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Preface

Welcome to CTFM (Computability Theory and Foundations of Mathematics)!

CTFM 2015 is the fifth conference of the CTFM conference series. The aim of this conference

is to provide participants with the opportunity to exchange ideas, information and experiences

on active and emerging topics in logic, including but not limited to: Computability Theory, Re-

verse Mathematics, Nonstandard Analysis, Proof Theory, Set Theory, Philosophy of Mathematics,

Constructive Mathematics, Theory of Randomness and Computational Complexity Theory.

It is our great pleasure to celebrate Professor Kazuyuki Tanaka’s 60th birthday. This CTFM

conference series was started by Professor Tanaka and advanced by his group of logicians in Tohoku

University (Sendai) and their collaborators. CTFM and its predecessor meetings have taken place

in Matsushima (2008, 2009), Inawashiro (2010), Akiu (2011), Harumi in Tokyo (2012), Tokyo Tech

(2013, 2014). In honor of his birthday, this year’s conference will include a special session covering

areas in which Professor Tanaka has worked.

This conference is held jointly with a workshop of the Bilateral Joint Research Project sponsored

by the Japan Society for the Promotion of Science and the National University of Singapore. CTFM

acknowledges support from Inoue Foundation for Science, National University of Singapore, Tohoku

University, JAIST (Japan Advanced Institute of Science and Technology) and Tokyo Tech (Tokyo

Institute of Technology).
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Takeshi Yamazaki

Keita Yokoyama
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The complexity of isomorphism

Sy-David Friedman

Kurt Gödel Research Center, University of Vienna

I’ll discuss the complexity of the equivalence relation of isomorphism when
restricted to the computable, hyperarithmetic, ω1-computable and finite struc-
tures. In some cases this relation is complete for Σ1

1 equivalence relations, in
some cases it is not, and in the case of finite structures this is an open problem
of computational complexity theory.
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How unprovable is Rabin’s decidability theorem?

Leszek Ko!lodziejczyk

Institute of Mathematics
University of Warsaw

Banacha 2, 02-097 Warszawa, Poland
lak@mimuw.edu.pl

Rabin’s decidability theorem states that the monadic second order (MSO)
theory of the infinite binary tree {0, 1}∗ with the left- and right-successor rela-
tions S0, S1 is decidable. We study the strength of set existence axioms needed
to prove this theorem.

We first consider a result known as the complementation theorem for tree
automata, which is a crucial ingredient of typical proofs of Rabin’s theorem. We
show that the complementation theorem is equivalent over ACA0 to a determi-
nacy principle implied by the positional determinacy of all parity games and
implying the determinacy of all Bool(Σ0

2) Gale-Stewart games. It follows that
the complementation theorem is provable in Π1

3 -CA0 but not ∆1
3-CA0.

We then use results due to MedSalem-Tanaka, Möllerfeld and Heinatsch-
Möllerfeld to prove that over Π1

2 -CA0, the decidability of the Π1
3 fragment of

the MSO theory of ({0, 1}∗, S0, S1) (or the Π1
n fragment for any fixed n ≥ 3)

is equivalent to the complementation theorem for tree automata. This means in
particular that Rabin’s decidability theorem is not provable in ∆1

3-CA0.
The talk is based on joint work with Henryk Michalewski.
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From Well-Quasi-Orders to Noetherian Spaces:
the Reverse Mathematics Viewpoint

Alberto Marcone?

Dipartimento di Matematica e Informatica, Università di Udine, Italy
alberto.marcone@uniud.it

http://users.dimi.uniud.it/~alberto.marcone/

If (Q,Q) is a quasi-order we can equip Q with several topologies. We are
interested in the Alexandro↵ topology A(Q) (the closed sets are exactly the
downward closed subsets of Q) and the upper topology U(Q) (the downward
closures of finite subsets of Q are a basis for the closed sets). A(Q) and U(Q)
are (except in trivial situations) not T1, yet they reflect several features of the
quasi-order.

Recall that a topological space is Noetherian if all open sets are compact
or, equivalently, there is no strictly descending chain of closed sets. Noetherian
spaces are important in algebraic geometry.

It is fairly easy to show that (Q,Q) is a well-quasi-order (wqo: well-founded
and with no infinite antichains) if and only if A(Q) is Noetherian. Moreover, if
(Q,Q) is wqo then U(Q) is Noetherian.

Given the quasi-order (Q,Q), consider the following quasi-orders on the
powerset P(Q):

A [ B () 8a 2 A 9b 2 B a Q b;

A ] B () 8b 2 B 9a 2 Aa Q b.

We write P[(Q) and P](Q) for the resulting quasi-orders, and P[
f (Q) and P]

f (Q)
for their restrictions to the collection of finite subsets of Q.

When (Q,Q) is wqo, P[
f (Q) is also wqo, but P[(Q) and P]

f (Q) are not
always wqos. However Goubault-Larrecq proved that if (Q,Q) is wqo then

U(P[(Q)), U(P](Q)), and U(P]
f (Q)) are Noetherian. These results support the

view that Noetherian spaces can be viewed as topological versions, or general-
izations, of well-quasi-orders. Moreover Goubault-Larrecq provided applications
of his theorems to verification problems.

We study Goubault-Larrecq’s theorems and some of their consequences from
the viewpoint of reverse mathematics. To this goal we first need to formalize
statements about topological spaces which are far from being metrizable. When
dealing with P]

f (Q) and P[
f (Q), which are countable second countable spaces,

we can use ideas originally introduced by Dorais. In the more general case of the
uncountable spaces P](Q) and P[(Q) we need to code the upper topology using
a metatheoretic framework that includes, besides our spaces, the well-known

? Joint work with Emanuele Frittaion, Matthew Hendtlass, Paul Shafer, and Jeroen
Van der Meeren
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coding of separable complete metric spaces, as well as the MF-spaces studied by
Mummert.

