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—ffective Randomness

¢ Algorithmic randomness/information theory links measure theoretic
complexity to computational complexity of points.

e Many new results/structures/questions in recursion theory.

e Currently: calibration of the "randomness strength” of probabilistic (almost
everywhere) theorems.

e A key ingredient: existence of universal objects. A universal test/
semimeasure plays a role similar to that of the halting problem.

e [he complexity of a "point” is then measured by comparing its local
entropies with respect to the given measure and the universal
measure.



The "Effective Multifractal Analysis Program”

1. Multifractal analysis studies measures instead of sets. Is there a
universal object (measure) exhibiting "global” universality with respect
to multifractality”

Just like we can measure the randomness of a sequence by gauging its
complexity along the universal semimeasure, can we describe multifractality by
gauging the whole measure against the universal measure?



The "Effective Multifractal Analysis Program”

2. Can we use this universality to prove consistency results for
estimators?

Randomness can be characterized by looking at lower bounds on complexity of
finite sequences. Can we use similar characterizations to prove that an estimator
(based on a finite number of observations) behaves consistent with the
underlying mechanism generating the points?



The "Effective Multifractal Analysis Program”

3. Can we design new (better) estimators based on data compression
methods?

Replacing Kolmogorov complexity by compressors, can one overcome

difficulties by detecting dependencies in the data that causes great problems for
traditional methods.

(A similar philosophy underlies MDL (in inductive inference), clustering algorithms
by Cilibrasi-Vitanyi and others.)



S3rief overview: Fractal Dimensions

e Fractal dimensions capture certain regularities/invariants of sets that
are irregular from a topological/Lelbesgue measure point of view:

e Self-similarity
e Scaling invariance
e Densities

e [nformation/Entropy



Box Counting Dimension

* Box counting dimension: Let XCR9 be bounded.

e Cover RY with a mesh of side length r.

e Count the number of r-cubes containing points from X.

e Define

dimg X = lim (29N
r—0 logr

(if the limit does not exist, work with lim inf and [im sup).



Box Counting Dimension
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Source: Wikipedia




Hausdorff Dimension

e Let XcR“.
e r-covering: cover X with cubes C; of side length at most r.

e Optimize the s-dimensional measure of this covering:

HY X =inf{ ) diam(C;)®: (G;) r-cover of X}
|

e Define

HX = lim H;

r—0

¢ The Hausdorff dimension of X is given as

dimy X = inf{s: H°X = 0}



Hausdortt

DImension

dimH X



Dimension and Information

e Fggleston, 1949:

o | et X, be the set of all real numbers x so that in the binary
expansion of x, 1 appears with frequency p in the limit.

* Then
dimpy Xp = H(p) = —[plogp + (1-p)log(1-p)]



Algorithmic Entropy

e Kolmogorov, 1965

THREE APPROACHES TO THE QUANTITATIVE DEFINITION
OF INFORMATION

A. N. Kolmogorov
Problemy Peredachi Informatsii, Vol. 1, No. 1, pp. 3-11, 1965

There are two common approaches to the quantitative definition of "information™ combinatorial and

probabilistic, The author briefly describes the major features of these approaches and introduces a new al-
gorithmic approach that uses the theory of recursive functions, |

® |Independently by Solomonoff, 1964 —
“A formal theory of inductive inference”



Kolmogorov Complexity

finitary object Universal Turing machine

(e.g. binary string) /

C(a) = min {|p| : U(p) = a}

binary input
¢ The Kolmogorov complexity of a string is the length of a shortest possible
program computing it.

e The use of a universal machine ensures that this notion is machine independent
up to an additive constant:

If we replace U by another machine M (i.e. use another effective description/
coding method), then there exists a constant ¢ so that

C(a) < Cm(a) + C



Algorithmic Information

e A variant, K, of Kolmogorov complexity based on prefix-free codes,
resembles classical entropy in many ways:

e K takes its largest values on strings generated by uniformly
random sources:

