On Gács' quantum algorithmic entropy

Toru Takisaka

Reserach Institute for Mathematical Sciences, Kyoto University

February 20, 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Kolmogorov complexity ··· information content of binary strings

 $C_M(w) = \min \{ l(v) \mid M(v) = w \}.$

- Approaches to quantize the notion of Kolmogorov complexity
 - Berthiaume et al. (2001)
 - Vitanyi (2001)
 - Gács (2001)
 - etc.

Research object

To make these notions more reliable and more applicable to other research area, relationships between them should be clarified.

- Berthiaume et al. (2001) \rightarrow quantization of Kolmogorov complexity
- Gács (2001) \rightarrow quantization of lower-semicomputable semimeasure

Theorem (Levin's coding theorem)

 $K(x) = -\log \mathbf{m}(x) + O(1).$

 \rightarrow We expect these quantum notions have some good relationship.

This Talk

It turns out Gács' proof of the following two theorem have some flaw.

Claim

- There is a lower-semicomputable semi-density matrix μ dominating all other such matrices in the sense that for every other such matrix ρ there is a constant c > 0 with ρ ≤ cμ.
- For a universal operator μ, we define

$$\overline{H}(|\psi\rangle) = -\langle \psi | (\log \mu)\psi \rangle, \ \underline{H}(|\psi\rangle) = -\log \langle \psi | \mu\psi \rangle.$$

Let $|1\rangle$, $|2\rangle$, ... be a computable orthogonal sequence of states. Then for $H = \overline{H}$ or $H = \underline{H}$ we have

 $H(|i\rangle) = K(i) + O(1).$

In this talk, we construct an infinite dimensional modification of Gács' lower-semicomputable semi-density matrices, and discuss their properties and the problem above.

Theorem

Assume a universal operator exists. Then for any uniformly computable ortohomal system $\{ | \psi_n \rangle \}_{n=1}^{\infty}$,

$$K(n) = H(|\psi_n\rangle) + O(1),$$

where $H = \overline{H}$ or $H = \underline{H}$. In particular, for any $w \in \{0, 1\}^*$,

$$K(w) = H(|w\rangle) + O(1).$$

Theorem

There is no uniformly computable orthonormal basis { $|\psi_n\rangle_{n=1}^{\infty}$ of \mathcal{H} and lower-semicomputable semimeasure *m* which makes an operator $\sum_n m(n) |\psi_n\rangle \langle \psi_n |$ universal.

We still do not know whether a universal operator exists or not.

Classical notions

Definition

- $f: \{0,1\}^* \to \mathbb{R}$ is called a semimeasure if $f \ge 0$ and $\sum_w f(w) \le 1$.
- f is **lower-semicomputable (LSC)** if there is a computable function $\tilde{f}: \{0,1\}^* \times \mathbb{N} \to \mathbb{Q}$ such that $\tilde{f}(w,k) \leq \tilde{f}(w,k+1)$ for every $w \in \{0,1\}^*, k \in \mathbb{N}$, and $\tilde{f}(w,k) \xrightarrow{k \to \infty} f(w)$ for every w.
- We call \tilde{f} a lower-approximation of f.

Theorem

We can enumerate all LSC semimeasures effectively. Namely, there exists $\tilde{m}: \{0, 1\}^* \times \mathbb{N}^2 \to \mathbb{Q}$ which satisfies following two conditions:

- for any n ∈ N, m̃(-, -, n) is a lower-approximation of some LSC semimeasure;
- If or given LSC semimeasure m', there is n ∈ N such that m̃(-, -, n) is a lower-approximation of m'.

Theorem

There is a semicomputable semimeasure **m** with the property that for any other semicomputable semimeasure m' there is a constant c > 0 such that for all x we have $cm'(x) \le \mathbf{m}(x)$.

Proof

$$\mathbf{m}(x) \coloneqq \sum_{n=1}^{\infty} 2^{-n} m_n(x)$$

is a universal semimeasure, where $\{m_n\}_{n=1}^{\infty}$ is an effective enumeration of all LSC semimeasures.

