Basics of CafeOBJ and Peano Style Natural Numbers

Lecture Note 1

Topics

- Basic concepts for modeling, specification, verification in CafeOBJ
- Basics of CafeOBJ language system: module, signature, equation, term, reduce, parse
- Specification and verification of Peano style natural numbers

Modeling, Specifying, and Verifying in CafeOBJ

1. By understanding a problem to be modeled/ specified, determine several sorts of objects (entities, data, agents, states) and operations (functions, actions, events) over them for describing the problem
2. Define the meanings/functions of the operations by declaring equations over expressions/terms composed of the operations
3. Write proof scores for properties to be verified

Natural Number

-- Expressions/terms composed of operators

1. 0 is a natural number
2. If n is natural number then (n) is a natural number
3. An object which is to be a natural number by 1 and 2 is only a natural number

Peano's definition of natural numbers (1889), Giuseppe Peano (1858-1932)

Nat $=\{0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) \ldots\}$

Nat $=\{0, s 0, s \mathrm{~s} 0, \mathrm{~s} \boldsymbol{s} \mathrm{~s} 0, \mathrm{~s} \mathrm{~s} \mathrm{~s} \boldsymbol{s} 0, \ldots\}$
Describe a concept in expressions/terms!

CafeOBJ module specifying PNAT

-- Peano Style natural numbers

```
mod! PNAT {
    [ Nat ]
    op 0 : -> Nat {constr} .
    op s_ : Nat -> Nat {constr} .
    op _=_ : Nat Nat -> Bool {comm} .
    eq (N:Nat = N) = true .
    ceq N1:Nat = N2:Nat if (N1 = N2) .
    eq (0 = s(N2:Nat)) = false .
    eq (s(N1:Nat) = s(N2:Nat)) = (N1 = N2).
}
```

Constructors (indicated by \{constr\}) define recursively the set of terms which constitute a sort.

Natural numbers

-- signature and expressions/terms

```
-- sort
[ Nat ]
-- operations
op 0 : -> Nat {constr}
op s_: Nat -> Nat {constr}
```

Nat $=\{0\} \cup\{\sin \mid n \in$ Nat $\}$

Mathematical Induction over Natural Numbers -- induced by declaration of constructors

The recursive structure defined by two constructors of sort Nat induces the following induction scheme.

Goal: Prove that a property $P(n)$ is true
for any natural number $n \in\{0$, $s 0$, s s $0, \ldots\}$
Induction Scheme:
$P(0) \quad \forall n \in N .\left[P(n) \quad \Rightarrow P\left(\begin{array}{ll}s & n\end{array}\right]\right.$
$\forall n \in N . P(n)$
Concrete Procedure: (induction with respect to n)

1. Prove $P(0)$ is true
2. Assume that $P(n)$ holds, and prove that $P(s n)$ is true

Natural numbers with addition operation -- signature and expressions/terms

```
-- sort
[ Nat ]
-- operations
op 0: -> Nat {constr}
op s_: Nat -> Nat {constr}
op _+_: Nat Nat -> Nat
    _-__+_ is a defined operator
```

 Nat \(=\{0\} \cup\{\sin \mid n \in\) Nat \}


```
NatExp ={0} U { s n| n < Nat }
    U {n1+n2| n1\inNat ^n2 \in Nat}
```


Natural numbers with addition

-- expressions/terms composed by operators

```
NatExp = {
0, s 0, s s 0, s s s 0, ... ,
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ...,
(s 0) + 0, (s 0) + (s 0), (s 0) + (s s 0),
(s 0) + (s s s 0), ...,
(s s 0) + 0, (s s 0) + (s 0), (s s 0) + (s s 0),
    (s s 0) + (s s s 0), ...,
0+(0+0), 0 + (0 + (s 0)), ...
(0+0) + 0, (0 + (s 0)) + 0, ..
}
```

Because _+_ is a defined operator, any _+_ operator is supposed to be eliminated. That is, NatExp ==> Nat .

