A monad in the combinatory algebras

Hajime Ishihara

School of Information Science Japan Advanced Institute of Science and Technology (JAIST) Nomi, Ishikawa 923-1292, Japan

CTFM 2014, Tokyo, 17-20 February 2014

Contents

- Categories
- Combinatory algebras
- ► A category **Calg*** of combinatory algebras
- Functors
- ▶ An endofunctor T on Calg*
- Natural transformations
- A natural transformation η
- lacktriangle A natural transformation μ
- Monads
- ▶ A monads $\langle T, \eta, \mu \rangle$ in **Calg***
- ▶ T-algebras
- ▶ A T-algebras $\langle D, \theta_D^c \rangle$
- A bijection

Categories

A category **C** consists of

- a class of objects,
- ▶ a class of morphisms; each morphism f has a source object A and a target object B (denoted by $f: A \rightarrow B$),
- ▶ a composition operator \circ for morphisms $f: A \to B$ and $g: B \to C$ yielding a morphism $g \circ f: A \to C$ such that
 - 1. if $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$, then $h \circ (g \circ f) = (h \circ g) \circ f$,
 - 2. for each object A there exists a morphism $1_A : A \to A$ such that $1_B \circ f = f \circ 1_A$ for each $f : A \to B$.

Combinatory algebras

A combinatory algebra is a structure $D = \langle \underline{D}, \cdot, \mathtt{k}_D, \mathtt{s}_D \rangle$ with a set \underline{D} , a binary operation \cdot on \underline{D} and elements \mathtt{k}_D and \mathtt{s}_D of \underline{D} such that

- 1. $\neg(\mathtt{k}_D=\mathtt{s}_D)$,
- 2. $k_D \cdot x \cdot y = x$,
- 3. $s_D \cdot x \cdot y \cdot z = x \cdot z \cdot (y \cdot z)$.

A homomorphism between combinatory algebras $D = \langle \underline{D}, \cdot, k_D, s_D \rangle$ and $D' = \langle \underline{D}', \cdot', k_{D'}, s_{D'} \rangle$ is a mapping $f : \underline{D} \to \underline{D}'$ such that

- 1. $f(x \cdot y) = f(x) \cdot' f(y)$,
- $2. f(k_D) = k_{D'},$
- 3. $f(s_D) = s_{D'}$.

Combinatory algebras

Let $D = \langle \underline{D}, \cdot, k_D, s_D \rangle$ be a combinatory algebra, and let

$$i_D = s_D \cdot k_D \cdot k_D$$
.

Then

$$i_D \cdot x = s_D \cdot k_D \cdot k_D \cdot x = k_D \cdot x \cdot (k_D \cdot x) = x.$$

Hence

$$s_D \cdot (k_D \cdot a) \cdot i_D \cdot x = k_D \cdot a \cdot x \cdot (i_D \cdot x) = a \cdot x.$$

A category **Calg*** of combinatory algebras

A *-homomorphism between combinatory algebras D and D' is a homomorphism f between D and D' such that for each $a,b\in\underline{D}$ and n if

$$\forall x_1,\ldots,x_n\in\underline{D}(a\cdot x_1\cdot\ldots\cdot x_n=b\cdot x_1\cdot\ldots\cdot x_n)$$

then

$$\forall y_1,\ldots,y_n\in\underline{D}'(f(a)\cdot y_1\cdot\ldots\cdot y_n=f(b)\cdot y_1\cdot\ldots\cdot y_n).$$

Note that every surjective homomorphism is a *-homomorphism.

Let **Calg*** denote the category of combinatory algebras with combinatory algebras as objects and *-homomorphisms as morphisms.

Functors

A functor F from a category C to a category D associates

- ▶ to each object A in C an object FA in D,
- ▶ to each morphism $f : A \rightarrow B$ in **C** a morphism $Ff : TA \rightarrow TB$ in **D**

such that

- 1. $F1_A = 1_{FA}$ for each object A in **C**,
- 2. $F(g \circ f) = Fg \circ Ff$ for each $f : A \to B$ and $g : B \to C$ in **C**.

An endofunctor is a functor that maps a category to itself.

The identitiy functor I on a category \mathbf{C} maps an object to itself and a morphism to itself.

The identitity functor is an endofunctor.

Let $D = \langle \underline{D}, \cdot, k_D, s_D \rangle$ be a combinatory algebra.

