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background

Kolmogorov complexity · · · information content of binary strings

CM(w) = min { l(v) | M(v) = w } .

Approaches to quantize the notion of Kolmogorov complexity
Berthiaume et al. (2001)
Vitanyi (2001)
Gács (2001)
etc.

Research object
To make these notions more reliable and more applicable to other
research area, relationships between them should be clarified.
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background

Berthiaume et al. (2001)→ quantization of Kolmogorov complexity

Gács (2001)→ quantization of lower-semicomputable semimeasure

Theorem (Levin’s coding theorem)
K(x) = − log m(x) + O(1).

→We expect these quantum notions have some good relationship.
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This Talk

It turns out Gács’ proof of the following two theorem have some flaw.

Claim
There is a lower-semicomputable semi-density matrix µ dominating all
other such matrices in the sense that for every other such matrix ρ
there is a constant c > 0 with ρ ≤ cµ.

For a universal operator µ, we define

H(|ψ〉) = − 〈ψ|(log µ)ψ〉 , H(|ψ〉) = − log 〈ψ|µψ〉 .

Let |1〉, |2〉, . . . be a computable orthogonal sequence of states. Then
for H = H or H = H we have

H(|i〉) = K(i) + O(1).

In this talk, we construct an infinite dimensional modification of
Gács’ lower-semicomputable semi-density matrices, and discuss
their properties and the problem above.
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Results

Theorem
Assume a universal operator exists. Then for any uniformly computable
ortohomal system { | ψn〉 }

∞
n=1,

K(n) = H(|ψn〉) + O(1),

where H = H or H = H. In particular, for any w ∈ { 0, 1 }∗,

K(w) = H(|w〉) + O(1).

Theorem
There is no uniformly computable orthonormal basis { | ψn〉 }

∞
n=1 of H and

lower-semicomputable semimeasure m which makes an operator∑
n m(n)|ψn〉〈ψn| universal.

We still do not know whether a universal operator exists or not.

5 / 30



Classical notions

Definition
f : { 0, 1 }∗ → R is called a semimeasure if f ≥ 0 and

∑
w f (w) ≤ 1.

f is lower-semicomputable (LSC) if there is a computable function
f̃ : { 0, 1 }∗ × N→ Q such that f̃ (w, k) ≤ f̃ (w, k + 1) for every

w ∈ { 0, 1 }∗, k ∈ N, and f̃ (w, k)
k→∞
−−−−→ f (w) for every w.

We call f̃ a lower-approximation of f .

Theorem
We can enumerate all LSC semimeasures effectively. Namely, there exists
m̃ : { 0, 1 }∗ × N2 → Q which satisfies following two conditions:

1 for any n ∈ N, m̃(−,−, n) is a lower-approximation of some LSC
semimeasure;

2 for given LSC semimeasure m′, there is n ∈ N such that m̃(−,−, n) is a
lower-approximation of m′.
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Classical notions

Theorem
There is a semicomputable semimeasure m with the property that for any
other semicomputable semimeasure m′ there is a constant c > 0 such that
for all x we have cm′(x) ≤ m(x).

Proof

m(x) B
∞∑

n=1

2−nmn(x)

is a universal semimeasure, where {mn }
∞
n=1 is an effective enumeration of

all LSC semimeasures.

Theorem (Levin’s coding theorem)
K(x) = − log m(x) + O(1).
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Notations

Quantum analogue of binary strings

Classical Quantum
{ 0, 1 } C2, { | 0〉, | 1〉 }
{ 0, 1 }n (C2)⊗n, { | w〉 }w∈{ 0,1 }n
{ 0, 1 }∗

⊕∞

n=0(C2)⊗n, { | w〉 }w∈{ 0,1 }∗

H B
⊕∞

n=0(C2)⊗n with a computational basis { | w〉 }w∈{ 0,1 }∗

L(H) : the set of all bounded hermitian operators on H

Cq B { x + yi | x, y ∈ Q }

〈ψ|ϕ〉 : inner product of |ψ〉 and |ϕ〉

|ψ〉 〈ψ| : one-dimensional projection onto span { | ψ〉 }
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Definition

Definition
ρ ∈ L(H) is called a semi-density operator if ρ ≥ 0 and Trρ ≤ 1.