Natural numbers with addition -- equations define meaning/function

CafeOBJ module PNAT+ defining
Peano Natural numbers with addition

```
mod! PNAT+ {
```

 inc (PNAT)
 op _+_ : Nat Nat -> Nat .
 vars N1 N2 : Nat .
 -- equations
 eq \(0+\mathrm{N} 2=\mathrm{N} 2\)
 eq \((\mathrm{s}\) N1) \(+\mathrm{N} 2=\mathrm{s}(\mathrm{N} 1+\mathrm{N} 2)\).
 \}

Defined operator (_+_) is erased by the two equations.

```
Computation/inference
with the equations
    (s s 0) + (s 0)
=s((s 0) + (s 0))
=s s(0 + (s 0))
=s s s 0
```

CafeOBJ> select PNAT+
PNAT+> red s s $0+s 0$
PNAT+> -- reduce in PNAT+
($(\mathrm{s}(\mathrm{s} 0))+(\mathrm{s} 0))$: Nat
(s (s (s 0))):Nat
$(0.000 \mathrm{sec}$ for parse,
3 rewrites (0.000 sec),
5 matches)
Sufficient Completeness

Reduction of CafeOBJ is honest to equational reasoning

- The basic mechanism of CafeOBJ verification is equational reasoning. Equational reasoning is to deduce an equation (a candidate of a theorem) from a given set of equations (axioms of a specification).
- The CafeOBJ system supports an automatic equational reasoning based on term rewriting.
- "reduce" or "red" command of CafeOBJ helps to do equational reasoning by term rewriting.

What can be done with red (reduction) command?

Let us fix a context M (a module M in CafeOBJ), and let ($\mathrm{t} 1=* \mathrm{M}>\mathrm{t} 2$) denote that t 1 is reduced to t 2 in the context. That is, (red in M : t 1 .) returns t 2 . Let ($\mathrm{t} 1=\mathrm{m} \mathrm{t} 2$) denote that t 1 is equal to t 2 in the context m . That is ($\mathrm{t} 1=\mathrm{t} 2$) can be inferred by equational reasoning in \mathbf{M}. It is important to notice:
(t1 =*M> t2) implies (t1 =M t2)
but

```
( t1 =M t2) does not implies( t1 =*M> t2 )
```


Proof score for right zero property:

($\mathrm{N}: \mathrm{Nat}+0=\mathrm{N}$)
-- proof by induction with respect to N : Nat
-- induction base case:
-- opening module PNAT+ to make use of all its contents open PNAT+
red $0+0=0$
close
-- induction step case:
open PNAT+
-- declare that the constant n stands for any Nat value op n : -> Nat.
-- induction hypothesis:
eq $n+0=n$.
-- induction step proof for (s):
red $s n+0=s n$.
close

Declaring constants and equations then reduce

While a module is opened, declaring constants and equations represents assumptions for equational reasoning done by red.

```
%PNAT+> op n : -> Nat .
%PNAT+> **> induction hypothesis:
%PNAT+> eq n + 0 = n .
%PNAT+> **> induction step proof for (s n):
**> induction step proof for (s n):
%PNAT+> red s n + O = s n .
*
-- reduce in %PNAT+ : (((s n) + 0) = (s n)):Bool
(true):Bool
```

This is a proof of
${ }^{\forall} N:$ Nat. $[(N+0)=N$ implies $((s N)+0)=(\mathrm{s} N)]$.

```
Proof score for associativity of ( + _)
(N1:Nat + N2:Nat) + N3:Nat = N1 +(N2 + N3)
```

```
**> induction base case:
open PNAT+
red 0 + (N2:Nat + N3:Nat) = (O + N2) + N3.
Close
**> induction step case:
open PNAT+
**> declare that the constant n1 stands for any Nat value
op n1 : -> Nat.
**> induction hypothesis:
eq (n1 + N2:Nat) + N3:Nat = n1 + (N2 + N3).
**> induction step proof for (s n1):
red ((s n1) + N2:Nat) + N3:Nat = (s n1) + (N2 + N3).
close
```


Comments

A line beginning with " - " (or " $* *$ ") is ignored, and A line beginning with "-->" (or "**>") is echoed back.

```
CafeOBJ> -- this is a comment
CafeOBJ>
CafeOBJ>
```

CafeobJ> ** this is a comment
CafeobJ>

CafeOBJ> --> this is a comment
$-->$ this is a comment
CafeOBJ> **> this is a comment
**> this is a comment
CafeOBJ>

It is very important to write as much appropriate comments as possible for explaining specifications and proof scores (verifications/proofs).

