Classical provability of uniform versions and intuitionistic provability

Makoto Fujiwara
(joint work with Ulrich Kohlenbach)

Mathematical Institute, Tohoku University

CTFM2014
19, February, 2014
Many mathematical statements have \(\Pi_2 \) form:

\[
\forall X \ (A(X) \rightarrow \exists Y \ B(X, Y)).
\]

Intermediate Value Theorem.

For any continuous function \(f : [0, 1] \rightarrow \mathbb{R} \) s.t. \(f(0) < 0 < f(1) \), then there exists a point \(m \in [0, 1] \) s.t. \(f(m) = 0 \).

For \(\Pi_2 \) statements, we study the relationship between uniform provability in classical reverse mathematics and intuitionistic (constructive) reverse mathematics.
Many mathematical statements have Π_2 form:

$$\forall X \ (A(X) \rightarrow \exists Y \ B(X, Y)).$$

Intermediate Value Theorem.

For any continuous function $f : [0, 1] \rightarrow \mathbb{R}$ s.t. $f(0) < 0 < f(1)$, then there exists a point $m \in [0, 1]$ s.t. $f(m) = 0$.

For Π_2 statements, we study the relationship between uniform provability in classical reverse mathematics and intuitionistic (constructive) reverse mathematics.
Sequential versions

- Many Π^1_2 statements are provable in RCA ($\text{RCA}_0 + \text{full induction}$).
- In some of their proofs, however, the construction of the solution Y from given X is not uniform.
- To reveal the non-uniformity, the following sequential version has been investigated.

$$\forall \langle X_n \rangle_{n \in \mathbb{N}} (\forall n A(X_n) \rightarrow \exists \langle Y_n \rangle_{n \in \mathbb{N}} \forall n B(X_n, Y_n)).$$

<table>
<thead>
<tr>
<th></th>
<th>Pointwise</th>
<th>Sequential</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD (The existence of Jordan decomposition for real square matrices)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IPP (Infinite pigeonhole principle)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IVT (Intermediate value theorem)</td>
<td>RCA</td>
<td>WKL</td>
</tr>
<tr>
<td>TET (Tietze extension theorem)</td>
<td>RCA</td>
<td>RCA</td>
</tr>
</tbody>
</table>
Sequential versions

- Many Π^1_2 statements are provable in RCA(RCA_0+full induction).
- In some of their proofs, however, the construction of the solution Y from given X is not uniform.
- To reveal the non-uniformity, the following sequential version has been investigated.

$$\forall \langle X_n \rangle_{n \in \mathbb{N}} (\forall n A(X_n) \rightarrow \exists \langle Y_n \rangle_{n \in \mathbb{N}} \forall n B(X_n, Y_n)).$$

<table>
<thead>
<tr>
<th></th>
<th>Pointwise</th>
<th>Sequential</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD (The existence of Jordan decomposition for real square matrices)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IPP (Infinite pigeonhole principle)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IVT (Intermediate value theorem)</td>
<td>RCA</td>
<td>WKL</td>
</tr>
<tr>
<td>TET (Tietze extension theorem)</td>
<td>RCA</td>
<td>RCA</td>
</tr>
</tbody>
</table>
Sequential versions

- Many Π^1_2 statements are provable in RCA($\text{RCA}_0 + \text{full induction}$).
- In some of their proofs, however, the construction of the solution Y from given X is not uniform.
- To reveal the non-uniformity, the following sequential version has been investigated.

$$\forall\langle X_n \rangle_{n \in \mathbb{N}} \ (\forall n A(X_n) \rightarrow \exists \langle Y_n \rangle_{n \in \mathbb{N}} \forall n B(X_n, Y_n)) .$$

<table>
<thead>
<tr>
<th></th>
<th>Pointwise</th>
<th>Sequential</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD (The existence of Jordan decomposition for real square matrices)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IPP (Infinite pigeonhole principle)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IVT (Intermediate value theorem)</td>
<td>RCA</td>
<td>WKL</td>
</tr>
<tr>
<td>TET (Tietze extension theorem)</td>
<td>RCA</td>
<td>RCA</td>
</tr>
</tbody>
</table>
Sequential versions

Many Π^1_2 statements are provable in RCA($\text{RCA}_0 + \text{full induction}$).

In some of their proofs, however, the construction of the solution Y from given X is not uniform.

