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Background

Weihrauch lattice
@ A degree structure from computable analysis
@ Its underlying reducibility requires uniform computability

@ Medvedeyv lattice is embeddable into Weihrauch lattice
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Background

Weihrauch lattice
@ A degree structure from computable analysis
@ Its underlying reducibility requires uniform computability

@ Medvedeyv lattice is embeddable into Weihrauch lattice

BGM-Program (V. Brattka, G. Gherardi, A. Marcone)
@ To classify non-constructive principles in Weihrauch lattice

@ Each non-constructive principle is “impemented” as a Weihrauch degree
(Not in an automatic way)

@ Not a formal approach of logic (at least for pure logician)

@ Unknown relationship to CRM := Constructive Reverse Math.
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Objective

To find a formal connection between CRM and BGM-program J
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Objective

To find a formal connection between CRM and BGM-program J

Tools
1. Cut-Elimination Theorem (Proof Theory)

Any derivable sequent is derivable without cut

2. Equivalence Theorem (Categorical Logic)

Each model is equivalent to the term model of its internal theory
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Cut-Elimination Theorem
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SIL: 1/6

Typed Lambda Calculus (4« )-calculus)

Signature language + axioms for typing judgment (I' - 7 : o)
(i.e. type assignment for function symbols)

Specification signature + axioms for conversion judgment (' # = u : o)

meta variables
@ x,y,--- for variables
@ «,f, - for base types
@ f, g, - for function symbols

@ 0,7, for types
oc:=1|la|lo—>o|oxo
@ f,u,--- for terms
ta=0 | flt, 0| Axiot | 1) | (¢, t) | mt | 7't

@ LA, ... for type contexts, A for the empty context
I'=x1:01,- ,x¢: 0% (x1,- -, x; : distinct)
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SIL: 2/6

Extention of Language
Logical Constants : L

Predicate Symbols : =, P €Il (ITp: given)
Logical Connectives: A,V,—
Quantifiers c v, 3

Signature for SIL

A specification for typed lambda calculus equipped with a mapping
S":Pw (o, ,00) (TP ellp)

P(—,---,-): finite symbol sequence with holes as |S’ f]

Formula

(meta variables: ¢, ¢, y, )
pu= LIPW- - O|t=ctlpAplpVeleg—[Px:op|Vxioe
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SIL: 3/6

Expressions
Typing Judgment: T+ ¢ : Prop
o B RO N7,

Sequent 0,2

- for finite sequences of formulae)

T,o,0 ifTFt:or
T, )

abbreviation: tl‘f :
or :

if ' + ¢ :Prop is derivable

is derivable

Specification for SIL

A signature equipped with a set 7 of sequents (axiom set) closed under:

o, x0:00,x1:01,T1 |OF ¢

Lo, x1:01,x0:00, 1 |OF ¢

[xp:o,x1:0|OF @
I, xo:0 [ Oxo/x1] F @lxo/x1]

TIOF

- T (W)
[x:o|OF ¢ W)

(B

'rt:o I[Lx:o|OF¢
I'| ©[t/x] + ¢lt/x]

(S)
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SIL: 4/6

' ®g, Y0, 41,01 F @ 5 L0,y yre

I'[®g, ¥1,¥%0,01 F @ re,yre

oery CIEyre
rezrye

(Cut)

“Y” in (Cut) is called cut-formula

©

'+ ®,¢:Prop " '+ 0, ¢:Prop . T|OF@) e

(o)

T ®org IO, Lrg T Oy

I' - ®:Prop I'tt=u:.o

(Eq)
TIOFi=yu d

I' ®:Prop I'kty,t1: 0 I'x:oF ¢:Prop

(R)

'O, = t1,0lti/x] F @lt1_i/x]
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SIL: 5/6

1"|®,;00,z,//1|—¢p D) F|®I—Q00 1"|®|—<,01 (AR)
L0, yoAY e 'OF @A gr
| OV ) F|®"/’1“’”(VL) [OF g I' +¢1_;i:Prop R
O,y Vit Ok @V e
IOy FI&%HDHL) ['0,¢0+ ¢ OR)
O,y —>y1ke [OF@y— ¢
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SIL: 6/6

't ©,dx:0.4, ¢:Prop y:o|0,¢ly/x]F e

(aL)
re,dx:cyre
I'rt:o 'O F [t/x] e
I'ordx:cp
I'rt:o ' 0,plt/x]+y o)
re,vx:opry
't 0,Vx:0.¢:Prop [y:o|0OF ¢oly/x] -

