Transfinite Recursion in Higher Reverse Mathematics

Noah Schweber

18 February 2014
Higher Reverse Mathematics

Splitting ATR_0

Clopen vs. Open Determinacy

Further Questions
From Lower to Higher
From Lower to Higher

- Reverse mathematics beyond reals: finite types
From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - Standard finite types: $0 = \omega$, $1 = \omega^\omega = \mathbb{R}$, $2 = \omega(\omega) = \omega^\mathbb{R}$, etc.
From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - Standard finite types: $0 = \omega$, $1 = \omega^\omega = \mathbb{R}$, $2 = \omega^{(\omega^\omega)} = \omega^\mathbb{R}$, etc.
 - Also mixed types: $1 \rightarrow 1$, etc.
From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - Standard finite types: \(0 = \omega, \ 1 = \omega^\omega = \mathbb{R}, \ 2 = \omega^{(\omega^\omega)} = \omega^{\mathbb{R}}, \) etc.
 - Also mixed types: \(1 \rightarrow 1, \) etc.

- Behavior of general theorems at varying types
Reverse mathematics beyond reals: finite types
- Standard finite types: $0=\omega$, $1=\omega\omega=\mathbb{R}$, $2=\omega(\omega)=\omega^\mathbb{R}$, etc.
- Also mixed types: $1 \rightarrow 1$, etc.

Behavior of general theorems at varying types
- “Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal” (WKL$_0$)
From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - Standard finite types: $0 = \omega$, $1 = \omega^\omega = \mathbb{R}$, $2 = \omega^{(\omega^\omega)} = \omega^\mathbb{R}$, etc.
 - Also mixed types: $1 \rightarrow 1$, etc.

- Behavior of general theorems at varying types
 - “Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal” (WKL$_0$)
 - “Every map $\mathbb{R} \rightarrow \mathbb{R}$ has a range” (ACA$_0$)
From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - Standard finite types: $0 = \omega$, $1 = \omega^\omega = \mathbb{R}$, $2 = \omega^{(\omega^\omega)} = \omega^\mathbb{R}$, etc.
 - Also mixed types: $1 \rightarrow 1$, etc.

- Behavior of general theorems at varying types
 - “Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal” (WKL$_0$)
 - “Every map $\mathbb{R} \rightarrow \mathbb{R}$ has a range” (ACA$_0$)
 - “Clopen games on \mathbb{R} are determined” (ATR$_0$)
From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - Standard finite types: 0 = ω, 1 = ωω = R, 2 = ω(ωω) = ωR, etc.
 - Also mixed types: 1 → 1, etc.

- Behavior of general theorems at varying types
 - “Every non-division ring with domain ⊆ R has a nontrivial proper ideal” (WKL₀)
 - “Every map R → R has a range” (ACA₀)
 - “Clopen games on R are determined” (ATR₀)

- Higher-order robust systems?
From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - Standard finite types: $0 = \omega$, $1 = \omega^\omega = \mathbb{R}$, $2 = \omega(\omega^\omega) = \omega^\mathbb{R}$, etc.
 - Also mixed types: $1 \rightarrow 1$, etc.

- Behavior of general theorems at varying types
 - “Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal” (WKL_0)
 - “Every map $\mathbb{R} \rightarrow \mathbb{R}$ has a range” (ACA_0)
 - “Clopen games on \mathbb{R} are determined” (ATR_0)

- Higher-order robust systems?
 - Is there a higher-type analogue of ATR_0?
Base Theories

Noah Schweber

Transfinite Recursion in Higher Reverse Mathematics
Kohlenbach ’01: base theory RCA_0^ω for arbitrary finite types
Base Theories

- Kohlenbach '01: base theory RCA_0^ω for arbitrary finite types
 - Conservative over RCA_0

- ω-models determined by type-1 and 2 parts
Base Theories

- Kohlenbach '01: base theory RCA_0^ω for arbitrary finite types
 - Conservative over RCA_0
 - Primitive recursion for higher types
Higher Reverse Mathematics
Splitting ATR
Clopen vs. Open Determinacy
Further Questions

Base Theories

- Kohlenbach ’01: base theory RCA_0^ω for arbitrary finite types
 - Conservative over RCA_0
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types $0, 1, 2$
Base Theories

- Kohlenbach ’01: base theory RCA_0^ω for arbitrary finite types
 - Conservative over RCA_0
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types $0, 1, 2$
 - Conservative over RCA_0, conservative subtheory of RCA_0^ω
Base Theories

- Kohlenbach ’01: base theory RCA_0^ω for arbitrary finite types
 - Conservative over RCA_0
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types $0, 1, 2$
 - Conservative over RCA_0, conservative subtheory of RCA_0^ω
 - Presentation similar to RCA_0
Base Theories

- Kohlenbach ’01: base theory RCA_0^ω for arbitrary finite types
 - Conservative over RCA_0
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types $0, 1, 2$
 - Conservative over RCA_0, conservative subtheory of RCA_0^ω
 - Presentation similar to RCA_0
 - Language: arithmetic + application operators + coding
 (concatenation natural + real; representation of $1 \rightarrow 1$ as 2)
Base Theories