K(a) =* |a| (a is incompressible)
e K is subadditive: K(a,b) <t K(a) + K(b) + ¢

e Symmetry of information: K(a,b) =*K(a) + K(b | a, K(a))



Kolmogorov Complexity and Fractal Dimension

® Ryabko; Staiger: For any set X € R, there exists an x € X such that

iminf ~Xin)
N N

that is, X contains at least one element whose lower asymptotic
compression ratio is at least as high the the Hausdorff dimension of X.

o [f the set X is easily definable in the sense that it is a union of effectively
closed sets (i.e. sets whose complements can be effectively
enumerated), then we can actually characterize the dimension of X via
compression ratios of its members:

dimy X = sup { liminf K(x|n)/n: x € X}
[Lutz; Staiger; Hitchcock]



Measures as Fractals

¢ \While fractal dimensions are useful in capturing geometric invariants of
sets, one often encounters fractality of a more complicated, “layered”
structure:

e Consider the distribution of earthquakes and assume it is determined by an
underlying dynamics/measure.

e This measure seems to be supported on a fractal-like set (due to the
mechanics of the fracturing process).

e But there is more to it: Clustering of earthquakes gives different densities/
dimensions to different regions.
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Measures as Fractals

e Multifractal spectra try to capture these variations by studying
(1) the local scaling behavior of a measure at a given point,
(2) the global (average) scaling behavior of balls.

® For many measures the two aspects are closely related

—  Multifractal Formalism



Observing Multifractal Measures

e An important practical aspect is how to compute multifractal spectra”
e For physical data, there will only be a finite number of observations.

e Several estimators have been introduced, most famously the
Grassberger-Procaccia algorithm.

¢ [0 show that an algorithm is consistent, one usually has to assume some
underlying dynamics or probabillistic process that produces the data.

e Algorithmic Information Theory seems to be a natural and very general
framework for this.

relate the complexity of a finite pointset to the complexity of the measure.



Dimension Distribution of a Measure

* | ot 1/ be a Borel probability measure on RN with compact support. The
Hausdorff dimension distribution of p is defined as

Ugim ([0, t]) = sup{u(D): dimy D <'t, D Borel}

(This extends to a probability measure on [O,N]. A similar concept can be
defined for packing dimension.)

e Example: udim(Lebesgue) = On

I Measures with this property
are called exact dimensional



Dimension Distribution

e [t turns out the dimension distribution of p is given by the p-
distribution of the effective Hausdorff dimension.

Thm: If pyis computable, then for all t,

Haim ([0, t]) = p(dim«y).

dims<t = all points of effective dimension <t
= {x: liminfn K(x|p)/n < t}



| ocal: Pointwise Dimension

e Pointwise (local) dimension of y at x: Local scaling behavior at x
.~ log uB(x, 9) '
Yu(x) = lim
i) 5—0  10god

(If the limit does not exist work with lim inf and lim sup.)

e [hm: For y computable and x py-random,
dimy X = Yy(X).

e Corollary [Young, Cutler]:
Haim ([0, t]) = p(ix: Yu(x) = 1}).



Global: Generalized Renyi Dimensions

e | et B(X,&) be the N-dimensional e-ball around x.

®FOr-0c < g<oo, g% 1, let

~log | J(4B(x, ) du(x)
6(q) = I|mO S
e— ge

0 measures the average scaling
of the g-th moment of p(B(x,€))

e For integer g = 2, B(0)/g-1 is called the correlation dimension of order
a.



Multifractal Formalism: from global to local

e | satisfies the (strong) multifractal formalism if

0(q) = igf ay —1(y)}

holds|whenever fly) > O, where T

fy) = dimy{x: Yu(x) = y}.