I'OrVx:op

“y” in (dL) and (VR) is called temporal variable
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Cut-Elimination Theorem: 1/5

Pure Variable Derivation
A derivation & with the following conditions:
@ BV(2)NFV(2)
@ for each occurence of temporal variable, the variable is not used as
temporal variable in other places

Fact

Given a derivation, it can be transformed into a pure variable derivation by
renaming bound variables and temporal variables

Cut-Elimination Theorem
Given a pure variable derivation over SIL, one finds an essential-cut free
derivation of the same conclusion

an essential-cut := a cut whose cut-formula is not atomic
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Cut-Elimination Theorem: 2/5
p: fixed type

Parametrization
Let ¢ := Vy:1.4¢. Define:

Py = Vy:(p = 1).¥z:p0lyz/y]

(z:the first flesh variable symbol)

I' | Yr + Pyr is derivable over SIL, and the converse one also derivable
whenever p is “inhabitant” relative to I

Idempotency

p is idempotent iff p is “isomorphic” to p X p

i.e. there is a pair ¢ and u of terms s.t. the following judgments are derivable
@ Artu=Ux:px):p—>p
@ Arut=(Ax:pXpx):(pxXp) = (oXp)

v
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Cut-Elimination Theorem: 3/5

Notation

Sub™(a)
Sub(¢o V 1)
Sub™(¢o A ¢1)

Sub™ (o — ¢1)
Sub™(Ax : o.¢0)
Sub™(¥x : o.¢0)

Sub™ (a)
Sub (g0 V ¢1)
Sub™(¢o A ¢1)

Sub™ (0 — 1)
Sub™ (dx : o.¢9)
Sub™ (Vx : 0.¢p)

{a} (a : atomic)
Sub™ () U Sub™ (1) U {¢o V ¢1}

Sub™(g) U Sub™ (¢1) U {o A @1}

Sub~(gg) U Sub™ (¢1) U {@o — ¢1}
Sub™(¢p) U {Tx : 0.0}

Sub™(¢p) U {Vx : o.¢p)}

0 (a : atomic)
Sub™(¢0) U Sub™(¢1)

Sub™ (¢o) U Sub™(¢1)

Sub*(¢o) U Sub™ (¢1)

Sub~(¢0)

Sub~(¢0)

v
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Cut-Elimination Theorem: 4/5

Positive Universal Quantification Free Relative to p

@ A formula ¢ is Pp.u.f.
iff no formula of the form Vx:o.yg (o # p) belongs to Sub™ ()

@ An axiom set <7 is ’p.u.f.
iff (/)\ ®) — ¢ isPp.uf. foreach T |OF ¢) € &7

@ A specification is p.u.f. iff its axiom set is ’p.u.f.

According usage:
Pp.e.f. (positive existencial quantificatioin free relative to p),
Pn.u.f. (negative universal quantificatioin free relative to p),
Pn.e.f. (negative existencial quantificatioin free relative to p),
Pq.f. (quantification free relative to p),...
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Cut-Elimination Theorem: 5/5

Lemma 1 < Cut-Elimination Theorem
Assume that:
@ o/ isPp.e.f. and n.u.f.
@ Y isPp.ef. and ’n.uf.
@ ¢isPp.u.f. and’n.ef.
@ p is idempotent
IfT'| Yy: T4 + @ is derivable over o7, there is a finite sequence

np 7t 07T of terms st

T | (Vz:ppolyz/yDIng" " /y), -+, (Vz:polyz /sy /vl + ¢

is derivable over &/

Remark
From the resulting “witnessed” sequent, I' | °(Vy:T.4o) F ¢ is derivable
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Equivalence Theorem
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First Order Fibration: 1/5

First order fibration
@ A kind of functor
@ A categorical abstraction of “predicate logic”
@ Correspondence:
Logic Fibration p: E — B
type object of B
term morphism in B
formula | object of E

Construction
Logic-to-Fibration: term model

Fibration-to-Logic: internal theory
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First Order Fibration: 2/5

Term Model
Fix a specification .o for SIL
o )
obj.  :types

morph. : o -, 7in A()
(t ~uiff vg:o + t = u:7tis derivable)
e L(A)
obj. -
[7]~ .
morph. : SDV():O' — lpvo:‘r m -L(JZ{)
— vo:0 | ¢ F Y[t/vg] is derivable
0 T(): L(F) > AH)