ρ ∈ L(H) is LSC (upper-semicomputable, USC) if there is a
computable function ψ : N × { 0, 1 }∗ × { 0, 1 }∗ → Cq such that the
sequence { ρn }

∞
n=1 ⊂ L(H) defined by

〈w|ρnv〉 B ψ(n,w, v)

satisfies ρn ≤ ρn+1 (ρn ≥ ρn+1) and ρn
n→∞
−−−−→ ρ in WOT (i.e.

〈ψ|ρnψ〉 → 〈ψ|ρψ〉 for any |ψ〉 ∈ H). We call ψ a lower- (upper-)
approximation of ρ.

ρ ∈ L(H) is computable if there is a computable function
ψ : N × { 0, 1 }∗ × { 0, 1 }∗ → Cq which defines { ρn }

∞
n=1 ⊂ L(H) such

that ‖ρ − ρn‖ < 2−n, in the same manner as above. We call ψ an
approximation of ρ.
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Some properties

Question
Is there any relationship between (lower-semi)computability of ρ and
ψ(w, v) = 〈w|ρv〉?

Proposition
ρ is computable if and only if ψ(w, v) = 〈w|ρv〉 is computable (in the
classical sense).

lower-semicomputability of an operator is neither the necessary nor
sufficient condition of that of ψ(w, v).
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Some properties

Question
f : { 0, 1 }∗ → R is computable if and only if it is LSC and USC. Does it also
hold in our quantum version?

Proposition
ρ is computable if and only if it is LSC and USC.
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Some properties

Question
For an eigenvalue decomposition

∑
n m(n) |ψn〉 〈ψn| of ρ, can we find any

property of m and { | ψn〉 }
∞
n=1 in a sense of computability?

Definition
We say a sequence { | ψn〉 }

∞
n=1 of states is uniformly computable if there

is a recursive function ψ̃ : N2 × { 0, 1 }∗ → Cq such that

| 〈w|ψn〉 − ψ̃(k, n,w)| < 2−kF

for every k, n ∈ N and w ∈ { 0, 1 }∗.

Proposition
Let { | ψn〉 }

∞
n=1 be a uniformly computable sequence of states, and m be a

LSC semimeasure. Then ρ B
∑

n m(n) |ψn〉 〈ψn| is a LSC semi-density
operator.
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Some properties

For any LSC semimeasure m, we can take a positive approximation
function of m.

If ψ is a lower-approximation of m then so is ϕ(x, k) B max {ψ(x, k), 0 }.

If this property also holds in our quantum extension, then it means we
can take a lower-approximation { ρn } of LSC semi-density operator
such that every ρn is trace-class, and converges in norm topology.

Proposition
There is a LSC semi-density operator which cannot be approximated by
any sequence of positive operators from below.
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Some properties

Proof

ρ B
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 .
Then ρ is computable, so it is LSC. On the other hand, since ρ is rank-one
projection, if there is σ such that 0 ≤ σ ≤ ρ then σ = cρ (0 ≤ c ≤ 1). But it
holds that 〈λ|ρλ〉 < Cq or 〈0|ρλ〉 < Cq for any c ∈ R\0.
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Problem

Definition
A LSC semi-density operator µ is universal if for any LSC semi-density
operator ν there is cν > 0 such that cνν ≤ µ.

Problem
Can we enumerate all LSC semi-density operators effectively?

It cannot be solved just using an analogous approach to the classical
situation.
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Difficulty of the problem

The way to enumerate all LSC semimeasures
Let {ϕn }

∞
n=1 be an effective enumeration of all partial recursive functions.

Consider the following algorithm:
Input n ∈ N.

1 Let αw B 0 for every w ∈ { 0, 1 }∗.
2 Dovetail ϕn. Whenever ϕn halts for an input 〈w, k〉, go to step 3.
3 Check whether the conditions ϕn(w, k) ≥ αw and

(
∑

v,w αv) + ϕn(w, k) ≤ 1 hold. If so, then let αw B ϕn(w, k). Otherwise,
do nothing. go back to step 2.

Let ψ̃(w, t, n) be the value of αw after the t-steps computation of the
algorithm above for an input n. Then

ψ̃(−,−, n) is an lower-approximation of some LSC semimeasure.