To reveal the non-uniformity, the following sequential version has been investigated.

$$\forall \langle X_n \rangle_{n \in \mathbb{N}} (\forall n A(X_n) \rightarrow \exists \langle Y_n \rangle_{n \in \mathbb{N}} \forall n B(X_n, Y_n)).$$

<table>
<thead>
<tr>
<th>Theorem (Description)</th>
<th>Pointwise</th>
<th>Sequential</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD (The existence of Jordan decomposition for real square matrices)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IPP (Infinite pigeonhole principle)</td>
<td>RCA</td>
<td>ACA</td>
</tr>
<tr>
<td>IVT (Intermediate value theorem)</td>
<td>RCA</td>
<td>WKL</td>
</tr>
<tr>
<td>TET (Tietze extension theorem)</td>
<td>RCA</td>
<td>RCA</td>
</tr>
</tbody>
</table>
The following uniform version seems to be rather acceptable than the sequential version as representation of uniformity.

\[\exists \Phi \forall X (A(X) \rightarrow B(X, \Phi(X))) \].

(Note that uniform version implies sequential version.)

However, for a \(\Pi^1_2 \) sentence, its uniform version is not naturally represented in the language of second-order arithmetic.

To treat uniform versions, the system of arithmetic in all finite types is employed.
The following uniform version seems to be rather acceptable than the sequential version as representation of uniformity.

\[\exists \Phi \forall X (A(X) \rightarrow B(X, \Phi(X))) \].

(Note that uniform version implies sequential version.)

However, for a \(\Pi_2^1 \) sentence, its uniform version is not naturally represented in the language of second-order arithmetic.

To treat uniform versions, the system of arithmetic in all finite types is employed.
The following **uniform version** seems to be rather acceptable than the sequential version as representation of uniformity.

$$\exists \Phi \forall X (A(X) \rightarrow B(X, \Phi(X))).$$

(Note that uniform version implies sequential version.)

However, for a Π^1_2 sentence, its uniform version is not naturally represented in the language of second-order arithmetic.

To treat uniform versions, the system of arithmetic in all finite types is employed.
Hilbert-type system E-HA^ω (resp. E-PA^ω) is the finite type extension of HA (resp. PA).

E-$PA^\omega := E$-$HA^\omega + \text{LEM}(A \lor \neg A)$.

$RCA^\omega := E$-$PA^\omega + \text{QF-AC}^{1,0}$.

Proposition. (Kohlenbach 2001)

RCA^ω is a conservative extension of RCA.
Hilbert-type system E-HA^ω (resp. E-PA^ω) is the finite type extension of HA (resp. PA).

E-$PA^\omega := E$-$HA^\omega + \text{LEM}(A \lor \neg A)$.

$RCA^\omega := E$-$PA^\omega + \text{QF-AC}^{1,0}$.

Proposition. (Kohlenbach 2001)

RCA^ω is a conservative extension of RCA.
Strength of Uniform Versions

- **RCA^ω ⊢ UWKL ↔ UACA.** (Kohlenbach 2001)

- **RCA^ω** is too strong as base system for investigating uniform versions!

<table>
<thead>
<tr>
<th></th>
<th>Pointwise</th>
<th>Sequential</th>
<th>Uniform (over RCA^ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD</td>
<td>RCA</td>
<td>ACA</td>
<td></td>
</tr>
<tr>
<td>IPP</td>
<td>RCA</td>
<td>ACA</td>
<td>UACA</td>
</tr>
<tr>
<td>IVT</td>
<td>RCA</td>
<td>WKL</td>
<td></td>
</tr>
<tr>
<td>TET</td>
<td>RCA</td>
<td>RCA</td>
<td>RCA^ω</td>
</tr>
</tbody>
</table>

UWKL is the uniform version of WKL.

UACA: \(\exists E^2 \forall f^1 (E(f) = 0 \leftrightarrow \exists x^0 (f(x) = 0))\).
Strength of Uniform Versions

- **RCA$^\omega$ ⊨ UWKL ↔ UACA.** (Kohlenbach 2001)

<table>
<thead>
<tr>
<th></th>
<th>Pointwise</th>
<th>Sequential</th>
<th>Uniform (over RCA$^\omega$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD</td>
<td>RCA</td>
<td>ACA</td>
<td></td>
</tr>
<tr>
<td>IPP</td>
<td>RCA</td>
<td>ACA</td>
<td>UACA</td>
</tr>
<tr>
<td>IVT</td>
<td>RCA</td>
<td>WKL</td>
<td></td>
</tr>
<tr>
<td>TET</td>
<td>RCA</td>
<td>RCA</td>
<td>RCA$^\omega$</td>
</tr>
</tbody>
</table>

- UWKL is the uniform version of WKL.
- UACA: $\exists E^2 \forall f^1 \ (E(f) = 0 \iff \exists x^0 (f(x) = 0))$.