- Kohlenbach ’01: base theory RCA_0^\omega for arbitrary finite types
 - Conservative over RCA_0
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types 0, 1, 2
 - Conservative over RCA_0, conservative subtheory of RCA_0^\omega
 - Presentation similar to RCA_0
 - Language: arithmetic + application operators + coding
 (concatenation natural real; representation of 1 → 1 as 2)
 - Axioms: P^- + Extensionality; \Sigma_1^0-induction for 0;
 \Delta_1^0-comprehension for 1 and 2
Kohlenbach ’01: base theory RCA_0^ω for arbitrary finite types
- Conservative over RCA_0
- Primitive recursion for higher types

S.: base theory RCA_0^3 for types $0, 1, 2$
- Conservative over RCA_0, conservative subtheory of RCA_0^ω
- Presentation similar to RCA_0
- Language: arithmetic + application operators + coding
 (concatenation natural real; representation of $1 \rightarrow 1$ as 2)
- Axioms: $P^- + \text{Extensionality}; \Sigma_1^0$-induction for 0;
 Δ_1^0-comprehension for 1 and 2
- ω-models determined by type-1 and 2 parts
Why ATR$_0$?
Why ATR_0?

- Robustness of ATR_0 follows from: “is well-founded” is Π^1_1-complete
Why ATR$_0$?

- Robustness of ATR$_0$ follows from: “is well-founded” is Π^1_1-complete
 - . . . as a property of relations on ω
Why ATR_0?

- Robustness of ATR_0 follows from: “is well-founded” is Π^1_1-complete
 - . . . as a property of relations on ω
 - As property of relations on \mathbb{R}: still Π^1_1
Why ATR₀?

- Robustness of ATR₀ follows from: “is well-founded” is Π^1_1-complete
 - . . . as a property of relations on ω
 - As property of relations on \mathbb{R}: still Π^1_1
 - Standard arguments around ATR₀ fail at higher types
Why ATR_0?

- Robustness of ATR_0 follows from: “is well-founded” is Π^1_1-complete
 - . . . as a property of relations on ω
 - As property of relations on \mathbb{R}: still Π^1_1
 - Standard arguments around ATR_0 fail at higher types

- Negative result: separations – e.g. clopen determinacy for reals strictly weaker than open determinacy
Why ATR₀?

- Robustness of ATR₀ follows from: “is well-founded” is \(\Pi^1_1 \)-complete
 - . . . as a property of relations on \(\omega \)
 - As property of relations on \(\mathbb{R} \): still \(\Pi^1_1 \)
 - Standard arguments around ATR₀ fail at higher types

- Negative result: separations – e.g. clopen determinacy for reals strictly weaker than open determinacy

- Positive result: principles linearly ordered (modulo choice)
Why ATR$_0$?

- Robustness of ATR$_0$ follows from: “is well-founded” is Π^1_1-complete
 - . . . as a property of relations on ω
 - As property of relations on \mathbb{R}: still Π^1_1
 - Standard arguments around ATR$_0$ fail at higher types
- Negative result: separations – e.g. clopen determinacy for reals strictly weaker than open determinacy
- Positive result: principles linearly ordered (modulo choice)
- Choice principles also analyzed
Higher ATR_0, I/II
Higher ATR\(_0\), I/II

- Higher-type versions of ATR\(_0\):
Higher ATR$_0$, I/II

- Higher-type versions of ATR$_0$:
 - $\text{CWO}^\mathbb{R}$: comparability of well-orders of $\subseteq \mathbb{R}$;
Higher ATR$_0$, I/II

Higher-type versions of ATR$_0$:

- CWO$_\mathbb{R}$: comparability of well-orders of $\subseteq \mathbb{R}$;
- TR$_1(\mathbb{R})$: Σ^1_1 recursion along well-orderings of reals;
Higher ATR$_0$, I/II

- Higher-type versions of ATR$_0$:
 - CWOR: comparability of well-orders of $\subseteq \mathbb{R}$;
 - TR$_1(\mathbb{R})$: Σ^1_1 recursion along well-orderings of reals;
 - BR$_1(\mathbb{R})$: Σ^1_1 recursion along well-founded trees $\subseteq \mathbb{R}^{<\omega}$;
Higher ATR\(_0\), I/II

- Higher-type versions of ATR\(_0\):
 - \(\text{CWO}^\mathbb{R}\): comparability of well-orders of \(\subseteq \mathbb{R}\);
 - \(\text{TR}_1(\mathbb{R})\): \(\Sigma^1_1\) recursion along well-orderings of reals;
 - \(\text{BR}_1(\mathbb{R})\): \(\Sigma^1_1\) recursion along well-founded trees \(\subseteq \mathbb{R}^{<\omega}\);
 - \(\Delta^\mathbb{R}_1\)-Det: clopen determinacy on \(\mathbb{R}\);
Higher ATR₀, I/II

- Higher-type versions of ATR₀:
 - CWO[^R]: comparability of well-orders of ⊆ R;
 - TR₁[^R]: Σ₁¹ recursion along well-orderings of reals;
 - BR₁[^R]: Σ₁¹ recursion along well-founded trees ⊆ R<ω;
 - Δ[^R]₁-Det: clopen determinacy on R;
 - Σ[^R]₁-Det: open determinacy on R;
Higher ATR\(_0\), I/II