Pyy:o > T
[1- & [1]~

T (<) is a first order fibration with Cartesian closed base category J
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First Order Fibration: 3/5
Internal Theory
Fix a first order fibration p : E — B with Cartesian closed base category.
Base Type Sym.: Names for obj. of B: A — A
[11 := 1, [A] := A, [[oo X 011 := [oo]l X [o11l,
[oo— o1l = llooll = [[o1 ]l
Func. Sym. : Names for morph. in B: ([[oo]l L [o1) — (? 00— 07)
1Sl ~» @>o0)
[OTe = A= D, LF T = £ © [lhers
[<z0, 21 ) v 2= (20T, L2111, - - - (Omit)
Axiom(Conv.) : Addvo:o + 1ty =t1:7 iff [tollvy:e = [t1]lvg:0
Predic. Sym.  : Names for obj. of E: X > X
[X] := X, --- (Omit)
Axiom(Seq.) D Addvy:io | Y+ piff therp is a morphism
[Wlhgo = [Pl B st pj = idyey
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First Order Fibration: 4/5

Notation
Specgyy - cat. of specifications
(morphism: translations)

Fibgy: cat. of first order fibrations with Cartesian closed base category
(morphism: pair of functors with suitable preservations)

Equivalence Theorem

The following is an (pseudo) adjunction whose counit is a natural equivalence;
hence each (p : E — B) € Fibgyy is cannonically equivalent to 7 (Int(p))

Int

T
Fibgi, T Specgn
\_/

T
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First Order Fibration: 5/5

Example
Rep
obj.  : represented spaces
morph. : computable functions
Mono
obj.  : monomorphisms in Rep

morph. : m L m’ in Rep

& .___7 __. inRep
4 F
! .
A
codgep : Mono — Rep
obj. :m codm
morph. : f— f

codgep is a first order fibration with Cartesian closed base category
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Weihrauch Lattice: 1/4

Notation
(meta variable: F,G,--- C w® X w*“)

{gew”: (p,q € F}
{pew”: F[p]+0}

F[p]
supp(F)

Choice Function
A partial function f on Baire Space is a choice function of F

iff Yp € supp(F). f(p)le F[p]

Weihruach Reducibility

F <w G iff there is a pair k and / of computable partial functions on Baire
space s.t. given a choice funciton g of G, [(id, gk) is a choice function of F

v

Wy: the induced degree structure w.r.t. <y )
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Weihrauch Lattice: 2/4

Double Negation Density

A formula ¢,.- in Int(codgep) is double negation dense
iff vo:o | A + ==g,,. is derivable over Int(codgep)

Fibrewise Dual Redicibility

Let ¢y,. and ¥,,,.- be double negation dense over Int(codgep). Define:
Pvg:or Sl lﬁvozr

& there is a term £

v St voio| $V02T[t€0:a/V0] F ¢yy:c- 1 derivable in

D+/--Rep: the induced degree structure w.r.t. <!
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Weihrauch Lattice: 3/4

Lemma 2 < Equivalence Theorem
Wy has an embedding 7 into D+--Rep which has a right adjoint €

@T/_._.Rep EIB()

€
T

~—
T

Define 7 : W — Dr-Rep by F — (v 17[7 + r(vo) : Prop) where:

Jr = (supp(F), IF)

IgpipHp if p € supp(F)
Yr = (supp(F),¥F)

Jr:{p,q)— p if g € F[p]
r . Yy — Ir

pe=p
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Weihrauch Lattice: 4/4

Lemma 3
The following square commute:

Dr--Rep L) Dr--Rep
03 23
0 =) 0

where “(-) is parametrization relative to (the name of) the natural number
system and !(—) is a closure operator on Wy, called countable parallelization,
defined by:

IF < (po, p1,- -+ ) = {{qo, g1+ ) : Vi € w. qi € Fpil}
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HAY*: 1/2

Signature of HA'

Base Type Symbol: N for natural number system
2 for two elements boolean

Function Symbol : S for successor function
O for constants of type N
0,, 1, for constants of type 2
E for embedding of 2 into N
R for recursors

Ao(I')-formula

6 u= LN =yt |2 =2 |6VS|6As|6—>6Tn<tNsVn<ils

v
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HA': 2/2

Axioms of HA'

@ Axioms for S, Oy

@ Axioms for E (and 0, 1) as an embedding of 2 into N
@ Axioms for R? as a recursor
°

Induction Scheme:
I'| ¢[0/n], Yn:N.(p = @ln+ 1/n]) F Yn:N.p
(where ¢ : Vq.f.)