Three kinds of modules

CafeOBJ specification is composed of modules. There are three kinds of modules.

```
mod! <module_name> {
    <modlue_element> *
}
```

```
mod* <module_name> {
    <modlue_element> *
}
```

mod <module_name> \{
<modlue_element>*
\}
mod! declares that the module denotes tight denotation mod* declares that the module denotes loose denotation mod does not declare any semantic denotation
[Naming convention] module name starts with two successive upper case characters
(example:TEST, NAT, PNAT+, ACCOUNT-SYS, ...)

A module is composed of signature and axioms/equations

```
mod! PNAT {
    [ Nat ]
    op O : -> Nat {constr}
    op s_ : Nat -> Nat {constr}
    op _=_ : Nat Nat -> Bool {comm}
    eq (N:Nat = N) = true
    ceq (N1 = N2) if (N1 = N2)
    eq (0 = s(N2:Nat)) = false
    eq (s(N1:Nat) = s(N2:Nat))
        = (N1 = N2)
}
```

Signature:
sort name, operator name, arity, co-arity, rank
A signature is a pair of a set of sorts and a set of operations.

[Convention] The first and second letter of a sort name is written in a upper case and lower case letter respectively. (E.g. Nat, Set)
[Convention] The first letter of an operation name is written in a
lowerl case letter or a non-alphabet letter. (E.g. 0, s, +)

Order sorted signature and sorted terms
 -- Natural numbers with predecessor function

```
-- signature
-- sorts
[ Zero NzNat < Nat ]
-- operators
op 0 : -> Zero {constr}
op s_ : Nat -> NzNat {constr}
op p_: NzNat -> Nat
eq p s N:Nat = N
```

Sorted terms
Zero $=\{0\}$
NzNat $=\{s n \mid n \in$ Nat $\}$
Nat = Zero \cup NzNat $U\{p n \mid n \in$ NzNat $\}$
(p 0) is handled as a parsing error!

Recursive definition of terms

- term is also called expression or tree

For a given signature, t is a term of a sort s if and only if t is

- a variable $\mathrm{X}: \mathrm{S}$,
- a constant c declared by "op c : -> s ", or
- a term $f\left(t_{1}, t_{n}\right)$ for "op $f: S_{1} S_{n}->S$ " and a term t_{i} of a sort $S_{i}(i=1, n)$.
- a term of a sort S^{\prime} which is a sub-sort of S (Example: Since Zero < Nat, a term 0 of sort Zero is also a term of sort Nat)

Several forms of function application: standard, prefix, infix, postfix, distfix

```
op f : Nat Nat -> Nat .
    f(2,3) standard
op (f_ _) : Nat Nat -> Nat . -- recommended
                                    -- for succesive
```

\qquad

```
    (f 2 3) prefix
op f__ : Nat Nat -> Nat .
    (f 2 3) prefix
op _+_ : Nat Nat -> Nat .
    (2 + 3) infix
op _! : Nat -> Nat .
    (5 !) postfix
op if_then_else_fi : Bool Nat Nat -> Nat .
    (if 2 < 3 then 4 else 5 fi) distfix
```

"(" and ")" are meta-charactors for grouping expressions in CafeOBJ and can not be used for any other purpose.

Parsing - precedence of operators

```
s 0 + 0 represents (s 0) + 0, because the
operator (s ) has high precedence than the
operator (_ + _)
    s 0 + 0
```



``` operators can be checked by the commands
describe op (s _) describe op (_ + _)
```


Equation

An equation is a pair of terms of a same sort, and written as:

$$
\text { eq } 1=r .
$$

in CafeOBJ. Where 1 is called the left-hand side (LHS) of the equation and r is the righthand side (RHS). An equation can have a condition (COND, a Boolean term) c like:

```
ceq l = r if c.
```

- Properties to be verified are also expressed as equations.

Conditions for an equation to be a rewriting rule

For an equation to be used as a rewriting rule for doing reductions, the following conditions must be satisfied.
(1) LHS is not a variable.
an example violating this condition:

$$
\text { eq } \mathrm{N}: \text { Nat }=\mathrm{N}: \text { Nat }+0 \text {. }
$$

(2) All variables in RHS are in LHS.
an example violating this condition:

```
        eq O = N:Nat * O .
```


Two way of declaring variables
 - use appropriate one based on the situation

Variable can be declared in an equation directly. The scope of the variable ends at the end of the equation.

```
mod! PNAT+ { [Nat]
    eq 0 N2:Nat = N2 .
    eq (s N1:Nat) + N2:Nat = s(N1 + N2) . }
```

Variables can be declared before equations. This is just abbreviation for saving many variable declarations in the equations. N 2 in the first eq has nothing to do with N 2 in the second eq.

```
mod! PNAT+ { [Nat]
    vars N1 N2 : Nat .
    eq 0 + N2 = N2 .
    eq (s N1) + N2 = s(N1 + N2) . }
```


Constant v.s. variable

Using a variable in an equation instead of a constant makes a drastic change of meaning of the proof score. Be careful!