- Higher-type versions of ATR\(_0\):
 - CWO\(^R\): comparability of well-orders of \(\subseteq \mathbb{R}\);
 - TR\(_1(\mathbb{R})\): \(\Sigma^1_1\) recursion along well-orderings of reals;
 - BR\(_1(\mathbb{R})\): \(\Sigma^1_1\) recursion along well-founded trees \(\subseteq \mathbb{R}^{<\omega}\);
 - \(\Delta^R_1\)-Det: clopen determinacy on \(\mathbb{R}\);
 - \(\Sigma^R_1\)-Det: open determinacy on \(\mathbb{R}\);
 - \(\Sigma^2_1\)-Sep\(^R\): \(\Sigma^2_1\)-separation
Higher \(\text{ATR}_0 \), I/II

- Higher-type versions of \(\text{ATR}_0 \):
 - \(\text{CWO}^\mathbb{R} \): comparability of well-orders of \(\subseteq \mathbb{R} \);
 - \(\text{TR}_1(\mathbb{R}) \): \(\Sigma^1_1 \) recursion along well-orderings of reals;
 - \(\text{BR}_1(\mathbb{R}) \): \(\Sigma^1_1 \) recursion along well-founded trees \(\subseteq \mathbb{R}^{<\omega} \);
 - \(\Delta^\mathbb{R}_1 - \text{Det} \): clopen determinacy on \(\mathbb{R} \);
 - \(\Sigma^\mathbb{R}_1 - \text{Det} \): open determinacy on \(\mathbb{R} \);
 - \(\Sigma^2_1 - \text{Sep}^\mathbb{R} \): \(\Sigma^2_1 \)-separation

- Choice principles:
Higher ATR\(_0\), I/II

- Higher-type versions of ATR\(_0\):
 - CWO\(_R\): comparability of well-orders of \(\subseteq \mathbb{R}\);
 - TR\(_1(\mathbb{R})\): \(\Sigma^1_1\) recursion along well-orderings of reals;
 - BR\(_1(\mathbb{R})\): \(\Sigma^1_1\) recursion along well-founded trees \(\subseteq \mathbb{R}^{<\omega}\);
 - \(\Delta^R_1\)-Det: clopen determinacy on \(\mathbb{R}\);
 - \(\Sigma^R_1\)-Det: open determinacy on \(\mathbb{R}\);
 - \(\Sigma^2_1\)-Sep\(_R\): \(\Sigma^2_1\)-separation

- Choice principles:
 - SF(\(\mathbb{R}\)): selection functions for collections of sets of reals (Quasi-strategies \(\rightarrow\) strategies)
Higher ATR$_0$, I/II

- Higher-type versions of ATR$_0$:
 - $\text{CWO}^\mathbb{R}$: comparability of well-orders of $\subseteq \mathbb{R}$;
 - $\text{TR}_1(\mathbb{R})$: Σ^1_1 recursion along well-orderings of reals;
 - $\text{BR}_1(\mathbb{R})$: Σ^1_1 recursion along well-founded trees $\subseteq \mathbb{R}^{<\omega}$;
 - $\Delta^\mathbb{R}_1\text{-Det}$: clopen determinacy on \mathbb{R};
 - $\Sigma^\mathbb{R}_1\text{-Det}$: open determinacy on \mathbb{R};
 - $\Sigma^2_1\text{-Sep}^\mathbb{R}$: Σ^2_1-separation

- Choice principles:
 - $\text{SF}(\mathbb{R})$: selection functions for collections of sets of reals (Quasi-strategies \rightarrow strategies)
 - $\text{WO}(\mathbb{R})$: well-orderability of reals (Kleene-Brouwer: trees \rightarrow ordinals)
Higher ATR$_0$, II/II

- $(S.)$

\[\Sigma^2_1\text{-Sep}^\mathbb{R} + \text{SF}(\mathbb{R}) \]
\[\downarrow \]
\[\Sigma^\mathbb{R}_1\text{-Det} \]
\[\downarrow \]
\[\text{TR}_1(\mathbb{R}) + \text{WO}(\mathbb{R}) + \text{SF}(\mathbb{R}) \quad \Delta^\mathbb{R}_1\text{-Det} \quad \text{BR}_1(\mathbb{R}) + \text{SF}(\mathbb{R}) \]
\[\downarrow \]
\[\text{CWO}^\mathbb{R} \]
Higher ATR$_0$, II/II

- (S.)

\[
\begin{align*}
&\Sigma^2_1-\text{Sep}^\mathbb{R} + \text{SF}(\mathbb{R}) \\
&\downarrow \\
&\Sigma^\mathbb{R}_1-\text{Det} \\
&\downarrow \\
&\text{TR}_1(\mathbb{R}) + \text{WO}(\mathbb{R}) + \text{SF}(\mathbb{R}) \\
&\Delta^\mathbb{R}_1-\text{Det} \\
&\downarrow \\
&\text{BR}_1(\mathbb{R}) + \text{SF}(\mathbb{R}) \\
&\downarrow \\
&\text{CWO}^\mathbb{R}
\end{align*}
\]

- \[\text{WO}(\mathbb{R}) \leftrightarrow \text{SF}(\mathbb{R})\]
Separating Determinacy Principles
Separating Determinacy Principles

- Over RCA_0^3, $\Delta^R_1\text{-Det}$ does not imply $\Sigma^R_1\text{-Det}$
Separating Determinacy Principles

- Over RCA_0^3, Δ^R_1-Det $\not\rightarrow \Sigma^R_1$-Det
- Ground model $\mathcal{V} \models \text{ZFC} + \text{CH}$
Separating Determinacy Principles