For each $a \in \underline{D}$, define $\operatorname{Fun}_D(a) : \underline{D} \to \underline{D}$ by

$$\operatorname{Fun}_D(a)(x)=a\cdot x.$$

Note that

$$\operatorname{Fun}_D(\mathbf{s}_D\cdot(\mathbf{k}_D\cdot\mathbf{a})\cdot\mathbf{i}_D)=\operatorname{Fun}_D(\mathbf{a}).$$

For each $\operatorname{Fun}_D(a)$ and $\operatorname{Fun}_D(b)$, define $\operatorname{Fun}_D(a) \bullet \operatorname{Fun}_D(b)$ by

$$\operatorname{Fun}_D(a) \bullet \operatorname{Fun}_D(b) = \operatorname{Fun}_D(\mathbf{s}_D \cdot a \cdot b).$$

Then $\operatorname{Fun}_D(a)=\operatorname{Fun}_D(a')$ and $\operatorname{Fun}_D(b)=\operatorname{Fun}_D(b')$ imply

$$\operatorname{Fun}_D(a) \bullet \operatorname{Fun}_D(b) = \operatorname{Fun}_D(a') \bullet \operatorname{Fun}_D(b').$$

Hence • is a binary operation on

$$\underline{TD} = \{ \operatorname{Fun}_D(a) \mid a \in \underline{D} \}.$$

Let

$$k_{TD} = \operatorname{Fun}_D(k_D \cdot k_D), \quad s_{TD} = \operatorname{Fun}_D(k_D \cdot s_D),$$

Then

- 1. $\neg (k_{TD} = s_{TD})$,
- 2. $k_{TD} \bullet u \bullet v = u$,
- 3. $s_{TD} \bullet u \bullet v \bullet w = u \bullet w \bullet (v \bullet w)$.

Therefore

$$TD = \langle \underline{TD}, \bullet, k_{TD}, s_{TD} \rangle$$

is a combinatory algebra.

For each *-homomorphism $f: D \to D'$, let

$$(Tf)(\operatorname{Fun}_D(a)) = \operatorname{Fun}_{D'}(f(a)).$$

Then, since f is a *-homomorphism, we have

$$\operatorname{Fun}_D(a) = \operatorname{Fun}_D(a') \Rightarrow \operatorname{Fun}_{D'}(f(a)) = \operatorname{Fun}_{D'}(f(a')).$$

Hence Tf is a mapping from \underline{TD} into $\underline{TD'}$.

Moreover

- 1. $(Tf)(u \bullet v) = (Tf)(u) \bullet' (Tf)(v)$,
- $2. (Tf)(k_{TD}) = k_{TD'},$
- 3. $(Tf)(s_{TD}) = s_{TD'}$.

Therefore Tf is a homomorphism from TD to TD'.

Lemma

Let D be a combinatory algebra. Then for each $a, b \in \underline{D}$ and n

$$\forall u_1,\ldots,u_n\in \underline{TD}(\operatorname{Fun}_D(a)\bullet u_1\bullet\ldots\bullet u_n=\operatorname{Fun}_D(b)\bullet u_1\bullet\ldots\bullet u_n)$$

if and only if

$$\forall x_1,\ldots,x_{n+1}\in\underline{D}(a\cdot x_1\cdot\ldots\cdot x_{n+1}=b\cdot x_1\cdot\ldots\cdot x_{n+1}).$$

Proof.

Note that

$$(\operatorname{Fun}_D(a) \bullet \operatorname{Fun}_D(k_D \cdot x_1) \bullet \ldots \bullet \operatorname{Fun}_D(k_D \cdot x_n))(z) = a \cdot z \cdot x_1 \cdot \ldots \cdot x_n,$$

$$a \cdot z \cdot (x_1 \cdot z) \cdot \ldots \cdot (x_n \cdot z) = (\operatorname{Fun}_D(a) \bullet \operatorname{Fun}_D(x_1) \bullet \ldots \bullet \operatorname{Fun}_D(x_n))(z).$$

Proposition

Tf is a *-homomorphism.

Proof.

Suppose that $\operatorname{Fun}_D(a) \bullet u_1 \bullet \ldots \bullet u_n = \operatorname{Fun}_D(b) \bullet u_1 \bullet \ldots \bullet u_n$ for each $u_1, \ldots, u_n \in \underline{TD}$. Then, by Lemma, we have

$$a \cdot x_1 \cdot \ldots \cdot x_{n+1} = b \cdot x_1 \cdot \ldots \cdot x_{n+1}$$

for each $x_1, \ldots, x_{n+1} \in \underline{D}$, and hence

$$f(a) \cdot y_1 \cdot \ldots \cdot y_{n+1} = f(b) \cdot y_1 \cdot \ldots \cdot y_{n+1}$$

for each $y_1, \ldots, y_{n+1} \in \underline{D}'$. Thus, again by Lemma, we have

$$\operatorname{Fun}_{D'}(f(a)) \bullet v_1 \bullet \ldots \bullet v_n = \operatorname{Fun}_{D'}(f(b)) \bullet v_1 \bullet \ldots \bullet v_n$$

for each
$$v_1, \ldots, v_n \in \underline{TD'}$$
.