Ao-Comprehension Scheme:
IF'NAr3dp:(N—2).Vn:N.(6 & pn = 1)
(where 6 : Ag(T', n: N)-formula, p : the first flesh variable)
@ Extensionality Scheme w.r.t. N:
I'|Vn:N.(ty =5 t1) F (An:Nty) =N—o (An:Nty)

Kazuto Yoshimura (Japan Advanced Institute of Interpretations into Weihrauch lattice February 18, 2014 29/35



Main Theorem: 1/3

Main Theorem

There is a translation T(-) from HA** to Int(codgep)
s.t. if A|Vy:Tapo F Vx:o.@ is derivable over HAY,

then ![oollx.o =w!lollx.or in Wy
where:

@ Y is Vp.e.f. and Vn.u.f,
@ ¢pis Vn.e.f. and Vp.u.f.

@ ("go)i .+, and (th/o)fy:” are double negation dense

@ [eollyo = G(T()DO)T,\::TO'
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Main Theorem: 2/3

Proof: 1/2

Define (-) by:

for base type . N > w where w = (w,0,), 0, :ip i,
2 2where 2 = (2,62),6,: 0p = 0, Ip > 1

for function symbol: Oy > (0: 1 - w), S > (- +1),0, > (0: 1 > 2),
b, (0:1>2),E- (:2— w),-- - (Omit)

Define &7 as a subsystem of Int(codgep) by:

@ Add tranlations (via T(—)) of axioms for S, Oy, E, 0, 15, R?,

Induction Scheme and Extensionality Scheme

® Add T| A+ (¥n:N.S & pn = 1)L,/ Tp]
iff it is an axiom of Int(codgep) and ¢ is Ag(I', n: N)-formula

Note that:
@ &/ is “p.e.f. and “n.uf.
@ if ' | ® r ¢ is deriv. over HA', then 'T | TO® T<p is deriv. over &7

v
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Main Theorem: 3/3

Proof: 2/2
We obtain:
A| Vy:tgo+  Vx:o.g is derivable over HA*
&= A| Yyt r MVx:iog is derivable over HA'*
= A|"Vy:ryo F “TVxiopo is derivable over &7
= Txiw-To|Vy:tyor Vz:E.T(po[sz/Tx] is derivable over &
= Tx:o-To| (Vw:E.Tt/lo[Tyw/Ty])[t?xT;T/Ty] FVz:o.Tgo[Txz/Tx]

o T .
is derivable over & for some £, 7 (Lemma 1 < Cut-Elim. Thm + g

(o))"= Y o) o)
le("wo)iyir 2wle(" o)y (Lemma 2 & 3 < Equiv. Thm)

11l

![[‘PO]]x:a' ZW![[‘PO]]x:a'
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Application: 1/2

LPO
LPO = T|Ar3dn:NoV -IAn:N.b (6 : Ap(I', n:N)-formula)
LPOy := dn:N.pn=5 1,V -dn:N.pn = 1,
LPO : p > {0g:qe2” ifp#0®
0“ - {lg : g € 2“}
LLPO
LLPO := T |—=(3n:N.6g Adn:N.6y)+—-IAn:N.6gV —In:N.6;
(00,01 : Ag(I', n: N)-formula)
LLPOy := —-3n:N.p2n) =, I Adn:N.pQCn+1) = 1)

— —=dn:N.p2n) = 1, V-dn:N.p2n+1) = 1,
LLPO : p=0"(0+1)0“+ {0g:qe2“ pR2- )=0%
U{lg: g €2, p(2—-+1)=0%}
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Application: 2/2

Proposition
Over HA**, LLPO does not imply LPO

We obtain:

LLPO implies LPO over HA'*
— A|VYp:(N—>2).LLPOg + VYp:(N —2).LPOy is derivable over HAY

= [LLPOo]lp:n—2 2w![LPOollp:n—2 (Main Theorem)
= ILLPO >w ILPO
However !LLPO #w!LPO (V. Brattka & G. Gherardi, 2011).
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Thank you for listening
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