- Over RCA_0^3, Δ^R_1-Det $\not\rightarrow$ Σ^R_1-Det
- Ground model $V \models \text{ZFC+CH}$
- Force with (countably closed) \mathbb{P} to add generic open game
Over RCA_0^3, $\Delta^R_1\text{-Det} \nRightarrow \Sigma^R_1\text{-Det}$

- Ground model $\mathcal{V} \models \text{ZFC+CH}$
- Force with (countably closed) \mathbb{P} to add generic open game
- Get structure $(\omega, \mathbb{R}, \omega^\mathbb{R} \cap \mathcal{V}[G])$
Separating Determinacy Principles

- Over RCA_0^3, Δ^R_1-Det $\not\rightarrow \Sigma^R_1$-Det
- Ground model $V \models \text{ZFC} + \text{CH}$
- Force with (countably closed) \mathbb{P} to add generic open game
- Get structure $(\omega, R, \omega^R \cap V[G])$
- Take substructure $M = (\omega, R, \{ f \in \omega^R : f \text{ has “stable” name}\})$
The Game \(\mathcal{O} \)

\[\omega^* \mathcal{2} = \omega \mathcal{2} \cup \{ \infty \} \]

Ordered by \(\infty > x \) for \(x \in \omega^* \mathcal{2} \)

Play elements of \(\omega^* \mathcal{2} \):

- Player 1 (Open): \(\alpha_0, \alpha_1, \ldots \)
- Player 2 (Closed): \(\beta_0, \beta_1, \ldots \)

Legal sequences:

- \(\alpha_i > \alpha_{i+1} \Rightarrow \beta_i > \beta_{i+1} \)

Player 2 wins unless illegal, or

- \(\exists i (\beta_i = 0) \)

Win for 2 (keep playing \(\infty \)), but complicated game tree
The Game \mathcal{O}

- $\omega^*_2 = \omega_2 \cup \{\infty\}$, ordered by $\infty > x$ for $x \in \omega^*_2$
The Game \mathcal{O}

\[\omega^* = \omega_2 \cup \{\infty\}, \text{ ordered by } \infty > x \text{ for } x \in \omega^*_2 \]

\[\infty > \infty \]
The Game \mathcal{O}

- $\omega_2^* = \omega_2 \cup \{\infty\}$, ordered by $\infty > x$ for $x \in \omega_2^*$
 - $\infty > \infty$

- Play elements of ω_2^*:
The Game O

- $\omega_2^* = \omega_2 \cup \{\omega\}$, ordered by $\omega > x$ for $x \in \omega_2^*$
 - $\omega > \omega$

- Play elements of ω_2^*:

<table>
<thead>
<tr>
<th>Player 1 (Open)</th>
<th>α_0</th>
<th>α_1</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 2 (Closed)</td>
<td>β_0</td>
<td>β_1</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

- Play until illegal move, or

- $\exists i (\beta_i = 0)$
 - Win for 2 (keep playing ω), but complicated game tree
The Game \mathcal{O}

- $\omega^*_2 = \omega_2 \cup \{\infty\}$, ordered by $\infty > x$ for $x \in \omega^*_2$
 - $\infty > \infty$
- Play elements of ω^*_2:
 - Player 1 (Open): $\alpha_0 \alpha_1 \cdots$
 - Player 2 (Closed): $\beta_0 \beta_1 \cdots$
- Legal sequences: $\alpha_i > \alpha_{i+1} \Rightarrow \beta_i > \beta_{i+1}$
The Game \mathcal{O}

- $\omega_2^* = \omega_2 \cup \{\infty\}$, ordered by $\infty > x$ for $x \in \omega_2^*$
 - $\infty > \infty$
- Play elements of ω_2^*:
 - Player 1 (Open) $\alpha_0 \quad \alpha_1 \quad \cdots$
 - Player 2 (Closed) $\beta_0 \quad \beta_1 \quad \cdots$
- Legal sequences: $\alpha_i > \alpha_{i+1} \implies \beta_i > \beta_{i+1}$
- Player 2 wins unless illegal, or $\exists i (\beta_i = 0)$
The Game \mathcal{O}

- $\omega_2^* = \omega_2 \cup \{\infty\}$, ordered by $\infty > x$ for $x \in \omega_2^*$
 - $\infty > \infty$

- Play elements of ω_2^*:

<table>
<thead>
<tr>
<th>Player 1 (Open)</th>
<th>α_0</th>
<th>α_1</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 2 (Closed)</td>
<td>β_0</td>
<td>β_1</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

- Legal sequences: $\alpha_i > \alpha_{i+1} \implies \beta_i > \beta_{i+1}$

- Player 2 wins unless illegal, or $\exists i(\beta_i = 0)$

- Win for 2 (keep playing ∞), but complicated game tree
The Forcing

Want to create a game on \mathbb{R} which classically is \mathbb{O}, but unlabelled

Force with $P =$ countable partial maps $p : \mathbb{R} < \omega \to (\omega^* \times 2)^2$ such that

1. $\text{dom}(p)$ a tree
2. $p_1(\langle \rangle) = p_2(\langle \rangle) = \infty$
3. $|\sigma| = 2^k \Rightarrow p_2(\sigma \downarrow a) = p_2(\sigma)$
4. $|\sigma| = 2^k + 1 \Rightarrow p_1(\sigma \downarrow a) = p_1(\sigma)$
5. $p_1(\sigma) > p_1(\sigma \downarrow a) \Rightarrow p_2(\sigma) > p_2(\sigma \downarrow a)$
6. $p_2(\sigma) = 0 \Rightarrow \sigma \downarrow a \notin \text{dom}(p)$

