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Outline

(1) Determinacy
How much determinacy can be proved without using uncountable objects?

(2) Turing Determinacy
What is the strength of the various levels of Turing determinacy?
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Countable mathematics

Countable mathematics

Second order arithmetic, Z2, consist of

ordered semi-ring axioms for N
induction for all 2nd -order formulas

comprehension for all 2nd -order formulas

Most of classical mathematics can be expressed and proved in Z2.

Thm: ZFC− is Π1
4-conservative over Z2,

where ZFC− is ZFC without the Power-set axiom.

(Obs: Borel-DET and Π0
k -DET are Π1

3-statements.)
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Countable mathematics

Reverse Mathematics in a nutshell

The main question of Reverse Mathematics is:
What axioms of Z2 are necessary for classical mathematics?

Using a base theory as RCA0, one can often prove that

theorems are equivalent to axioms.

Most theorems are equivalent to one of 5 subsystems.

Most theorems of classical mathematics can be proved in Π1
1-CA0.

where in

Π1
1-CA0, induction and comprehension are restricted to Π1

1-formulas.

No example of a classical theorem of Z2 needed more than Π1
3-CA0.

We provide a hierarchy of natural statements
that need axioms all the way up in Z2.
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Introduction to Determinacy

Determinacy

Fix a set A ⊆ ωω.

Player I a0 a2 · · ·
Player II a1 a3 · · · let ā = (a0, a1, a2, a3, ...)

Player I wins is ā ∈ A, and Player II wins if ā ∈ ωω \ A.
A strategy is a function s : ω<ω → ω.
It’s a winning strategy for I if ∀a1, a3, a5, ....(f (∅), a1, f (a1), a3, ...) ∈ A

A ⊆ ωω is determined if there is a strategy for either player I or II.

For a class of sets of reals Γ ⊆ P(ωω), let
Γ-DET: Every A ∈ Γ is determined.

Antonio Montalbán (U.C. Berkeley) Determinacy and Turing Det. in S.O.A. February 2014 6 / 27



Introduction to Determinacy

Determinacy

Fix a set A ⊆ ωω.

Player I a0 a2 · · ·
Player II a1 a3 · · · let ā = (a0, a1, a2, a3, ...)
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and Player II wins if ā ∈ ωω \ A.
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Player I wins is ā ∈ A, and Player II wins if ā ∈ ωω \ A.
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Introduction to Determinacy

Early history

Γ Γ-DET remark

Open (Σ0
1) [Gale Stwart 53]

Gδ (Π0
2)

[Wolfe 55]

Fσδ (Π0
3)

[Davis 64]

Gδσδ (Π0
4)

[Paris 72]

Fσδσδ (Π0
5)

needs Power-set axiom [Friedman 71]

Borel (∆1
1)

[Martin 75] needs ℵ1 iterations of Power-set axiom

[Friedman 71]

Analitic (Σ1
1)

∀x(x ]exists) `..
[Martin 70]

Full (ωω) False in ZFC
[Gale Stwart 53]
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Introduction to Determinacy

A naturally defined spine

Empirical observation:
Natural statements are well-ordered by consistency strength.

In some other contexts, this phenomenon can proved to be true.

Thm: [Uniform Martin’s conjecture][Slaman Steel] (AD)
Uniformly degree-invariant functions from ωω → ωω

are well-ordered by comparability on a cone.

Thm: [Wadge]
Borel sets of reals are well-ordered by Wadge reducibility.

Question: [Nemoto 08]

What is the strength of determinacy along the Wadge hierarchy?

Determinacy, along the Wadge hierarchy,
provides a naturally defined spine of statements
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Introduction to Determinacy

Determinacy

How much determinacy can be proved
without using uncountable objects?

Equivalently:
How much determinacy can be proved in Z2?

Antonio Montalbán (U.C. Berkeley) Determinacy and Turing Det. in S.O.A. February 2014 9 / 27



Introduction to Determinacy

Determinacy

How much determinacy can be proved
without using uncountable objects?

Equivalently:
How much determinacy can be proved in Z2?

Antonio Montalbán (U.C. Berkeley) Determinacy and Turing Det. in S.O.A. February 2014 9 / 27



Our results on determinacy

Previously known results

Γ strength of Γ-DET base

∆0
1 ATR0 [Steel 78] RCA0

Σ0
1 ATR0 [Steel 78] RCA0

Σ0
1 ∧ Π0

1 Π1
1-CA0 [Tanaka 90] RCA0

∆0
2 Π1

1-TR0 [Tanaka 91] RCA0

Π0
2 Σ1

1-ID0 [Tanaka 91] ATR0

∆0
3 [Σ1

1]TR -ID0 [MedSalem, Tanaka 08] Π1
1-TI0

Π0
3 Π1

3-CA0` .. ∆1
3-CA0 6 ` .. [Welch 09]

Π0
4 Z2 6` .. [Martin] [Friedman 71]
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Our results on determinacy

Our main results on determinacy

Thm: [Friedman 71, Martin] Z2 6 ` Π0
4-DET.