Theorem (Levin's coding theorem)

 $K(x) = -\log \mathbf{m}(x) + O(1).$

Quantum analogue of binary strings

Classical	Quantum
$\{0, 1\}$	\mathbb{C}^2 , { $ 0\rangle$, $ 1\rangle$ }
$\{0,1\}^n$	$(\mathbb{C}^2)^{\otimes n}, \{ w \rangle \}_{w \in \{0,1\}^n}$
$\{0,1\}^*$	$\bigoplus_{n=0}^{\infty} (\mathbb{C}^2)^{\otimes n}, \{ \mid w \}_{w \in \{0,1\}^*}$

• $\mathcal{H} := \bigoplus_{n=0}^{\infty} (\mathbb{C}^2)^{\otimes n}$ with a computational basis $\{ | w \rangle \}_{w \in \{0,1\}^*}$

- $\mathcal{L}(\mathcal{H})$: the set of all bounded hermitian operators on \mathcal{H}
- $\mathbb{C}_q := \{ x + yi \mid x, y \in \mathbb{Q} \}$
- $\langle \psi | \varphi \rangle$: inner product of $| \psi \rangle$ and $| \varphi \rangle$
- $|\psi\rangle\langle\psi|$: one-dimensional projection onto span { $|\psi\rangle$ }

Definition

Definition

- $\rho \in \mathcal{L}(\mathcal{H})$ is called a semi-density operator if $\rho \ge 0$ and $\operatorname{Tr} \rho \le 1$.
- $\rho \in \mathcal{L}(\mathcal{H})$ is LSC (upper-semicomputable, USC) if there is a computable function $\psi : \mathbb{N} \times \{0, 1\}^* \times \{0, 1\}^* \to \mathbb{C}_q$ such that the sequence $\{\rho_n\}_{n=1}^{\infty} \subset \mathcal{L}(\mathcal{H})$ defined by

$$\langle w | \rho_n v \rangle \coloneqq \psi(n, w, v)$$

satisfies $\rho_n \leq \rho_{n+1}$ ($\rho_n \geq \rho_{n+1}$) and $\rho_n \xrightarrow{n \to \infty} \rho$ in WOT (i.e. $\langle \psi | \rho_n \psi \rangle \rightarrow \langle \psi | \rho \psi \rangle$ for any $| \psi \rangle \in \mathcal{H}$). We call ψ a lower- (upper-) approximation of ρ .

• $\rho \in \mathcal{L}(\mathcal{H})$ is computable if there is a computable function $\psi : \mathbb{N} \times \{0, 1\}^* \times \{0, 1\}^* \to \mathbb{C}_q$ which defines $\{\rho_n\}_{n=1}^{\infty} \subset \mathcal{L}(\mathcal{H})$ such that $||\rho - \rho_n|| < 2^{-n}$, in the same manner as above. We call ψ an approximation of ρ .

Is there any relationship between (lower-semi)computability of ρ and $\psi(w, v) = \langle w | \rho v \rangle$?

Is there any relationship between (lower-semi)computability of ρ and $\psi(w, v) = \langle w | \rho v \rangle$?

Proposition

 ρ is computable if and only if $\psi(w, v) = \langle w | \rho v \rangle$ is computable (in the classical sense).

Is there any relationship between (lower-semi)computability of ρ and $\psi(w, v) = \langle w | \rho v \rangle$?

Proposition

 ρ is computable if and only if $\psi(w, v) = \langle w | \rho v \rangle$ is computable (in the classical sense).

 lower-semicomputability of an operator is neither the necessary nor sufficient condition of that of ψ(w, v).

 $f: \{0,1\}^* \to \mathbb{R}$ is computable if and only if it is LSC and USC. Does it also hold in our quantum version?

イロト イヨト イヨト イヨト

13/30

 $f: \{0,1\}^* \to \mathbb{R}$ is computable if and only if it is LSC and USC. Does it also hold in our quantum version?

Proposition

 ρ is computable if and only if it is LSC and USC.

Some properties

Question

For an eigenvalue decomposition $\sum_n m(n) |\psi_n\rangle \langle \psi_n|$ of ρ , can we find any property of *m* and $\{ |\psi_n\rangle \}_{n=1}^{\infty}$ in a sense of computability?

(日)

15/30

Some properties

Question

For an eigenvalue decomposition $\sum_n m(n) |\psi_n\rangle \langle \psi_n|$ of ρ , can we find any property of *m* and $\{ |\psi_n\rangle \}_{n=1}^{\infty}$ in a sense of computability?

Definition

We say a sequence $\{ |\psi_n\rangle \}_{n=1}^{\infty}$ of states is **uniformly computable** if there is a recursive function $\tilde{\psi} : \mathbb{N}^2 \times \{0, 1\}^* \to \mathbb{C}_q$ such that

$$|\langle w|\psi_n\rangle - \tilde{\psi}(k,n,w)| < 2^{-k}F$$

for every $k, n \in \mathbb{N}$ and $w \in \{0, 1\}^*$.

Some properties

Question

For an eigenvalue decomposition $\sum_{n} m(n) |\psi_n\rangle \langle \psi_n|$ of ρ , can we find any property of *m* and $\{ |\psi_n\rangle \}_{n=1}^{\infty}$ in a sense of computability?