P countably closed

Noah Schweber
The Forcing

- Want to create a game on \mathbb{R} which classically is \mathcal{O}, but unlabelled
The Forcing

- Want to create a game on \mathbb{R} which classically is \mathcal{O}, but unlabelled
- Force with $\mathbb{P}=\text{countable partial maps}$

$$p : \mathbb{R}^{<\omega} \to (\omega_2^*)^2$$

such that
The Forcing

- Want to create a game on \mathbb{R} which classically is \mathcal{O}, but unlabelled
- Force with \mathbb{P}=countable partial maps

$$p : \mathbb{R}^{<\omega} \to (\omega_2^*)^2$$

such that
- $dom(p)$ a tree
The Forcing

- Want to create a game on \(\mathbb{R} \) which classically is \(\mathcal{O} \), but unlabelled
- Force with \(P = \text{countable partial maps} \)

\[p : \mathbb{R}^{<\omega} \to (\omega_2^*)^2 \]

such that
 - \(\text{dom}(p) \) a tree
 - \(p_1(\langle \rangle) = p_2(\langle \rangle) = \infty \)
The Forcing

- Want to create a game on \(\mathbb{R} \) which classically is \(\mathcal{O} \), but unlabelled
- Force with \(\mathbb{P} = \) countable partial maps

\[
p : \mathbb{R}^{<\omega} \to (\omega_2^*)^2
\]

such that

- \(\text{dom}(p) \) a tree
- \(p_1(\langle \rangle) = p_2(\langle \rangle) = \infty \)
- \(|\sigma| = 2k \implies p_2(\sigma \upharpoonright a) = p_2(\sigma), \quad |\sigma| = 2k + 1 \implies p_1(\sigma \upharpoonright a) = p_1(\sigma) \)
The Forcing

- Want to create a game on \mathbb{R} which classically is \mathcal{O}, but unlabelled
- Force with $\mathbb{P}=\text{countable partial maps}$

$$p : \mathbb{R}^<\omega \rightarrow (\omega_2^*)^2$$

such that

- $\text{dom}(p)$ a tree
- $p_1(\langle \rangle) = p_2(\langle \rangle) = \infty$
- $|\sigma| = 2k \implies p_2(\sigma \upharpoonright a) = p_2(\sigma)$, $|\sigma| = 2k + 1 \implies p_1(\sigma \upharpoonright a) = p_1(\sigma)$
- $p_1(\sigma) > p_1(\sigma \upharpoonright a) \implies p_2(\sigma) > p_2(\sigma \upharpoonright a \upharpoonright b)$
The Forcing

- Want to create a game on \mathbb{R} which classically is O, but unlabelled
- Force with \mathbb{P}=countable partial maps

$$p : \mathbb{R}^{<\omega} \rightarrow (\omega_2^*)^2$$

such that

- $dom(p)$ a tree
- $p_1(\langle\rangle) = p_2(\langle\rangle) = \infty$
- $|\sigma| = 2k \implies p_2(\sigma \upharpoonright a) = p_2(\sigma)$,
 $|\sigma| = 2k + 1 \implies p_1(\sigma \upharpoonright a) = p_1(\sigma)$
- $p_1(\sigma) > p_1(\sigma \upharpoonright a) \implies p_2(\sigma) > p_2(\sigma \upharpoonright a \upharpoonright b)$
- $p_2(\sigma) = 0 \implies \sigma \upharpoonright a \notin dom(p)$
The Forcing

- Want to create a game on \mathbb{R} which classically is \mathcal{O}, but unlabelled
- Force with $\mathbb{P}=\text{countable partial maps}$

$$p : \mathbb{R}^{<\omega} \rightarrow (\omega_2^*)^2$$

such that

- $\text{dom}(p)$ a tree
- $p_1(\langle \rangle) = p_2(\langle \rangle) = \infty$
- $|\sigma| = 2k \implies p_2(\sigma \upharpoonright a) = p_2(\sigma)$,
 $|\sigma| = 2k + 1 \implies p_1(\sigma \upharpoonright a) = p_1(\sigma)$
- $p_1(\sigma) > p_1(\sigma \upharpoonright a) \implies p_2(\sigma) > p_2(\sigma \upharpoonright a \upharpoonright b)$
- $p_2(\sigma) = 0 \implies \sigma \upharpoonright a \notin \text{dom}(p)$

- \mathbb{P} countably closed
Building M

Name ν is α-stable if $\begin{align*}
(p \approx \alpha q, \nu(p)(a) = n) = \Rightarrow (\nu(q)(a) = n)
\end{align*}$

Name ν is stable if α-stable for some α

Separating model is $M = (\omega, R, \{\nu[G] : \nu \text{ stable}\})$
Building M

“Name” = appropriate map: $\mathbb{P} \rightarrow \{\text{partial maps } \mathbb{R} \rightarrow \omega\}$
Building M

- “Name” = appropriate map: $\mathbb{P} \rightarrow \{\text{partial maps } \mathbb{R} \rightarrow \omega\}$
- For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_\alpha q$ if

\[\text{dom}(p) = \text{dom}(q) \land p(\sigma) \neq q(\sigma) \Rightarrow p(\sigma) \geq \alpha \]

- Name ν is α-stable if $[p \approx_\alpha q, \nu(p)(a) = n] \Rightarrow [\nu(q)(a) = n]$.