Theorem (essentially due to Martin)

Given n ∈ N, Z2 ` every Boolean combination of n Π0
3 sets is determined

But... The larger the n, the more axioms are needed.

Theorem ([MS 12])

Z2 6` every Boolean combination of Π0
3 sets is determined

Theorem ([MS 14] The following are equiconsistent)

• Z2

• ZFC−

• The scheme {“Every Boolean combination of n Π0
3 sets is determined.”: n ∈ N}
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Our results on determinacy

Difference hierarchy

Def: A ⊆ ωω is m-Π0
3 if there are Π0

3 sets A0 ⊇ A1 ⊇ ... ⊇ Am = ∅
s.t.: A = (...(((A0 \ A1) ∪ A2) \ A3) ∪ ...)

i.e. x ∈ A ⇐⇒ (least i (x 6∈ Ai )) is odd.

Obs: (Boolean combinations of Π0
3) =

⋃
m∈ω

m-Π0
3 = ω-Π0

3.

The difference hierarchy extends through the transfinite.

Thm: [Kuratowski 58] ∆0
k =

⋃
α∈ω1

α-Π0
k .

The effective version is due to MedSalem andTanaka, and holds in ACA0.

Q: What is the strength of n-Π0
3-DET?
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Our results on determinacy

A closer look at our first paper

Recall:
Π1
n-CA0 is Z2 with induction and comprehension restricted to Π1

n formulas.

∆1
n-CA0 is Z2 with induction and comprehension restricted to ∆1

n sets.

Theorem ([MS 12], following Martin’s proof)

Π1
n+2-CA0 ` n-Π0

3−DET.

Theorem ([MS 12])

∆1
n+2-CA0 6` n-Π0

3−DET.

[Welch 09] had already proved the cases n = 1.

Corollary: (∀n), Z2 ` n-Π0
3 − DET , but

Z2 6 ` (∀n) n-Π0
3 − DET .
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Our results on determinacy

Reversals

Reversals aren’t possible:

Theorem: [MedSalem, Tanaka 07] Π1
1-CA0 + Borel-DET 6⇒ ∆1

2-CA0.

Theorem ([MS 12])

Let T be a true Σ1
4 sentence. Then, for n ≥ 2,

Π1
n-CA0 + T 6 ` ∆1

n+1-CA0

∆1
n-CA0 + T 6 ` Π1

n-CA0

Obs: Borel-DET and m-Π0
3−DET are Π1

3 theorems of ZFC.
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Our results on determinacy

On our second paper

But if we look at consitency strength, reversals are possible:

Theorem ([MS 14])

For every n ∈ N we have the following consistency strength relations:

· · · Π1
n+1-CA0 <c ∆1

n+2-CA0 <c n-Π0
3-DET <c Π1

n+2-CA0 · · · .

Theorem ([MS 14])

Z2

<c Z2+Con(Z2) <c Z2+Con(Z2)+Con(Z2+Con(Z2)) <c · · ·

<c ω-Π0
3-DET.
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Our results on determinacy

β-consistency

Def: A β-model is an ω-model where Σ1
1-formulas are absolute.

Def: Given a theory T , we let
β(T ): “(∀X ) there is a β-model of T containing X .”

Obs: β(T ) is much stronger version of con(T ).

Thm: [Friedman] RCA0` β(ATR0) ⇐⇒ Π1
1-CA0.
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Our results on determinacy

The precise theorem

Thm: [MS 14] The following are strict implications over RCA0:

Π1
n+2-CA0

&.

��

β(Π1
n+2-CA0)

��
β(n-Π0

3−DET )

��
n-Π0

3−DET
��

∆1
n+2-CA0

%-��

β(∆1
n+2-CA0)

��
Π1

n+1-CA0 β(Π1
n+1-CA0)
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Our results on determinacy

The techniques for the first theorem

First theorem (repeated): ∆1
n+2-CA0 6` n-Π0

3−DET.

Connected question: Given a class Γ ⊆ P(2ω),
how far in Gödel’s L-hierarchy do the strategies for Γ-games appear?

or in other words

what is the least ordinal β such that Lβ |= Γ-DET?

Lemma: [Friedman 71]

The least ordinal such that Lβ |= Π0
4+β-DET

is greater than or equal

the least ordinal such that Lβ |=ZFC+ β-iterates of Power set.
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Our results on determinacy

The techniques for the first theorem

Definitoin: An ordinal α is n-admissible if
it satisfies any of the following equivalent statements:

• Lα |= Σm−1-separation and ∆m−1-collection.

