Isolation: with applications considered

Wu Guohua

School of Physical and Mathematical Sciences

Nanyang Technological University

CTFM, Feb. 2014

(ロ)、(型)、(E)、(E)、 E) の(の)

Isolation: a short history

Isolation: a short history

Definition

A d.c.e. degree d is isolated by a c.e. degree a, if a < d and all c.e. degrees below d are also below a, or, equivalently, a is the greatest c.e. degree below d.

 (\mathbf{a}, \mathbf{d}) is called an isolation pair.

Isolation: a short history

Definition

A d.c.e. degree d is isolated by a c.e. degree a, if a < d and all c.e. degrees below d are also below a, or, equivalently, a is the greatest c.e. degree below d.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(a, d) is called an isolation pair.

This definition was proposed by Cooper and Yi in a preprint in 1995.

Definition

A d.c.e. degree d is isolated by a c.e. degree a, if a < d and all c.e. degrees below d are also below a, or, equivalently, a is the greatest c.e. degree below d.

(a, d) is called an isolation pair.

This definition was proposed by Cooper and Yi in a preprint in 1995.

- Cooper and Yi had a direct construction of isolation pairs. They also proved that not every nonzero d.c.e. degrees are isoated.
- Ding and Qian, and LaForte, independently, proved that isolated degrees exists between any two c.e. degrees.
- Arslanov, Lempp and Shore proved that nonisolated degrees exists between any two c.e. degrees. They also proved that nonisolating degrees exist (downward density).
- Salts proved that nonisolating degrees are not dense in the c.e. degrees, while the upward density is true.

Lachlan Sets and Ishmukhametov's exact degrees

Lachlan Sets

For a d.c.e. set X with a d.c.e enumeration $\{X_s\}_{x\in\mathbb{N}},$ the corresponding Lachlan set L(X) is defined as

$$\{s \mid \exists x [x \in X_s - X_{s-1} \text{ and } x \notin X]\}.$$

Obviously, L(X) is c.e., $L(X) \leq_T X$ and X is c.e. in L(X). For a d.c.e. degree $\mathbf{d} > \mathbf{0}$, we denote by $L[\mathbf{d}]$ the class of degrees of Lachlan sets of those d.c.e. sets in \mathbf{d} .

Lachlan Sets and Ishmukhametov's exact degrees

Lachlan Sets

For a d.c.e. set X with a d.c.e enumeration $\{X_s\}_{x\in\mathbb{N}}$, the corresponding Lachlan set L(X) is defined as

$$\{s \mid \exists x [x \in X_s - X_{s-1} \text{ and } x \notin X]\}.$$

Obviously, L(X) is c.e., $L(X) \leq_T X$ and X is c.e. in L(X). For a d.c.e. degree $\mathbf{d} > \mathbf{0}$, we denote by $L[\mathbf{d}]$ the class of degrees of Lachlan sets of those d.c.e. sets in \mathbf{d} .

Ishmukhametov proved that $L[\mathbf{d}]$ can be a singleton, in which case \mathbf{d} is called a exact degree, and that $L[\mathbf{d}]$ can be an interval. Obviously, exact degrees are isolated degrees.

Lachlan Sets and Ishmukhametov's exact degrees

Lachlan Sets

For a d.c.e. set X with a d.c.e enumeration $\{X_s\}_{x\in\mathbb{N}}$, the corresponding Lachlan set L(X) is defined as

$$\{s \mid \exists x [x \in X_s - X_{s-1} \text{ and } x \notin X]\}.$$

Obviously, L(X) is c.e., $L(X) \leq_T X$ and X is c.e. in L(X). For a d.c.e. degree $\mathbf{d} > \mathbf{0}$, we denote by $L[\mathbf{d}]$ the class of degrees of Lachlan sets of those d.c.e. sets in \mathbf{d} .

Ishmukhametov proved that $L[\mathbf{d}]$ can be a singleton, in which case \mathbf{d} is called a exact degree, and that $L[\mathbf{d}]$ can be an interval. Obviously, exact degrees are isolated degrees.

Fang, Wu and Yamaleev proved that L[d] can have no minimal elements.

There are incomparable d.c.e. degrees d_1,d_2 such that $d_1\cup d_2=0'$ and $d_1\cap d_2=0.$ Thus $\{0,d_1,d_2,0'\}$ is a diamond embedding.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

There are incomparable d.c.e. degrees d_1, d_2 such that $d_1 \cup d_2 = 0'$ and $d_1 \cap d_2 = 0$. Thus $\{0, d_1, d_2, 0'\}$ is a diamond embedding.

・ロト・日本・モート モー うへぐ

Diamond Embedding via Isolation

There are a d.c.e. degree d and c.e. degrees a, c such that

- ► $\mathbf{d} \cup \mathbf{c} = \mathbf{0}'$,
- ▶ a isolated d, and
- $\blacktriangleright \ \mathbf{c} \cap \mathbf{a} = \mathbf{0}.$

There are incomparable d.c.e. degrees d_1, d_2 such that $d_1 \cup d_2 = 0'$ and $d_1 \cap d_2 = 0$. Thus $\{0, d_1, d_2, 0'\}$ is a diamond embedding.

Diamond Embedding via Isolation

There are a d.c.e. degree d and c.e. degrees a, c such that

- $\mathbf{d} \cup \mathbf{c} = \mathbf{0}'$,
- ▶ a isolated d, and
- c ∩ a = 0.

Note that $\{0, d, c, 0'\}$ is a diamond embedding in the d.c.e. degrees.

・ロト・日本・モート モー うへぐ

There are incomparable d.c.e. degrees d_1, d_2 such that $d_1 \cup d_2 = 0'$ and $d_1 \cap d_2 = 0$. Thus $\{0, d_1, d_2, 0'\}$ is a diamond embedding.