- Name ν is stable if α-stable for some α.

Separating model is $M = (\omega, R, \{\nu[G] : \nu \text{ is stable}\})$.

Noah Schweber

Transfinite Recursion in Higher Reverse Mathematics
Building M

- “Name” = appropriate map: $\mathbb{P} \rightarrow \{\text{partial maps } \mathbb{R} \rightarrow \omega\}$
- For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_\alpha q$ if
 - $\text{dom}(p) = \text{dom}(q)$ and
Building M

- “Name” = appropriate map: $\mathbb{P} \to \{\text{partial maps } \mathbb{R} \to \omega\}$
- For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_\alpha q$ if
 - $\text{dom}(p) = \text{dom}(q)$ and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$
Building M

- “Name” = appropriate map: $\mathbb{P} \rightarrow \{\text{partial maps } \mathbb{R} \rightarrow \omega\}$
- For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_\alpha q$ if
 - $\text{dom}(p) = \text{dom}(q)$ and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$
- Name ν is α-stable if
 \[
 [p \approx_\alpha q, \ \nu(p)(a) = n] \implies [\nu(q)(a) = n]
 \]
Building M

- "Name" = appropriate map: $\mathbb{P} \to \{\text{partial maps } \mathbb{R} \to \omega\}$
- For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_\alpha q$ if
 - $\text{dom}(p) = \text{dom}(q)$ and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$
- Name ν is α-stable if
 \[
 [p \approx_\alpha q, \nu(p)(a) = n] \implies [\nu(q)(a) = n]
 \]
- Name ν is stable if α-stable for some α
Building M

- “Name” = appropriate map: $\mathbb{P} \rightarrow \{\text{partial maps } \mathbb{R} \rightarrow \omega\}$
- For $\alpha < \omega_2, p, q \in \mathbb{P}$: Set $p \approx_\alpha q$ if
 - $\text{dom}(p) = \text{dom}(q)$ and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$
- Name ν is α-stable if
 $$[p \approx_\alpha q, \quad \nu(p)(a) = n] \implies [\nu(q)(a) = n]$$
- Name ν is stable if α-stable for some α
- Separating model is
 $$M = (\omega, \mathbb{R}, \{\nu[G] : \nu \text{ is stable}\})$$
\[M \models \neg \Sigma^R_1 \text{-Det} \]
\[M \models \neg \Sigma^1_1 \text{-Det} \]

- Generic game \(T = \text{dom}(G) \) has 1-stable name, so \(T \in M \).
\[M \models \neg \Sigma^1_1 \text{-Det} \]

- Generic game \(T = \text{dom}(G) \) has 1-stable name, so \(T \in M \)
- Each strategy for Open has play which defeats it; so \(M \models \text{“} T \text{ not win for Open”} \) (countable closure)
$M \models \neg \Sigma^R_1\text{-Det}$

- Generic game $T = \text{dom}(G)$ has 1-stable name, so $T \in M$
- Each strategy for Open has play which defeats it; so $M \models \text{“}T$ not win for Open” (countable closure)
- If ν is α-stable name for Closed-strategy, ν can be “tricked”:

Let $p \Vdash \nu(\langle \alpha \rangle) = \gamma$

$\gamma \geq \alpha$ if ν winning

Get $p' \approx \alpha p$ with $p' \Vdash \nu(\langle \gamma + 1 \rangle) = \gamma$

So $M \models \text{“}T$ not win for Closed”
$M \models \neg \Sigma^\mathbb{R}_1$-Det

- Generic game $T = \text{dom}(G)$ has 1-stable name, so $T \in M$
- Each strategy for Open has play which defeats it; so $M \models \neg T$ not win for Open” (countable closure)
- If ν is α-stable name for Closed-strategy, ν can be “tricked”:
 - Let $p \models \nu(\langle \alpha \rangle) = \gamma$
$M \models \neg \Sigma^R_1$-Det

- Generic game $T = \text{dom}(G)$ has 1-stable name, so $T \in M$
- Each strategy for Open has play which defeats it; so $M \models \text{“} T \text{ not win for Open”}$ (countable closure)
- If ν is α-stable name for Closed-strategy, ν can be “tricked”:
 - Let $p \models \nu(\langle \alpha \rangle) = \gamma$
 - $\gamma \geq \alpha$ if ν winning
$M \models \neg \Sigma^R_1$-Det

- Generic game $\mathcal{T} = \text{dom}(G)$ has 1-stable name, so $\mathcal{T} \in M$
- Each strategy for Open has play which defeats it; so $M \models \text{“} \mathcal{T} \text{ not win for Open”} \text{ (countable closure)}$
- If ν is α-stable name for Closed-strategy, ν can be “tricked”:
 - Let $p \models \nu(\langle \alpha \rangle) = \gamma$
 - $\gamma \geq \alpha$ if ν winning
 - Get $p' \approx_\alpha p$ with $p' \models \nu(\langle \gamma + 1 \rangle) = \gamma$
\[M \models \neg \Sigma^1_1\text{-Det} \]