Natural transformations

Let F and G be functors between categories \mathbf{C} and \mathbf{D} .

A natural transformation τ from F to G, denoted by $\tau: F \xrightarrow{\cdot} G$, associates to each object A in \mathbf{C} a morphism $\tau_A: FA \to GA$ such that for each morphism $f: A \to B$ in \mathbf{C} the following diagram commutes:

For each combinatory algebra D, define a mapping $\eta_D:\underline{D}\to \underline{TD}$ by

$$\eta_D(x) = \operatorname{Fun}_D(k_D \cdot x).$$

Then

- 1. $\eta_D(x \cdot y) = \eta_D(x) \bullet \eta_D(y)$,
- $2. \ \eta_D(k_D) = k_{TD},$
- 3. $\eta_D(\mathbf{s}_D) = \mathbf{s}_{TD}$.

Hence η_D is a homomorphism from D to TD.

A natural transformation $\eta: I \stackrel{\cdot}{\rightarrow} T$

Proposition

 η_D is a *-homomorphism.

Proof.

Note that

$$a \cdot (x_1 \cdot z) \cdot \ldots \cdot (x_n \cdot z) = (k_D \cdot a \cdot z) \cdot (x_1 \cdot z) \cdot \ldots \cdot (x_n \cdot z)$$

$$= (\operatorname{Fun}_D(k_D \cdot a) \bullet \operatorname{Fun}_D(x_1) \bullet \ldots \bullet \operatorname{Fun}_D(x_n))(z)$$

$$= (\eta_D(a) \bullet \operatorname{Fun}_D(x_1) \bullet \ldots \bullet \operatorname{Fun}_D(x_n))(z).$$

A natural transformation $\eta: I \stackrel{\cdot}{\rightarrow} T$

Proposition

The following diagram commutes:

$$D \xrightarrow{\eta_D} TD$$

$$f \downarrow \qquad \qquad \downarrow Tf$$

$$D' \xrightarrow{\eta_{D'}} TD'$$

$$(Tf \circ \eta_D)(x) = Tf(\operatorname{Fun}_D(\mathtt{k}_D \cdot x)) = \operatorname{Fun}_{D'}(f(\mathtt{k}_D \cdot x))$$

=
$$\operatorname{Fun}_{D'}(f(\mathtt{k}_D) \cdot' f(x)) = \operatorname{Fun}_{D'}(\mathtt{k}_{D'} \cdot' f(x))$$

=
$$(\eta_{D'} \circ f)(x).$$

For each combinatory algebra D and $c\in \underline{D}$, define a mapping $\theta^c_D:\underline{TD}\to \underline{D}$ by

$$\theta_D^c(\operatorname{Fun}_D(x)) = x \cdot c.$$

Then

1.
$$\theta_D^c(u \bullet v) = \theta_D^c(u) \cdot \theta_D^c(v)$$
,

$$2. \ \theta_D^c(\mathbf{k}_{TD}) = \mathbf{k}_D,$$

3.
$$\theta_D^c(\mathbf{s}_{TD}) = \mathbf{s}_D$$
.

Hence θ_D^c is a homomorphism from TD to D.

Let

$$id_D = \operatorname{Fun}_D(i_D).$$

Then

$$\theta_D^c(\mathrm{id}_D) = c.$$

Lemma

$$\theta_D^c \circ \eta_D = 1_D.$$

Proof.

$$(\theta_D^C \circ \eta_D)(x) = \theta_D^c(\operatorname{Fun}_D(k_D \cdot x)) = k_D \cdot x \cdot c = x.$$

Proposition

 θ_D^c is a *-homomorphism.

Proof.

Note that θ_D^c is a surjective homomorphism.

For each combinatory algebra D, define *-homomorphism $\mu_D:T^2D\to TD$ by $\mu_D=\theta_{TD}^{{\bf id}_D}.$

Lemma

 $Tf(id_D) = id_{D'}$ for each *-homomorphism $f: D \to D'$.

$$Tf(\mathrm{id}_D) = Tf(\mathrm{Fun}_D(\mathrm{i}_D)) = \mathrm{Fun}_{D'}(f(\mathrm{i}_D)) = \mathrm{Fun}_{D'}(\mathrm{i}_{D'}) = \mathrm{id}_{D'}.$$

