, it cannot disambiguate dependencies finer than memory blocks 

allocated from the malloc  

To extract all of data dependencies in execution, we develop a new framework 
that can extract dynamic data dependencies across whole program execution.  

Static data dependence analysis techniques are limited to particular situations! 
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“Data dependence analysis” is an essential tool for parallelization 
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In this paper 

• Monitoring data dependencies by dynamic binary translation 
 DBT uses pre-compiled executable binary code as input  
 DBT enables transparent analysis without compelling programmers to read 

application program source code. 

• Our implementation to minimize profiling overheads 
 Data dependencies are analyzed based on regions of dynamic program context, and 

represented by Loop-Call Context Tree with Memory dataflow (LCCT+M) 
 We present an efficient method that makes use of paging of memory access tables 

• We visualize the LCCT+M of actual application programs  and present 
how we identify loop-, task- and pipeline parallelisms using the LCCT+M 
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We extract dynamic memory dataflow across  
whole program execution in order to unveil parallel regions  
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To profile dynamic data dependencies 
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𝑆𝐷3 [Kim, MICRO2010] 
• Focus on loop nest structures, perform stride detection and 

compression of data dependencies for array access 
• So limited to dependencies among loop iterations  
• Whole program data dependence analysis including scalar 

memory accesses was not discussed 
 
Pairwise method [Chen, CC2004] 

• This compares all addresses of every pair of memory references 
• But it needs very expensive pairwise address comparison 

throughout the program execution 

We need to realize an accurate and light-weight profiling technique that 
records accurate data dependencies with reasonable time & memory overhead 

The existing dynamic data dependence profiling is inadequate! 
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An overview of our data dependence profiling 

• Using executable binary code as input, we start analysis on DBT system 
• At static analysis phase, we insert analysis codes for dynamic analysis 
• At runtime analysis phase, we keep track of dynamic data dependencies  

 Together with the dynamic context of loop and call activations 
 Using memory monitoring table with paging 
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Keys to realize efficient profiling 
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Representing dataflow using LCCT+M 
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 We propose Loop-Call Context Tree with Memory dataflow (LCCT+M) representation  
 This can effectively depict dynamic data dependencies across loop iterations and 

procedure calls  
 For uncovering various types of parallelisms in loop, task and pipeline fashion 

Circle node: Loop 
Box node: Procedure call 
Solid line Edge:  Control flow 

Dashed Red Line Edge:  
   Data dependencies between nodes 
Dashed Blue Line Edge:  
   Dependencies between loop iterations 
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How to keep track of data dependencies 

• We focus on only the true dependence in the paper.  
 This is because the essential dependence for parallelization is true 

dependence 
 

• To maintain who writes the most recent value in each 
accessed address 
 We build a table structure referred to as a lastWrite table 
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 To realize the faster access with smaller memory size 
 This concept is similar to pages in virtual memory system, where physical 

memory space is relocated as a set of fixed sized block (also called a page) 

Here, we propose the paging of lastWrite tables 
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The structure of lastWrite table with paging 

• Hash table is used to access lastWrite tables and each of a page includes 8kB address regions 
• An element of a lastWrite table is accessed using page offset 
• Because a lastWrite table is allocated on-demand only when the memory segment is newly 

accessed, we believe this can contribute to saving the total amount of memory 
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Using lastWrite table, we keep track of  region-based data dependencies 
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4.  Experiment 

System configuration 
    Appro 1143H servers composed of four AMD Opteron 8435 CPUs, 128GB memory 
    Red Hat Enterprise Linux Server 5.4.   
 
Benchmark programs 
    NAS Parallel benchmark 3.3 serial version (NPB3.3) with A class data set 
    SPEC CPU2006 with ref data set 
             4 programs from INT,    9 programs from FP 
    We compiled using GNU Compiler Collection 4.1.2 
 
Conditions 

•Analysis includes all of memory access including shared libraries 
•Dynamic execution context analysis is performed when the main function is 

called and terminated when it returns 
•We only focus on dependencies via memory access and ignore these among 

registers 

We implement our dynamic data dependence profiling on Pin tool set, 
and evaluate it using NPB and SPEC CPU benchmark programs 
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The statistics of the obtained LCCT+M 

401.bzip.2 429.mcf 456.hmmer 462.libquantum 

input data chicken.jpg - retro.hmm - 

totalInst 1.80E+11 3.72E+11 2.00E+12 2.24E+12 

MemRead 4.88E+10 1.24E+11 1.02E+12 2.22E+11 

MemWrite 2.03E+10 3.83E+10 1.80E+11 7.81E+10 

RtnNodes 293 356 1660 669 

LoopNodes 271 69 130 146 

DepEdges 2484 1819 6869 3019 
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The results of data dependence analysis for SPEC 2006 CPU INT 