- Generic game \(T = \text{dom}(G) \) has 1-stable name, so \(T \in M \)
- Each strategy for Open has play which defeats it; so \(M \models \text{“} T \text{ not win for Open} \text{”} \) (countable closure)
- If \(\nu \) is \(\alpha \)-stable name for Closed-strategy, \(\nu \) can be “tricked”:
 - Let \(p \models \nu(\langle \alpha \rangle) = \gamma \)
 - \(\gamma \geq \alpha \) if \(\nu \) winning
 - Get \(p' \approx_{\alpha} p \) with \(p' \models \nu(\langle \gamma + 1 \rangle) = \gamma \)
- So \(M \models \text{“} T \text{ not win for Closed} \text{”} \)
$M \models \Delta^R_1$-Det, I/II: Short games
$M \models \Delta^R_1$-Det, I/II: Short games

- \mathbb{P} has retagging property:

$$p \approx_{\alpha+\omega_1} q \text{ and } r \leq p \quad \implies \quad \exists s (r \approx_\alpha s \text{ and } s \leq q)$$
M \models \Delta_1^R\text{-Det}, I/II: Short games

- \mathbb{P} has retagging property:

 \[p \equiv_{\alpha + \omega_1} q \text{ and } r \leq p \implies \exists s(r \equiv_\alpha s \text{ and } s \leq q) \]

- Retagging = “Jumps”
$M \models \Delta^\mathbb{R}_{1}-\text{Det}, \text{ I/II: Short games}$

- \mathbb{P} has \textit{retagging property}:

 \[p \approx_{\alpha + \omega_1} q \text{ and } r \leq p \implies \exists s (r \approx_\alpha s \text{ and } s \leq q) \]

- Retagging = “Jumps”
 - Ex: ν is $(\alpha + \omega_1 \cdot 2)$-stable \implies name for characteristic function of $\{x : \exists y (\nu(x \oplus y) = 1)\}$ is α stable
$M \models \Delta^R_1$-Det, I/II: Short games

- \mathbb{P} has *retagging property*:

 \[p \approx_{\alpha+\omega_1} q \text{ and } r \leq p \implies \exists s (r \approx_\alpha s \text{ and } s \leq q) \]

- Retagging = “Jumps”
 - Ex: ν is $(\alpha + \omega_1 \cdot 2)$-stable \implies name for characteristic function of $\{x : \exists y (\nu(x \oplus y) = 1)\}$ is α stable

- Winning clopen games of rank $< \omega_2$: iterated retagging
$\mathcal{M} \models \Delta^R_1$-Det, II/II: No long games
Claim: All games in M have rank $< \omega_2$
Claim: All games in M have rank $< \omega_2$

ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$
Claim: All games in M have rank $< \omega_2$

ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$

Tree T of pairs $\langle p, a \rangle$ with $\text{ran}(p) \subseteq (\alpha \cup \{\infty\})$ and $p \models \"a\"$ is a descending sequence in ν.

$\langle p, a \rangle \leq \langle q, b \rangle$ if $p \leq q$ and $b \prec a$.

T is wellfounded.

$|T| = \aleph_1$

T embeds tree of descending sequences in $\nu[G]$.

Noah Schweber

Transfinite Recursion in Higher Reverse Mathematics
Claim: All games in M have rank $< \omega_2$

ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$

Tree T of pairs $\langle p, \bar{a} \rangle$ with

- $\text{ran}(p) \subseteq (\alpha \cup \{\infty\})^2$
Claim: All games in M have rank $< \omega_2$

ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$

Tree T of pairs $\langle p, a \rangle$ with

- $\text{ran}(p) \subseteq (\alpha \cup \{\infty\})^2$
- $p \models \text{“a descending sequence in } \nu\text{”}$
Claim: All games in M have rank $< \omega_2$

ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$

Tree T of pairs $\langle p, \bar{a} \rangle$ with

- $\text{ran}(p) \subseteq (\alpha \cup \{\infty\})^2$
- $p \vdash \text{“} \bar{a} \text{ descending sequence in } \nu\text{”}$
- $\langle p, \bar{a} \rangle \leq \langle q, \bar{b} \rangle$ if $p \leq q$ and $\bar{b} \prec \bar{a}$
Claim: All games in M have rank $< \omega_2$

ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$

Tree T of pairs $\langle p, a \rangle$ with

$\text{ran}(p) \subseteq (\alpha \cup \{\infty\})^2$

\models “a descending sequence in ν”

$\langle p, a \rangle \leq \langle q, b \rangle$ if $p \leq q$ and $b \prec a$

T wellfounded
Claim: All games in M have rank $< \omega_2$

ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$

Tree T of pairs $\langle p, \bar{a} \rangle$ with

- $\text{ran}(p) \subseteq (\alpha \cup \{\infty\})^2$
- $p \models \text{“} \bar{a} \text{ descending sequence in } \nu \text{”}$
- $\langle p, \bar{a} \rangle \leq \langle q, \bar{b} \rangle$ if $p \leq q$ and $\bar{b} \prec \bar{a}$

T wellfounded

$|T| = \aleph_1$
$M \models \Delta^R_1\text{-Det}$, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ν an α-stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree T of pairs $\langle p, a \rangle$ with
 - $\text{ran}(p) \subseteq (\alpha \cup \{\infty\})^2$
 - $p \models \text{“} a \text{ descending sequence in } \nu \text{”}$
 - $\langle p, a \rangle \leq \langle q, b \rangle$ if $p \leq q$ and $b \prec a$
- T wellfounded
- $|T| = \aleph_1$
- T embeds tree of descending sequences in $\nu[G]$
\[M \models \text{RCA}_0^3 \]
\[M \models \text{RCA}_0^3 \]