Definition

We say a sequence $\{ |\psi_n\rangle \}_{n=1}^{\infty}$ of states is **uniformly computable** if there is a recursive function $\tilde{\psi} : \mathbb{N}^2 \times \{0, 1\}^* \to \mathbb{C}_q$ such that

$$|\langle w|\psi_n\rangle - \tilde{\psi}(k,n,w)| < 2^{-k}F$$

for every $k, n \in \mathbb{N}$ and $w \in \{0, 1\}^*$.

Proposition

Let { $|\psi_n\rangle$ }[∞]_{n=1} be a uniformly computable sequence of states, and *m* be a LSC semimeasure. Then $\rho := \sum_n m(n) |\psi_n\rangle \langle \psi_n|$ is a LSC semi-density operator.

- For any LSC semimeasure *m*, we can take a *positive* approximation function of *m*.
 - If ψ is a lower-approximation of *m* then so is $\varphi(x, k) := \max \{ \psi(x, k), 0 \}$.
- If this property also holds in our quantum extension, then it means we can take a lower-approximation $\{\rho_n\}$ of LSC semi-density operator such that every ρ_n is trace-class, and converges in norm topology.

Proposition

There is a LSC semi-density operator which cannot be approximated by any sequence of positive operators from below.

Proof

$$\rho \coloneqq \left| \frac{1}{2}\lambda + \frac{\sqrt{3}}{2}0 \right\rangle \left\langle \frac{1}{2}\lambda + \frac{\sqrt{3}}{2}0 \right| = \frac{1}{4} \left(\begin{array}{cccc} 1 & \sqrt{3} & 0 & \dots \\ \sqrt{3} & 3 & 0 & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right)$$

Then ρ is computable, so it is LSC. On the other hand, since ρ is rank-one projection, if there is σ such that $0 \le \sigma \le \rho$ then $\sigma = c\rho$ ($0 \le c \le 1$). But it holds that $\langle \lambda | \rho \lambda \rangle \notin \mathbb{C}_q$ or $\langle 0 | \rho \lambda \rangle \notin \mathbb{C}_q$ for any $c \in \mathbb{R} \setminus 0$.

Definition

A LSC semi-density operator μ is **universal** if for any LSC semi-density operator ν there is $c_{\nu} > 0$ such that $c_{\nu}\nu \leq \mu$.

Problem

Can we enumerate all LSC semi-density operators effectively?

 It cannot be solved just using an analogous approach to the classical situation.

The way to enumerate all LSC semimeasures

Let $\{\varphi_n\}_{n=1}^{\infty}$ be an effective enumeration of all partial recursive functions. Consider the following algorithm: **Input** $n \in \mathbb{N}$.

- Let $\alpha_w \coloneqq 0$ for every $w \in \{0, 1\}^*$.
- 2 Dovetail φ_n . Whenever φ_n halts for an input $\langle w, k \rangle$, go to step 3.
- So Check whether the conditions $\varphi_n(w,k) \ge \alpha_w$ and $(\sum_{v \ne w} \alpha_v) + \varphi_n(w,k) \le 1$ hold. If so, then let $\alpha_w \coloneqq \varphi_n(w,k)$. Otherwise, do nothing. go back to step 2.

Let $\tilde{\psi}(w, t, n)$ be the value of α_w after the t-steps computation of the algorithm above for an input *n*. Then

- $\tilde{\psi}(-,-,n)$ is an lower-approximation of some LSC semimeasure.
- $\tilde{\psi}$ can approximate any LSC semimeasure from below, since any lower-approximation of a semimeasure is equal to some φ_n , and $\tilde{\psi}(-, -, n)$ approximates the same semimeasure.

When we naively interpret this proof into the quantum setting, the corresponding algorithm would be like this: Input $n \in \mathbb{N}$.

- Let $\alpha_{w,v} \coloneqq 0$ for every $w, v \in \{0, 1\}^*$.
- 2 Dovetail φ_n . Whenever φ_n halts for an input $\langle w, v, k \rangle$, go to step 3.
- Check whether the condition $\varphi_n(w, v, k) \ge \alpha_{w,v}$ holds. If w = v, also check whether $(\sum_{u \neq w} \alpha_{u,u}) + \varphi_n(w, v, k) \le 4$ holds. If so, then let $\alpha_{w,v} := \varphi_n(w, v, k)$. Otherwise, do nothing. go back to step 2.
 - The sequence $\{\rho_n\}_{n=1}^{\infty}$ defined in this way is not always increasing.

We could modify the algorithm as follows: Input $n \in \mathbb{N}$.