Proposition

The following diagram commutes:

$$T^{2}D \xrightarrow{\mu_{D}} TD$$

$$T^{2}f \downarrow \qquad \qquad \downarrow Tf$$

$$T^{2}D' \xrightarrow{\mu_{D'}} TD'$$

$$(\mu_{D'} \circ T^{2}f)(\operatorname{Fun}_{TD}(u)) = \mu_{D'}(T^{2}f(\operatorname{Fun}_{TD}(u)))$$

$$= \mu_{D'}(\operatorname{Fun}_{TD'}(Tf(u))) = Tf(u) \bullet' \operatorname{id}_{D'} = Tf(u) \bullet' Tf(\operatorname{id}_{D})$$

$$= Tf(u \bullet \operatorname{id}_{D}) = Tf(\mu_{D}(\operatorname{Fun}_{TD}(u))) = (Tf \circ \mu_{D})(\operatorname{Fun}_{TD}(u)).$$

Monads

A monad $\langle T, \eta, \mu \rangle$ in a category **C** consists of a functor $T: \mathbf{C} \to \mathbf{C}$ and two natural transformations $\eta: I \to T$ and $\mu: T^2 \to T$ such that the following diagrams commute:

A monad $\langle T, \eta, \mu \rangle$ in **Calg***

Theorem

 $\langle T, \eta, \mu \rangle$ is a monad in Calg*.

$$(\mu_{D} \circ T \eta_{D})(\operatorname{Fun}_{D}(x)) = \mu_{D}(T \eta_{D}(\operatorname{Fun}_{D}(x)))$$

$$= \mu_{D}(\operatorname{Fun}_{TD}(\eta_{D}(x))) = \eta_{D}(x) \bullet \operatorname{id}_{D} = \operatorname{Fun}_{D}(k_{D} \cdot x) \bullet \operatorname{Fun}_{D}(i_{D})$$

$$= \operatorname{Fun}_{D}(s_{D} \cdot (k_{D} \cdot x) \cdot i_{D}) = \operatorname{Fun}_{D}(x).$$

$$(\mu_{D} \circ T \mu_{D})(\operatorname{Fun}_{T^{2}D}(\operatorname{Fun}_{TD}(u))) = \cdots$$

$$= u \bullet \operatorname{id}_{D} \bullet \operatorname{id}_{D} = \cdots$$

$$= (\mu_{D} \circ \mu_{TD})(\operatorname{Fun}_{T^{2}D}(\operatorname{Fun}_{TD}(u))).$$

T-algebras

A T-algebra $\langle D,h\rangle$ is a pair consisting of an object D (the underlying object of the algebra) and an arrow $h:TD\to D$ such that the following diagrams commute:

A *T*-algebras $\langle D, \theta_D^c \rangle$

Proposition

 $\langle D, \theta_D^c \rangle$ is a T-algebra for each $c \in \underline{D}$.

$$\begin{split} &(\theta_D^c \circ T\theta_D^c)(\operatorname{Fun}_{TD}(u)) = \theta_D^c(T\theta_D^c(\operatorname{Fun}_D(u))) \\ &= \theta_D^c(\operatorname{Fun}_D(\theta_D^c(u))) = \theta_D^c(u) \cdot c = \theta_D^c(u) \cdot \theta_D^c(\operatorname{id}_D) \\ &= \theta_D^c(u \bullet \operatorname{id}_D) = \theta_D^c(\mu_D(\operatorname{Fun}_{TD}(u))) = (\theta_D^c \circ \mu_D)(\operatorname{Fun}_{TD}(u)). \end{split}$$

A bijection

Theorem

For any object D in $Calg^*$, there exists a bijection between \underline{D} and the set of T-algebras with the underlying object D.

Proof.

Let

$$\varphi: c \mapsto \theta_D^c, \quad \psi: h \mapsto h(id_D).$$

Then
$$(\psi \circ \varphi)(c) = \theta_D^c(id_D) = c$$
. Furthermore

$$\begin{split} &((\varphi \circ \psi)(h))(\operatorname{Fun}_{D}(x)) = \theta_{D}^{h(\operatorname{id}_{D})}(\operatorname{Fun}_{D}(x)) = x \cdot h(\operatorname{id}_{D}) \\ &= h(\eta_{D}(x)) \cdot h(\operatorname{id}_{D}) = h(\eta_{D}(x) \bullet \operatorname{id}_{D}) \\ &= h(\mu_{D}(\operatorname{Fun}_{TD}(\eta_{D}(x)))) = h(\mu_{D}(T\eta_{D}(\operatorname{Fun}_{D}(x)))) \\ &= h((\mu_{D} \circ T\eta_{D})(\operatorname{Fun}_{D}(x))) = h(\operatorname{Fun}_{D}(x)). \end{split}$$