• No Σn-over-Lα-definable function f : δ → α, with δ < α, is cofinal.

Fact: If α is n-admissible, 2ω ∩ Lα |= ∆1
n+1-CA0.

Def: Let αn be the least n-admissible ordinal.
Obs: Th(Lαn) 6∈ Lαn using Gödel-Tarski undefinability of truth.

Lemma ([MS 12])

For n ≥ 2, there is a (n-1)-Π0
3 game where players play sets of sentences,

• if I plays Th(Lαn), he wins.

• if I does not play Th(Lαn) but II does, then II wins.

A winning strategy for this game must compute Th(Lαn).
Hence 2ω ∩ Lαn |= ∆1

n+1-CA0 & ¬(n-1)-Π0
3−DET
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Turing Determinacy

Turing Determinacy

What is the strength of the various levels of Turing determinacy?
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Turing Determinacy

Turing Determinacy

Def: A cone is a set for the form {X ∈ ωω : X ≥T Z}, for some Z ∈ ωω.

Def: A ⊆ ωω is degree invariant if, whenever X ≡T Y , X ∈ A ⇐⇒ Y ∈ A.

Theorem – Turing determinacy: [Martin] (AD)
Every degree invariant A ⊆ ωω either contains or is disjoint from a cone.
Proof:
If s is a winning strategy for I in the A-game, A contains the cone above s.
If s is a winning strategy for II in the A-game, A is disjoint from the cone above s.

Observation: This induces a 0-1-valued measure on all degree-invariant sets.

For a class of sets of reals Γ ⊆ P(ωω), let

Γ-TD: Every degree-invariant A ∈ Γ either contains or is disjoint from a cone.
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Turing Determinacy

Previously Known results

Obs: The computable sets form an ω-model of Γ-TD.

So Γ-TD doesn’t imply anything over RCA0.

Theorem: [Harrington, Kechris 75]

• ATR0 ` Σ0
3-TD

• RCA0 ` Π0
n-DET → Π0

n+1-TD

Theorem: [Martin]

• Z2 6` Σ0
5-TD

• Z2 ` ∆0
5-TD

• Π1
1-CA0 ` Π0

n-TD ↔ ∆0
n+1-TD

Σ0
5-TD

��

+Π1
1-CA0

Z2

x
66

Π0
3-CA0

#+
∆0

5-TD ll
rr

+Π1
1-CA0

Σ0
4-TD +Π1

1-CA0
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Turing Determinacy

Trivial cases

Lemma ([MS 15](RCA0))

Every non-empty, degree-invariant ΠZ
2 set contains the cone above Z.

Thus RCA0 ` Σ0
2-TD.

Lemma ([MS 15](ACA0))

Every non-empty degree-invariant ∆Z
2 set contains the cone above Z.

Thus ACA0 ` ∆0
2-TD.

Lemma ([MS 15])

RCA0 6` ∆0
2-TD.

Pf: Consider an initial segment of the degrees of order type ω with
representatives that are uniformly ∆0

2 as in [Lerman 83][Epstin 83]

ACA
%-
∆0

3-TD

nvrz
RCA0
oo // Σ0

2-TD
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Turing Determinacy

Σ0
3 and ∆0

3-TD

Theorem ([MS 15])

ACA0 + Σ0
3-TD ` ATR0.

Pf: Uses P = {X |(∃β < α)(0β ⊕ X ≡T W X )}, Posner-Robinson, JS-Pseudo-jump inversion.

Theorem ([MS 15])

ATR0 + Π1
1-TI0 ` ∆0

4-TD.

Pf: Uses Tanaka-MedSalem’s theorem on the difference hierarchy.

Theorem ([MS 15])

ATR0 0 ∆0
4-TD.

Pf: Uses Friedman’s theorem on

ω-models of T ∪ {¬∃countable coded ω-model of T}

ATR0 + Π1
1-TI0

**
∆0

4-TD

nvpx
+ACA0

ATR0
oo // Σ0

3-TD +ACA0
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Turing Determinacy

Σ0
4-TD

Definition: α2 is the least ordinal such that Lα2 |= ∆0
3-CA0.

Thus, α2 is the least 2-admissible ordinal.

Lemma ([MS 15])

Π1
1-CA0 + Σ0

4-TD ` α2 exists.

Corollary ( [MS 15])

Π1
1-CA0 + Σ0

4-TD ` β(∆0
3-CA0).
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The Picutre
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Q: WKL0 + ∆0
3-TD ` ACA0?

Q: ATR0 + Σ1
1-IND ` ∆0

4-TD?

Q: ACA0 + ∆0
4-TD ` Σ1

1-IND?
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Thank you

Determinacy
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