Remark.
RCA$^\omega$ is too strong as base system for investigating uniform versions!
The Systems with Weak Extensionality

- Our systems have only $=_{0}$ as predicate symbol and $s^{\rho} =_{\rho} t^{\rho}$ is the abbreviation for

$$\forall v_{1}^{\rho}, \ldots, v_{k}^{\rho} \ (s(v_{1} \ldots v_{k}) =_{0} t(v_{1} \ldots v_{k}))$$

where $\rho = \rho_{1} \rightarrow \ldots \rightarrow \rho_{k} \rightarrow 0$.

- E-PA$^\omega$ have the **extensionality** axiom (E):

$$\forall z^{\rho \rightarrow \tau}, x^{\rho}, y^{\rho} (x =_{\rho} y \rightarrow z(x) =_{\tau} z(y))$$

- WE-PA$^\omega$ (resp. WE-HA$^\omega$) is the subsystem of E-PA$^\omega$ (resp. E-HA$^\omega$) where (E) is replaced by the **weak extensionality** rule:

$$\frac{A_{qf} \rightarrow s =_{\rho} t}{A_{qf} \rightarrow r^{\tau}[s/x^{\rho}] =_{\tau} r[t/x^{\rho}]}.$$

- WRCA$^\omega :=$ WE-PA$^\omega + \text{QF-AC}^{1,0}$.

- WRCA$^\omega$ is a conservative extension of RCA.
By comparing the provably recursive functions, we have

\[\text{WRCA}^\omega + \text{UWKL} \nsubseteq \text{UACA}. \]

<table>
<thead>
<tr>
<th></th>
<th>Pointwise</th>
<th>Sequential</th>
<th>Uniform (over \text{WRCA}^\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD</td>
<td>RCA</td>
<td>ACA</td>
<td>UACA</td>
</tr>
<tr>
<td>IPP</td>
<td>RCA</td>
<td>ACA</td>
<td>UACA</td>
</tr>
<tr>
<td>IVT</td>
<td>RCA</td>
<td>WKL</td>
<td>UWKL</td>
</tr>
<tr>
<td>TET</td>
<td>RCA</td>
<td>RCA</td>
<td>WRCA^\omega</td>
</tr>
</tbody>
</table>
By comparing the provably recursive functions, we have

$$\text{WRCA}^\omega + \text{UWKL} \not\models \text{UACA}.$$
For the statements non-uniformly provable in RCA, the shift of the strength by uniformization seems to be caused from the use of LEM : $A \lor \neg A$ for undecidable A.
The following result expresses the informal idea that if a \(\Pi_2 \) statement is provable without the use of \(\text{LEM} \), then it has a uniform proof.

Theorem. (Hirst-Mummert 2011)

For a \(\Pi_2 \) sentence \(S := \forall x^\rho (A(x) \rightarrow \exists y^\tau B(x, y)) \) where \(A \) is purely universal and \(B \) has the suitable syntactical form, if

\[
\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + \text{M}^\omega \vdash S,
\]

then

\[
\text{WRCA}^\omega \vdash \text{Uni}(S).
\]

- \(\text{IP}_\forall^\rho,^\tau : (\forall z^\rho A_{qf} \rightarrow \exists x^\tau B(x)) \rightarrow \exists x^\tau (\forall z^\rho A_{qf} \rightarrow B(x^\rho)) \).
- \(\text{M}^\rho : \neg\neg\exists x^\rho A_0(x) \rightarrow \exists x^\rho A_0(x) \).

The proof is straightforward by the usual Dialectica interpretation (which extracts the term constructing \(y \) from \(x \)).
The following result expresses the informal idea that if a \(\Pi_2 \) statement is provable without the use of \textbf{LEM}, then it has a uniform proof.

\textbf{Theorem. (Hirst-Mummert 2011)}

For a \(\Pi_2 \) sentence \(S := \forall x^\rho \left(A(x) \rightarrow \exists y^\tau B(x, y) \right) \) where \(A \) is purely universal and \(B \) has the suitable syntactical form, if

\[\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + M^\omega \vdash S, \]

then

\[\text{WRCA}^\omega \vdash \text{Uni}(S). \]

- \(\text{IP}_\forall^{\rho, \tau} : (\forall z^\rho A_{qf} \rightarrow \exists x^\tau B(x)) \rightarrow \exists x^\tau (\forall z^\rho A_{qf} \rightarrow B(x^\rho)) \).
- \(M^\rho : \neg \neg \exists x^\rho A_0(x) \rightarrow \exists x^\rho A_0(x) \).