- The scope of a constant is to the end of a open-close session assuming that the declared constants are fresh.
- The scope of a variable is inside of the equation.

```
open PNAT+
op n : -> Nat.
eq n + 0 = n.
red (s n) + 0 = s n .
close
```

```
open PNAT+
var N : Nat.
eq N + O = N
red (s N) + O = s N .
close
```

Constant: ${ }^{\forall} N:$ Nat. $[(N+0)=N \Rightarrow((\mathrm{~s} N)+0)=(\mathrm{s} N)]$
Variable: ${ }^{\forall} N:$ Nat. $[(N+0)=N] \Rightarrow{ }^{\forall} N$:Nat. $\left[\left(\left(\begin{array}{ll}(\mathrm{N}\end{array}\right)+0\right)=(\mathrm{s} N)\right]$

Two equality predicates _=_ and _==

```
Assume that (t1 =*> t1') and (t2 =*> t2') in any context
    then
    if (t1' and t2' are the same term )
        then (red t1 = t2 .) returns true
            and
            ( red t1 == t2 .) returns true
    if ( t1' and t2' are different terms )
        then (red t1 = t2 .) returns( t1' = t2' )
            but
            (red t1 == t2 .) returns false
```

If reduction/rewriting is not complete w.r.t. a set of equations, _==_ may returns false even if two terms may have a possibility of being equal w.r.t. the set of equations.

Exercise

```
mod! PNAT+* { pr(PNAT)
    vars X Y Z : Nat .
    op _+_ : Nat Nat -> Nat {prec: 30}
    eq 0 + Y = Y .
    eq s(X) + Y = s(X + Y).
    op _*_ : Nat Nat -> Nat {prec: 29}
    eq 0 * Y = O .
    eq s(X) * Y = Y + (X * Y) . }
```

Write proof scores to verify that binary operators \qquad and * in PNAT+* are associative and commutative.
Write also proof scores to verify that _*_ distributes over _+_, that is
$(\mathrm{N} 1+\mathrm{N} 2){ }^{*} \mathrm{~N} 3=(\mathrm{N} 1 * \mathrm{~N} 3)+(\mathrm{N} 2 * N 3)$.

Module PNAT+

```
mod* PNAT+ {
    [Nat] Signature \Sigma
    op O : -> Nat {constr}
    op s_ : Nat -> Nat {constr}
    op _+_ : Nat Nat -> Nat
    OP _=_ : Nat Nat -> Bool {comm}
```

```
eq[+1]: 0 + Y:Nat = Y .
```

eq[+1]: 0 + Y:Nat = Y .
Equations E
eq[+2]: (s X:Nat) + Y:Nat = s(X + Y)
eq[+2]: (s X:Nat) + Y:Nat = s(X + Y)
eq[m2o]: (X:Nat = X) = true
eq[m2o]: (X:Nat = X) = true
ceq[o2m]: X:Nat = Y:Nat if X = Y .
ceq[o2m]: X:Nat = Y:Nat if X = Y .
eq (O = s Y:Nat) = false.
eq (O = s Y:Nat) = false.
eq (s X:Nat = s Y:Nat) = (X = Y) .

```
eq (s X:Nat = s Y:Nat) = (X = Y) .
```


Goals or entailments

A primary goal for writing spec $S=<\Sigma, E>$ is to prove that any model of S satisfy a (conditional) equation ($\forall \mathbf{X})$ e. The goal is written as:

$$
E \mid=(\forall \mathbf{X}) e \text { or } S \mid=(\forall \mathbf{X}) e .
$$

These goals are sometimes called semantic entailments.
For doing formal verification, it is common to think of entailment:

$$
\mathrm{E} \mid-(\forall \mathbf{X}) e
$$

which corresponds to semantic entailment:

$$
\mathrm{E} \mid=(\forall \mathbf{X}) e .
$$

We have a quasi complete set of proof rules for entailments which satisfies:

$$
\text { E } \mid-(\forall \mathbf{X}) e \quad \text { iff } \quad E \mid=(\forall \mathbf{X}) e
$$