ψ̃ can approximate any LSC semimeasure from below, since any
lower-approximation of a semimeasure is equal to some ϕn, and
ψ̃(−,−, n) approximates the same semimeasure.
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Difficulty of the problem

When we naively interpret this proof into the quantum setting, the
corresponding algorithm would be like this:
Input n ∈ N.

1 Let αw,v B 0 for every w, v ∈ { 0, 1 }∗.
2 Dovetail ϕn. Whenever ϕn halts for an input 〈w, v, k〉, go to step 3.
3 Check whether the condition ϕn(w, v, k) ≥ αw,v holds. If w = v, also

check whether (
∑

u,w αu,u) + ϕn(w, v, k) ≤ 4 holds. If so, then let
αw,v B ϕn(w, v, k). Otherwise, do nothing. go back to step 2.

The sequence { ρn }
∞
n=1 defined in this way is not always increasing.
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Difficulty of the problem

We could modify the algorithm as follows:
Input n ∈ N.

1 Let αw,v B 0 for every w, v ∈ { 0, 1 }∗.
2 Dovetail ϕn. Whenever ϕn halts for an input 〈w, v, k〉, go to step 3.
3 Check whether the condition ϕn(w, v, k) ≥ αw,v and ρn ≤ ρn+1 holds. If

w = v, also check whether (
∑

u,w αu,u) + ϕn(w, v, k) ≤ 4 holds. If so,
then let αw,v B ϕn(w, v, k). Otherwise, do nothing. go back to step 2.

In this modification, generally ψ̃(−,−, n) does not approximate the
same semi-density operator as which is approximated by ϕn from
below.
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Main results

Proposition
Assume we can enumerate all LSC semi-density operators effectively.
Then there is a universal semi-density operator µ.

Proof
µ B

∑∞
n=1 2−nνn is a universal semi-density operator, where { νn }

∞
n=1 is an

enumeration of LSC semi-density operators.

For a universal operator µ, we define

H(|ψ〉) = − 〈ψ|(log µ)ψ〉 , H(|ψ〉) = − log 〈ψ|µψ〉 .
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Main results

Proposition
Assume a universal operator exists. Then for any uniformly computable
ortohomal system { | ψn〉 }

∞
n=1,

K(n) = H(|ψn〉) + O(1),

where H = H or H = H. In particular, for any w ∈ { 0, 1 }∗,

K(w) = H(|w〉) + O(1).

Proof
The function f (n) = 〈ψn|µψn〉 is LSC with

∑
n f (n) = Tr µ ≤ 1, hence

K(n) ≤ H(n) + O(1).

The semi-density operator ρ =
∑

n m(n) |ψn〉 〈ψn| is LSC, so

K(n) = 〈ψn|(− log ρ)ψn〉 ≥ 〈ψn|(− log µ)ψn〉 + O(1) = H(|ψn〉) + O(1).
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Main results

Corollary
Assume a universal operator µ exists. Let { | ψn〉 } be a uniformly
computable orthonormal system (not necessarily a basis) of H . Then a
function mψ(n) B 〈ψn|µψn〉 is a universal semimeasure.
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Main results

Theorem
µ is not diagonal. Namely, There is a LSC semi-density operator which
cannot be multiplicatively dominated by µ1 B

∑
i m(i) |i〉 〈i|.

Proof

Let m(n) B 2−n ∑
l(w)=n m(w). Also let An ∈ M2n(C) and ρ ∈ S̃(H) be

An B


1 . . . 1
...

. . .
...

1 . . . 1

 , ρ B


m(0)A0
m(1)A1

m(2)A2
. . .


Then, for |ψn〉 B 2−

n
2
∑

l(w)=n |w〉, it holds that

〈ψn|µ1ψn〉 = m(n), 〈ψn|ρψn〉 = 2nm(n).

Hence for any c > 0 there is an integer n such that 〈ψn|(ρ − cµ1)ψn〉 < 0.
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Main results

Corollary
There is no uniformly computable orthonormal basis { | ψn〉 }

∞
n=1 of H and

LSC semimeasure m which makes an operator
∑

n m(n)|ψn〉〈ψn| universal.
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Future research
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