Legendre transform

Multifractal spectrum
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Semimeasures

o | et 2! be the set of all infinite binary sequences.

e [For a finite string o, [0] denotes the basic open cylinder {x € 2" : 0 c X}

e A semimeasure M is a function from finite string to non-negative reals
satistying
M(o) = M(c0) + M(o1).

e A semimeasure is enumerable If the exists an algorithm that, for input o,
enumerates the left cut of M(0), i.e. the set {g € Q : g < M(0)}.

e | evin, 1974: There exists an optimal enumerable semimeasure M*. For any
enumerable semimeasure M there exists a constant ¢ s.t.
cM*> M



Semimeasures and Dimension

¢ [he asymptotic compression ratio of a sequence is the pointwise
dimension with respect to M*:

iminf X _ iy g 109M(XIn)
N N N N

e Cai & Hartmanis, 1994: fw(y)=y forallO<y<1.

e M™ Is, In a certain sense, a "perfect” multifractal: All layers of
pointwise dimensions are at the maximum value.



A Universal Multifractal

¢ Furthermore, the multifractal spectrum of any other (computable)
measure can be gauged against the spectrum of M*,

r M* pointwise dimension

dimy Fu(y) = dimp {x: §miX =y 1

L

e Thm: If yis computable, then

Billingsley dimension



—stimation and Stability of Multifractal Spectra

e Grassberger-Procaccia: Cu(e) := Probability two random, independent
points X, y are no more than distance ¢ apart. By Fubini’'s Theorem,

Coule) = b x pi(x,y): Iy < ¢} = / 1B(x, £)du(x) = 6(2)

e [f we have only finitely many observations xi, ..., Xn, this suggests

using
it s Txixli<e)

(2)

C(n,¢e)

as an estimator of Cy(€).

(Similar estimators exist for higher moments.)



—stimation and Stability of Multifractal Spectra

e Consistency of this estimator has been established in the dynamics
context:

e Denker and Keller [1986]: Smooth ergodic systems with
mixing condition.

e Pesin [1993]: Ergodic systems.

¢ Using the characterization of the multifractal spectrum via effective
dimensions, Pesin’s result can proved rather easily using the recent
work on ergodic properties of ML-random sequences [Franklin et al,
Bienvenu et all.



Information Distance

e |n practice, the data are rarely ever independent samples (e.g. earthquake
aftershocks).

e |dea: replace the use of the Euclidean distance in the GP-algorithm by an
iInformation distance.

e One such distance is based on Kolmogorov complexity [Bennet et al):
EC(o,1) = C(o1) - min{C(0),C(T)}

e The effective spectrum lets us quantitatively weigh the randomness/
iIndependence deficiency of the data against the multifractal deficiency of the
imit measure.

e This vields new (often easier) proofs of the consistency of this estimator in a
number of settings.



Practical Issues

e Kolmogorov complexity is not computable.

¢ For applications, we have to approximate it with
e compressors (Lempel-Ziv etc.)

e string complexity functions (Lempel-Ziv, Ehrenfeucht-Mycielski, Becher-Heiber)

¢ Many of the consistency results still go through if we work with a normal
compressor (Cilibrasi-Vitanyi:

(1) ldempotency:  C(aa) = C(a) ~ Problem: For the popular compression

(2)  Monotonicity: Clab) = Cla) . algorithms it has not been formally
| - established yet that they are normal

(3)  Symmetry: Clab) = Clog) 7 T

(4) Distributivity: C(ab) + C(c) < C(ac) + C(bc)



Dimension of Fault Systems

¢ Fractal dimensions of fault systems have been investigated by many
authors.
[Eneva (1996), Goltz (1997), Ciccotti & Mulargia (2002), Libicki & Ben-Zion
(2005), Kagan (2007), Molchan & Konrod (2009)]

e However, the problems with dependencies in the data led to a wide
variety of results.

e Kagan, 2007: “practically any value for the correlation dimension can be
obtained...”

¢ Using a compression-based estimator, initial results seem to indicate
that it can account for intrinsic dependencies better than traditional
methods.
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