Let \(\varphi(x^1, y^0) \in \Sigma^0_n \) (with parameters), and
\[M \models \forall x^1 \exists! y^0 \varphi(x, y) \]
Let $\varphi(x^1, y^0) \in \Sigma^0_n$ (with parameters), and
$M \models \forall x^1 \exists! y^0 \varphi(x, y)$

- Type-2 parameters of φ: F_i with names ν_i
\[M \models \text{RCA}_0^3 \]

- Let \(\varphi(x^1, y^0) \in \Sigma^0_n \) (with parameters), and
 \[M \models \forall x^1 \exists ! y^0 \varphi(x, y) \]
 - Type-2 parameters of \(\varphi \): \(F_i \) with names \(\nu_i \)
 - Fix \(\alpha \) with each \(\nu_i \) \(\alpha \)-stable
\(M \models \text{RCA}_0^3 \)

- Let \(\varphi(x^1, y^0) \in \Sigma^n \) (with parameters), and \(M \models \forall x^1 \exists !y^0 \varphi(x, y) \)
 - Type-2 parameters of \(\varphi \): \(F_i \) with names \(\nu_i \)
 - Fix \(\alpha \) with each \(\nu_i \) \(\alpha \)-stable
- For each \(a \), \(\varphi(a, _ _ _) \) depends only on values of parameters on countably many reals
Let $\varphi(x^1, y^0) \in \Sigma^0_n$ (with parameters), and
$M \models \forall x^1 \exists! y^0 \varphi(x, y)$
- Type-2 parameters of φ: F_i with names ν_i
- Fix α with each ν_i α-stable
- For each a, $\varphi(a, _)$ depends only on values of parameters on countably many reals
- Countable closure: functional defined by φ is α-stable
Further Questions

▶ Do canonical models of Δ^R_1-Det satisfy Σ^R_1-Det?

▶ $(\omega, R \cap L_\alpha, \omega) R \cap L_\alpha$

▶ Σ^R_1-Det $\Rightarrow \Sigma^2_1$-Sep R \Rightarrow Δ^R_1-Det \Rightarrow WO(R)?

▶ Restrict games based on topological complexity of game tree coded as set of reals

▶ Is RCA3_0/RCA$^{\omega_0}$ the “right” base theory?

▶ Ex: existence of jump operator J does not imply existence of 0_ω (Avigad/Feferman '98; Hunter '08, conservativity over ACA0_0)

▶ Pluralism: may be right “family” of base theories

Noah Schweber

Transfinite Recursion in Higher Reverse Mathematics
Further Questions

▶ Do canonical models of Δ_1^R-Det satisfy Σ_1^R-Det?
Further Questions

- Do canonical models of Δ^R_1-Det satisfy Σ^R_1-Det?
 - $(\omega, \mathbb{R} \cap L_\alpha, \omega^\mathbb{R} \cap L_\alpha)$
Further Questions

Do canonical models of Δ^R_1-Det satisfy Σ^R_1-Det?

- $(\omega, \mathbb{R} \cap L_\alpha, \omega^\mathbb{R} \cap L_\alpha)$

Σ^R_1-Det \implies Σ^2_1-SepR? Δ^R_1-Det \implies WO(\mathbb{R})?
Further Questions

- Do canonical models of Δ^R_1-Det satisfy Σ^R_1-Det?
 - $(\omega, R \cap L_\alpha, \omega^R \cap L_\alpha)$
- Σ^R_1-Det \implies Σ^2_1-SepR? Δ^R_1-Det \implies WO(R)?
- Restrict games based on topological complexity of game tree coded as set of reals
Further Questions

- Do canonical models of Δ^R_1-Det satisfy Σ^R_1-Det?
 - $\left(\omega, R \cap L_\alpha, \omega^R \cap L_\alpha\right)$
- Σ^R_1-Det \implies Σ^2_1-SepR? Δ^R_1-Det \implies WO(R)?
- Restrict games based on topological complexity of game tree coded as set of reals
- Is $\text{RCA}_0^3/\text{RCA}_0^\omega$ the “right” base theory?
Further Questions

- Do canonical models of Δ^R_1-Det satisfy Σ^R_1-Det?
 - $(\omega, R \cap L_\alpha, \omega^R \cap L_\alpha)$
- Σ^R_1-Det \implies Σ^2_1-SepR? Δ^R_1-Det \implies WO(R)?
- Restrict games based on topological complexity of game tree coded as set of reals
- Is RCA$_0^3$/RCA$_0^\omega$ the “right” base theory?
 - Ex: existence of jump operator \mathcal{J} does not imply existence of $0^{(\omega)}$ (Avigad/Feferman ’98; Hunter ’08, conservativity over ACA$_0$)
Further Questions

- Do canonical models of Δ^R_1-Det satisfy Σ^R_1-Det?
 - $(\omega, R \cap L_\alpha, \omega^R \cap L_\alpha)$
- Σ^R_1-Det \implies Σ^2_1-SepR? Δ^R_1-Det \implies WO(R)?
- Restrict games based on topological complexity of game tree coded as set of reals
- Is RCA$_0^3$/RCA$_0^\omega$ the “right” base theory?
 - Ex: existence of jump operator \exists does not imply existence of $0^{(\omega)}$ (Avigad/Feferman ’98; Hunter ’08, conservativity over ACA$_0$)
 - Pluralism: may be right “family” of base theories