Diamond Embedding via Isolation

There are a d.c.e. degree d and c.e. degrees a, c such that

- ► $\mathbf{d} \cup \mathbf{c} = \mathbf{0}'$,
- ▶ a isolated d, and
- $\blacktriangleright \ \mathbf{c} \cap \mathbf{a} = \mathbf{0}.$

Note that $\{0, d, c, 0'\}$ is a diamond embedding in the d.c.e. degrees.

Further Improvement

For any nonzero c.e. degree c, if c is cappable, then there are a d.c.e. degree d and c.e. degrees $a_j \; d$ such that

- ▶ $\mathbf{d} \cup \mathbf{c} = \mathbf{0}'$,
- ▶ a isolated d, and
- $\blacktriangleright \ \mathbf{c} \cap \mathbf{a} = \mathbf{0}.$

There are incomparable d.c.e. degrees d_1, d_2 such that $d_1 \cup d_2 = 0'$ and $d_1 \cap d_2 = 0$. Thus $\{0, d_1, d_2, 0'\}$ is a diamond embedding.

Diamond Embedding via Isolation

There are a d.c.e. degree d and c.e. degrees a, c such that

- ► $\mathbf{d} \cup \mathbf{c} = \mathbf{0}'$,
- ▶ a isolated d, and
- $\blacktriangleright \ \mathbf{c} \cap \mathbf{a} = \mathbf{0}.$

Note that $\{0, d, c, 0'\}$ is a diamond embedding in the d.c.e. degrees.

Further Improvement

For any nonzero c.e. degree c, if c is cappable, then there are a d.c.e. degree d and c.e. degrees $a_j \; d$ such that

- ▶ $\mathbf{d} \cup \mathbf{c} = \mathbf{0}'$,
- ▶ a isolated d, and
- $\blacktriangleright \ \mathbf{c} \cap \mathbf{a} = \mathbf{0}.$

It implies that any cappable c.e. degree is complemented in the d.c.e. degrees.

► A d.c.e. degree **d** has the almost universal cupping property if it cups every c.e. degree not below it to **0**'.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► A d.c.e. degree **d** has the almost universal cupping property if it cups every c.e. degree not below it to **0**'.

The (incomplete) maximal d.r.e. degrees constructed by Cooper, Harrington, Lachlan, Lempp and Soare does have this property.

- ► A d.c.e. degree **d** has the almost universal cupping property if it cups every c.e. degree not below it to **0**'.
- The (incomplete) maximal d.r.e. degrees constructed by Cooper, Harrington, Lachlan, Lempp and Soare does have this property.
- Compared to the construction of maximal d.r.e. degrees, the construction of d.c.e. degrees with (only) almost universal cupping property is much easier.

- ► A d.c.e. degree **d** has the almost universal cupping property if it cups every c.e. degree not below it to **0**'.
- The (incomplete) maximal d.r.e. degrees constructed by Cooper, Harrington, Lachlan, Lempp and Soare does have this property.
- Compared to the construction of maximal d.r.e. degrees, the construction of d.c.e. degrees with (only) almost universal cupping property is much easier.

 Liu and Wu constructed an isolated d.c.e. degree d with the almost cupping property.

Requirements

The constructed sets need to satisfy the isolation requirements and also the following cupping requirements:

 \mathcal{R}_e : $\mathcal{K} = \Gamma_e^{\mathcal{B}, D, W_e} \lor W_e = \Delta_e^{\mathcal{B}}$, where Γ_e and Δ_e are p.c. functionals constructed by us.

Fang, Liu and Wu proved recently that for any nonzero cappable c.e. degree **c**, there is a d.c.e. degree **d** with almost universal cupping property and a c.e. degree **b** < **d** such that

- **b** isolates **d**, and
- **c** and **b** form a minimal pair.

Fang, Liu and Wu proved recently that for any nonzero cappable c.e. degree **c**, there is a d.c.e. degree **d** with almost universal cupping property and a c.e. degree **b** < **d** such that

- **b** isolates **d**, and
- **c** and **b** form a minimal pair.
- 1. By applying this result twice, first to **c** and then to **b** we have **d** and **b** first, and then **e** and **a** such that **e** has almost universal cupping property and $\mathbf{a} < \mathbf{e}$ isolates **e**, and **a** and **b** form a minimal pair.

Fang, Liu and Wu proved recently that for any nonzero cappable c.e. degree **c**, there is a d.c.e. degree **d** with almost universal cupping property and a c.e. degree **b** < **d** such that

- **b** isolates **d**, and
- **c** and **b** form a minimal pair.
- By applying this result twice, first to c and then to b we have d and b first, and then e and a such that e has almost universal cupping property and a < e isolates e, and a and b form a minimal pair.

2. Now for any nonzero c.e. degree \mathbf{w} , \mathbf{w} cups either \mathbf{e} or \mathbf{d} , or both, to $\mathbf{0}'$.

Fang, Liu and Wu proved recently that for any nonzero cappable c.e. degree **c**, there is a d.c.e. degree **d** with almost universal cupping property and a c.e. degree **b** < **d** such that

- b isolates d, and
- **c** and **b** form a minimal pair.
- 1. By applying this result twice, first to **c** and then to **b** we have **d** and **b** first, and then **e** and **a** such that **e** has almost universal cupping property and $\mathbf{a} < \mathbf{e}$ isolates **e**, and **a** and **b** form a minimal pair.
- 2. Now for any nonzero c.e. degree \mathbf{w} , \mathbf{w} cups either \mathbf{e} or \mathbf{d} , or both, to $\mathbf{0}'$.
- 3. Obviously, this result has Li-Yi's cupping theorem as a direct corollary.

Thanks!