The proof is straightforward by the usual Dialectica interpretation (which extracts the term constructing \(y \) from \(x \)).
Corollary.

For a Π_2 sentence S of the previous syntactical form, if

$$\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + \text{M}^\omega \vdash S,$$

then

$$\text{RCA} \vdash \text{Seq}(S).$$

Application.

IVT, IPP, JD are not provable in $\text{E-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + \text{M}^\omega$.
Corollary.

For a Π_2 sentence S of the previous syntactical form, if

$$\text{WE-HA}_\omega + \text{AC}_\omega + \text{IP}_\forall^\omega + \text{M}_\omega \vdash S,$$

then

$$\text{RCA} \vdash \text{Seq}(S).$$

Application.

IVT, IPP, JD are not provable in $\text{E-HA}_\omega + \text{AC}_\omega + \text{IP}_\forall^\omega + \text{M}_\omega$.
Motivating Results

Hierarchy of **LEM** over HA (Akama et al., 2004)

- **M⁰**: \(\neg\neg\exists x^0 A_{qf} \rightarrow \exists x^0 A_{qf} \)
- **Σ¹-LEM**: \(\exists x^0 A_{qf} \lor \neg\exists x^0 A_{qf} \)
- **Π¹-DML**: \(\neg(\exists x^0 A_{qf} \land \exists y^0 B_{qf}) \rightarrow (\neg\exists x^0 A_{qf} \lor \neg\exists y^0 B_{qf}) \)

Some equivalences over intuitionistic systems (like WE-HA\(^\omega\)) have been established.

Proposition. (Ishihara, 2005)

1. ACA \(\leftrightarrow\) \(\Sigma^0_1\)-LEM + \(\Pi^0_1\)-AC\(^0\cdot^0\).
2. WKL \(\leftrightarrow\) \(\Sigma^0_1\)-DML + \(\Pi^0_1\)-AC\(^\lor\).
Motivating Results

Hierarchy of LEM over HA (Akama et al., 2004)

\[\Sigma_1^0 - \text{LEM} \]

\[\Pi_1^0 - \text{LEM} \]

\[\Sigma_1^0 - \text{DML} \]

\[M^0 : \neg \exists x^0 A_{qf} \rightarrow \exists x^0 A_{qf} \]

\[\Sigma_1^0 - \text{LEM} : \exists x^0 A_{qf} \lor \neg \exists x^0 A_{qf} \]

\[\Sigma_1^0 - \text{DML} : \neg (\exists x^0 A_{qf} \land \exists y^0 B_{qf}) \rightarrow (\neg \exists x^0 A_{qf} \lor \neg \exists y^0 B_{qf}) \]

Some equivalences over intuitionistic systems (like WE-HA\(^\omega\)) have been established.

Proposition. (Ishihara, 2005)

1. ACA \leftrightarrow \Sigma_1^0 - \text{LEM} + \Pi_1^0 - \text{AC}^{0,0}.
2. WKL \leftrightarrow \Sigma_1^0 - \text{DML} + \Pi_1^0 - \text{AC}^{\vee}.
Question.
Can we extract stronger unprovability for the statement whose sequential version implies ACA rather than only WKL?

Theorem. (Kohlenbach-F.)
For a Π_2 sentence S of the previous syntactical form, if

$$\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + \text{M}^\omega + \text{UWKL} + \text{KL} \vdash S,$$

then

$$\text{WRCA}^\omega + \text{UWKL} \vdash \text{Uni}(S).$$

Application. (Note that $\text{WRCA}^\omega + \text{UWKL} \nvdash \text{ACA}$.)
IPP, JD are not provable in
WE-HA$^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + \text{M}^\omega + \text{UWKL} + \text{KL}$.
Question.
Can we extract stronger unprovability for the statement whose sequential version implies ACA rather than only WKL?

Theorem. (Kohlenbach-F.)
For a Π_2 sentence S of the previous syntactical form, if

$$\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + M^\omega + \text{UWKL} + \text{KL} \vdash S,$$

then

$$\text{WRCA}^\omega + \text{UWKL} \vdash \text{Uni}(S).$$

Application. (Note that $\text{WRCA}^\omega + \text{UWKL} \not\vdash \text{ACA}$.)
IPP, JD are not provable in $\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + M^\omega + \text{UWKL} + \text{KL}$.

13 / 20
Question.
Can we extract stronger unprovability for the statement whose sequential version implies ACA rather than only WKL?