Examples of Goals

PNAT+ $1-(\forall X: N a t)(X+0=X)$
PNAT+ $\mid-(\forall X: N a t)(\forall Y: N a t)(X+(s Y)=s(X+Y))$
PNAT+ |- $(\forall X: N a t)(\forall Y: N a t)(X+Y=Y+X)$
in standard notation

PNAT+ $1-(\mathrm{X}:$ Nat $+0=\mathrm{X})$
PNAT+ |- (X:Nat + (s Y:Nat) $=\mathrm{s}(\mathrm{X}+\mathrm{Y}))$
PNAT+ |- (X:Nat $+\mathrm{Y}: \mathrm{Nat}=\mathrm{Y}+\mathrm{X})$
in CafeOBJ notation

Proof Tree of Goal

A proof of a goal \mathbf{G} is a tree of goals (called a proof tree of G) such that

- G is the root,
- for each node \boldsymbol{N}, its sub-nodes $S N_{1}, \ldots, S N_{m}$ are generated by applying a (derived) proof rule to the node. That is, by applying the following (derived) proof rule:

$$
S N_{1}, \ldots, S N_{m}
$$

- and, each leaf can be difscharged by CafeOBJ reduction/rewriting.

Proof Tree of $(\forall X)(X+0=X)$

$$
\frac{\text { PNAT }+\mid-(0+0=0) \quad \text { PNAT }+\left.\cup\{x+0=x\}\right|_{-x\}}(s x)+0=s \mathrm{x}}{\text { PNAT } \mid-(\forall X)(X+0=X)}
$$

(1) Struct Ind)
\checkmark Each leaf can be discharged by rewriting.

- $0+0 \rightarrow 0 \quad$ by $[+1]$
- $(s x)+0 \rightarrow s(0+x)$ by [+2] $\rightarrow \mathrm{s} x$ by I.H.

Proof Tree of $(\forall X)(\forall Y)(X+s Y=s(X+Y))$

$$
\begin{aligned}
& \text { PNAT }+\cup\{(\forall Y)(x+s Y=s(x+Y))\} \\
& \frac{\left.\right|_{\{x, y\}} s x+s y=s(s x+y)}{\operatorname{PNAT}+U\{(\forall Y)(x+s Y=s(x+Y))\}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { PNAT+ }-\left.(\forall Y)(0+s Y=s(0+Y)) \quad\right|_{-(x)}(\forall Y)(s x+s Y=s(s X+Y))(1) \\
& \text { PNAT+ }-(\forall X)(\forall Y)(X+s Y=s(X+Y))
\end{aligned}
$$

(1) Struct Ind) (2) Generalization) (3) Generalization)
\checkmark Each leaf can be discharged by rewriting.

Discharge of Goals with CafeOBJ codes

CafeOBJ can check if goals are discharged.
PNAT $+\cup\{x+0=x\} \mid-_{\{x\}}(s x)+0=s x$
open PNAT+
op \mathbf{x} : -> Nat.
eq $\mathbf{x}+0=\mathbf{x}$.
red (s x) $+0=(s x)$.
close

```
PNAT+U{(\forallY)(x + s Y = s (x + Y))} |-{x,y}
open PNAT+
    ops x y : -> Nat .
    eq x + s Y:Nat = x + Y .
    red s x + s y = s(s x + y)
close
```


Proof Passages \& Scores

A CafeOBJ code fragment that checks if a goal is discharged is called a proof passage of the goal.

- The set of the proof passages of the leaves of a proof tree of a goal is called a proof score of the goal.

```
A proof score of PNAT+ - ( }\forall\textrm{X})(\forallY)(X+Y=Y + X
open PNAT+ 
```



```
    red 0 + y = y + 0
close
```

A proof passage of
PNAT $+\cup\left\{(\forall Y)(x+Y=Y+x),\left.(\forall X)(\forall Y)(X+s Y=s(X+Y)\}\right|_{-\{x, y\}} s x+y=y+s x\right.$
open PNAT+
ops x y : -> Nat.
eq $\mathbf{x}+\mathrm{Y}: \mathrm{Nat}=\mathbf{Y}+\mathbf{x}$
eq $X: N a t+s Y: N a t=\dot{s}(X+Y)$.
red $s x+y=y+s x$.
close