• The amount of memory operation occupies from 30% to 50% of dynamic execution 
 The # of data dependencies between instructions will be proportional  to the # of 

total memory operations  
• From the results, we confirm that our data dependence profiling can efficiently handle 

data dependencies between nodes in whole program executions 

Dynamic context of program execution contributes to 
summarizing the dynamic flow of instruction sequences 
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The execution time overhead 
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• The runtime overheads of our profiling are 47.5x and 38.6x in average for NPB3.3 
and SPEC CPU2006 

• These are dramatically smaller than 𝑆𝐷3 method [Kim, MICRO2010] 
 The runtime overhead of serial version of the 𝑆𝐷3 method is 289x for SPEC CPU2006 
 Since the 𝑆𝐷3 method must compress array memory accesses based on their strides, it 

will require larger overheads for profiling compared with ours 

Fast paging access to lastWrite tables together with LCCT+M 
contributes to reducing performance overhead of our profiling 

The execution time overhead compared with the native execution time  
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The memory space overhead 
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• Here, we observe the maximum memory size provided by operating system by checking 
the VmPeak size at “/proc/<pid>/status” 

• The memory overheads for ours are 16.2x and 17.6x for NPB3.3 and SPEC CPU2006 
 This overhead is comparable to the overhead of serial 𝑆𝐷3 method, 13.4x in SPEC CPU2006 
 Our profiling can detect data dependencies by scalar memory accesses in addition to these by  

array based data accesses 

Our profiling can realized within a reasonable overhead 
compared with the stride compression based 𝑆𝐷3 method 

The memory space overhead compared with the native execution time  
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Validating the obtained LCCT+M 
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• Compare the obtained LCCT+M with source code  
There are seven hot loops (loop-4, 6, 8, 10, 13, 14, 16) 

   loop-4, 14, 16 are not dependent upon themselves => potential loop-level parallel regions 

As obtained results consist with the original source code, we can confirm that 
ours successfully extract and visualize the run-time memory dataflow 

• Visualize the LCCT+M focusing only on hot spots 
 We set the number of executed instructions as a criteria of the threshold 

The LCCT+M of IS (Thr=1.66%). 

Circle node: Loop 
Box node: Procedure call 
Solid line Edge:  Control flow 
Dashed Red line Edge:  
   Data dependency between nodes 
Dashed Blue line Edge:  
   Dependency btw loop itrerations 
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Unveiling various parallel regions 

• In LCCT+M, data dependencies are represented by edges between 
its source node to the sink node.  
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To unveil loop-, task-, pipeline-parallelism,  
we check dependencies across regions of LCCT+M 

Pipeline parallelism 
 If the two tasks are dependent via an 

edge for one particular direction, these 
are potentially  pipeline-parallel tasks 

func-A 

loop A loop D 

loop B 

func-B loop C 

D   =1.0 itr 

Task A 

Task B 

we formulate tasks, each of which is a 
group of nodes in which a parent node 
dominates all of other nodes  

Task parallelism 
 If there are no dependence, then these 

are a potentially task-level parallel region  

func-A 

loop A loop D 

loop B 

func-B loop C 

D   =1.0 itr 

Task A 

Task B 
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Unveiling loop-level parallelism 
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Loop-Level parallelism 
 We need to identify data dependencies among loop iterations in addition to 

among loop regions 
 By counting loop trip count, we profile potential loop-level parallel regions 

(a) How to detect loop iterations 

func-A 

loop A loop D 

loop B 

func-B loop C 

D   =1.0 itr 

Check dependencies among loop iterations 

# iterations 
0 

N-1 

(b) Data dependencies among loop iterations 

Loop iteration depends 
on the previous iteration 

Check loop iterations are dependent 
on the other iterations or not 

Monitor head instructions & count tripCnt 
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Identifying loop-level parallelisms 
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The LCCT+M of CG (Thr=0.63%) 

• In loop nests of (loop-26, 27) and (loop-32, 33), each nodes is independent 
from the others  

We find that we can profile potentially parallel loops from nested loops  
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For identifying task-, and pipeline-parallelisms 
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We find that we can form tasks and profile potentially pipeline-parallel tasks 

The LCCT+M of 456.hmmer [input data=retro.hmm] (Thr=0.74%). 
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Conclusions 
• We have presented a dynamic data dependence profiling technique 

 For analyzing various types of parallelisms across the whole program 
execution  

 Transparent profiling on a dynamic binary translator  
 A locality-aware table structure with paging 
 LCCT+M (Loop-Call Context Tree with Memory dataflow)  

• We have implemented our mechanism and evaluated it using NPB 
and SPEC CPU 2006 benchmark suite.  
 From the results, we have confirmed that we can successfully extract data 

dependencies within reasonable time and space overheads 
 We also have visualized the LCCT+M using its hot spot and confirmed that 

we can identify potential loop-, task-, and pipeline-parallelisms from 
arbitrary binary codes 

• For future work,  
 we are planning to apply our mechanism to speculative loop 

parallelization and runtime loop transformation for further productive 
utilization of parallel computing system 
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