Theorem. (Kohlenbach-F.)
For a \(\Pi_2 \) sentence \(S \) of the previous syntactical form, if

\[
\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}^\omega + M^\omega + \text{UWKL} + \text{KL} \vdash S,
\]

then

\[
\text{WRCA}^\omega + \text{UWKL} \vdash \text{Uni}(S).
\]

Application. (Note that \(\text{WRCA}^\omega + \text{UWKL} \not\vdash \text{ACA} \).
IPP, JD are not provable in
\[
\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}^\omega + M^\omega + \text{UWKL} + \text{KL}.
\]
However, we can extract further stronger unprovability if each uniform version implies UACA over WRCA^{ω}.

That is the merit to investigate uniform versions rather than sequential versions!
Main Theorem. (Kohlenbach-F.)

For a Π_2 sentence S of the previous syntactical form, if

$$WRCA^\omega + \text{Uni}(S) \vdash UACA,$$

then

$$WE-HA^\omega + AC^\omega + IP_\forall^\omega + M^\omega + UWKL + KL + BI^\omega \nvdash S.$$

- BI^ω is the bar induction scheme in all finite type.

Application.

IPP, JD are not provable in

$$WE-HA^\omega + AC^\omega + IP_\forall^\omega + M^\omega + UWKL + KL + BI^\omega.$$

Remark.

1. WRCA$^\omega$ cannot be replaced by RCA$^\omega$.
2. UACA cannot be replaced by ACA.
Main Theorem. (Kohlenbach-F.)

For a Π_2 sentence S of the previous syntactical form, if

$$\text{WRCA}^\omega + \text{Uni}(S) \vdash \text{UACA},$$

then

$$\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + \text{M}^\omega + \text{UWKL} + \text{KL} + \text{BI}^\omega \not\vdash S.$$

- BI^ω is the bar induction scheme in all finite type.

Application.

IPP, JD are not provable in

$$\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}_\forall^\omega + \text{M}^\omega + \text{UWKL} + \text{KL} + \text{BI}^\omega.$$

Remark.

1. WRCA^ω cannot be replaced by RCA^ω.
2. UACA cannot be replaced by ACA.
Main Theorem. (Kohlenbach-F.)

For a Π_2 sentence S of the previous syntactical form, if

$$WRCA^\omega + \text{Uni}(S) \vdash \text{UACA},$$

then

$$WE-HA^\omega + AC^\omega + IP_\forall^\omega + M^\omega + UWKl + KL + BI^\omega \not\vdash S.$$

- BI^ω is the bar induction scheme in all finite type.

Application.

IPP, JD are not provable in

$$WE-HA^\omega + AC^\omega + IP_\forall^\omega + M^\omega + UWKl + KL + BI^\omega.$$

Remark.

1. $WRCA^\omega$ cannot be replaced by RCA^ω.
2. $UACA$ cannot be replaced by ACA.

Tools for the proof of main theorem.

- $\text{WE-HA}^\omega + \text{AC}^\omega + \text{IP}^\omega + M^\omega + \text{BR}^\omega \text{(bar recursion)} \vdash \text{BI}^\omega$ (Howard 1968).
- Negative translation.
- The Dialectica interpretation without extracting terms.
- A non-standard principle F^- related to the fan principle.
- The model M^ω of all strongly majorizable functionals.
Corollary. (due to Luckhard’s technique)

For a Π^1_2 sentence S of the previous syntactical form, if

$$\text{WRCA}^\omega + \text{Uni}(S) \vdash \text{UACA}, \text{ then}$$

$$\text{E-HA}^\omega + \text{AC}^\omega * + \text{IP}_{\forall}^{1,1} + M^1 + \text{KL} + \text{BI}^1 \not
\vdash S.$$

- $\text{AC}^\omega * := \text{AC}^{1,\tau} + \text{AC}^{0,\tau}$.
- BI^1 is the restriction of BI^ω to type 1 objects.
Roughly speaking, our meta-theorem allows one to detect using classical reasoning on Uni(S) that S implies at least the Π^0_1-LEM rather than only the strictly weaker principle Σ^0_1-DML.
Future Work.

- In intuitionistic reverse mathematics, a lot of relationships between non-constructive principles still remain to be open.
- Theorems of this kind might be strong tools to analyze the structure of hierarchy between non-constructive principles for constructive reverse mathematics.

⇒ Analyze relationships between non-constructive principles by using theorems of this kind and uniform reverse mathematics!
Future Work.

- In intuitionistic reverse mathematics, a lot of relationships between non-constructive principles still remain to be open.
- Theorems of this kind might be strong tools to analyze the structure of hierarchy between non-constructive principles for constructive reverse mathematics.

⇒ Analyze relationships between non-constructive principles by using theorems of this kind and uniform reverse mathematics!
Thank you for your attention!