- Let $\alpha_{w,v} \coloneqq 0$ for every $w, v \in \{0, 1\}^*$.
- 2 Dovetail φ_n . Whenever φ_n halts for an input $\langle w, v, k \rangle$, go to step 3.
- So Check whether the condition $\varphi_n(w, v, k) \ge \alpha_{w,v}$ and $\rho_n \le \rho_{n+1}$ holds. If w = v, also check whether $(\sum_{u \ne w} \alpha_{u,u}) + \varphi_n(w, v, k) \le 4$ holds. If so, then let $\alpha_{w,v} := \varphi_n(w, v, k)$. Otherwise, do nothing. go back to step 2.
 - In this modification, generally ψ̃(-, -, n) does not approximate the same semi-density operator as which is approximated by φ_n from below.

Proposition

Assume we can enumerate all LSC semi-density operators effectively. Then there is a universal semi-density operator μ .

Proof

 $\mu \coloneqq \sum_{n=1}^{\infty} 2^{-n} v_n$ is a universal semi-density operator, where $\{v_n\}_{n=1}^{\infty}$ is an enumeration of LSC semi-density operators.

For a universal operator μ , we define

$$\overline{H}(|\psi\rangle) = -\langle \psi | (\log \mu)\psi \rangle, \ \underline{H}(|\psi\rangle) = -\log \langle \psi | \mu\psi \rangle.$$

Proposition

Assume a universal operator exists. Then for any uniformly computable ortohomal system $\{ | \psi_n \rangle \}_{n=1}^{\infty}$,

 $K(n)=H(|\psi_n\rangle)+O(1),$

where $H = \overline{H}$ or $H = \underline{H}$. In particular, for any $w \in \{0, 1\}^*$,

 $K(w)=H(|w\rangle)+O(1).$

Proof

- The function $f(n) = \langle \psi_n | \mu \psi_n \rangle$ is LSC with $\sum_n f(n) = \text{Tr } \mu \leq 1$, hence $K(n) \leq \underline{H}(n) + O(1)$.
- The semi-density operator $\rho = \sum_{n} \mathbf{m}(n) |\psi_n\rangle \langle \psi_n|$ is LSC, so

 $K(n) = \langle \psi_n | (-\log \rho) \psi_n \rangle \ge \langle \psi_n | (-\log \mu) \psi_n \rangle + O(1) = \overline{H}(|\psi_n\rangle) + O(1).$

Corollary

Assume a universal operator μ exists. Let { $|\psi_n\rangle$ } be a uniformly computable orthonormal system (not necessarily a basis) of \mathcal{H} . Then a function $\mathbf{m}_{\psi}(n) \coloneqq \langle \psi_n | \mu \psi_n \rangle$ is a universal semimeasure.

Main results

Theorem

 μ is not diagonal. Namely, There is a LSC semi-density operator which cannot be multiplicatively dominated by $\mu_1 := \sum_i \mathbf{m}(i) |i\rangle \langle i|$.

Proof

Let $\overline{\mathbf{m}}(n) \coloneqq 2^{-n} \sum_{l(w)=n} \mathbf{m}(w)$. Also let $A_n \in \mathcal{M}_{2^n}(\mathbb{C})$ and $\rho \in \tilde{\mathcal{S}}(\mathcal{H})$ be

$$A_n \coloneqq \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}, \ \rho \coloneqq \begin{pmatrix} \overline{\mathbf{m}}(0)A_0 \\ & \overline{\mathbf{m}}(1)A_1 \\ & & \overline{\mathbf{m}}(2)A_2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$$

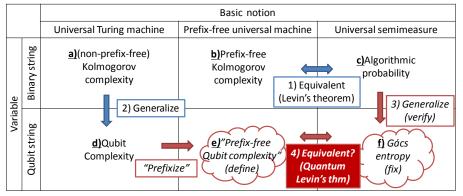
Then, for $|\psi_n\rangle \coloneqq 2^{-\frac{n}{2}} \sum_{l(w)=n} |w\rangle$, it holds that

$$\langle \psi_n | \mu_1 \psi_n \rangle = \overline{\mathbf{m}}(n), \langle \psi_n | \rho \psi_n \rangle = 2^n \overline{\mathbf{m}}(n).$$

Hence for any c > 0 there is an integer *n* such that $\langle \psi_n | (\rho - c\mu_1) \psi_n \rangle < 0$.

Corollary

There is no uniformly computable orthonormal basis $\{ |\psi_n\rangle \}_{n=1}^{\infty}$ of \mathcal{H} and LSC semimeasure *m* which makes an operator $\sum_n m(n) |\psi_n\rangle \langle \psi_n|$ universal.



Normal: known facts Italic: research objects