We can thus state and prove our main theorem:

Theorem 1. The following are equivalent over the base theory RCA0:

(i) ACA0;

(ii) If Q is wqo, then A(P[
f (Q)) is Noetherian;

(iii) If Q is wqo, then U(P[
f (Q)) is Noetherian;

(iv) If Q is wqo, then U(P[(Q)) is Noetherian;

(v) If Q is wqo, then U(P]
f (Q)) is Noetherian;

(vi) If Q is wqo, then U(P](Q)) is Noetherian.

6



A consistent formal system which verifies its own consistency
Nik Weaver

The notion of a proof — in the semantic sense of “perfect rational justification”, not the
syntactic sense of a legal derivation within some formal system — is central to constructive
mathematics. However, attempts to axiomatize the proof relation have not been successful.

In contrast, we find that the concept of provability (again, in the informal semantic sense)
can be given a simple, intuitive axiomatization. And there are good reasons why this
notion should be better behaved.

To avoid confusion with formal provability, we can the philosophical term assertibility. As-
sertibility predicates resemble classical truth predicates, but there are essential differences.
Assertibility can be consistently used in a self-referential manner. Indeed, when Peano
arithmetic is augmented with an assertibility predicate, it remains consistent while gain-
ing the ability to formally derive a sentence which intuitively expresss its own consistency.

7
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Randomness and Effective Dimension

Stephen Binns

Department of Mathematics, Statistics, and Physics
Qatar University, Doha, Qatar

The idea of effective dimension of a real (infinite binary sequence), defined
in terms of the Kolmogorov complexity of its initial segments, has been much
studied. If X is such an an infinite binary sequence, then we define its effective
Hausdorff dimension as

dimH X = lim inf
n

C(X ! n)
n

.

A dual notion of effective packing dimension is defined as

dimp X = lim sup
n

C(X ! n)
n

.

If these two quantities are equal we refer to X as being regular and define the
effective dimension of X as dimX = lim C(X!n)

n . These notions can be extended
to introduce interesting geometric ideas into the study of effective dimension.
We define a relativised version of these definitions: if X and Y are two reals
then we define

d(Y → X) = lim sup
n

C(X ! n
∣∣ Y ! n)

n
.

d(Y → X) obeys the triangle inequality in the direction of the arrow, and can
be used to constuct a pre-metric on the set of all reals by defining

d(X,Y ) = max{d(X → Y ), d(Y → X)}.

Two reals of distance 0 from each other are deemed d-equivalent. Along with
this metric, we can define a notion of scalar multiplication, so that if α ∈ [0, 1],
and X is a regular real, then αX can be defined so that

dim(αX) = α dim(X).

This scalar multiplication dilutes the information in X and reduces its dimension
by a factor of α.

Furthermore, using these ideas, it is possible to introduce natural notions of
angle and projection into the geometry and to define a notion of flatness using
them.

The main result presented will be to show that any regular real is d-equivalent
to a dilution of a 1-random, thereby giving a sense in which all regular complexity
is a diluted form of randomness.

9



The completeness theorem, WKL0, and the
origins of reverse mathematics

Walter Dean

University of Warwick

One of the founding goals of the Reverse Mathematics program is the study
of which set existence axioms of second-order arithmetic are needed to prove
theorems of classical mathematics whose statements are not overtly set theo-
retic in nature. One reason this program has been of interest to philosophers of
mathematics is the hope articulated by Simpson (1988, 2009) that the major
subsystems of second-order arithmetic formally characterize foundational stand-
points such as finitism or predicativism. The principle known as Weak König’s
Lemma [WKL] appears to be an outlier in both respects: not only does it fail
to have the form of an unqualified assertion of set existence (as exemplified by
a comprehension scheme), it is also not initially clear how it demarcates a dif-
ference between the philosophical schools and figures mentioned by Simpson.
The first goal of this talk will be to put these observations into historical con-
text by considering how WKL came to be isolated from König’s Infinity Lemma
as a combinatorial principle in its own right. (This story has much to do with
what we now call the Arithmetized Completeness Theorem and the origins of
computable model theory.) The second goal will be to attempt to compare the
role of this principle as a minimally non-constructive posit to other means of
expressing ontological commitment which have been discussed by philosophers
of mathematics.

10



A reflection principle as a reverse mathematical
fixed point over ZFC

Sakaé Fuchino

Kobe University Graduate School of System Informatics
Rokko-dai 1-1, Nada, Kobe 657-8501
fuchino@diamond.kobe-u.ac.jp

Many “mathematical” assertions are known to be equivalent to the Contin-
uum Hypothesis (CH) over the Zermelo-Fraenkel axiom system of set theory
with Axiom of Choice (ZFC). In spite of some arguments which claim the irrel-
evance of the CH (in the “real” mathematics) the abundance of these assertions
support the relevance and import of CH over ZFC.

The significance of the set-theoretic principle called Fodor-type Reflection
Principle (FRP) can be argued similarly: this principle is known to be equivalent
to many “mathematical” reflection assertions previously known to hold under
strong axioms like MA+(σ-closed).

One of such mathematical reflection assertion goes as follows: For any locally
compact topological space X, if all subspaces of X of cardinality ≤ ℵ1 are
metrizable, then X itself is also metrizable.

Unlike ZFC + CH, which is equiconsistent with ZFC, ZFC + FRP implies
a fairly large large cardinal property. At the moment the exact equiconsistency
of FRP is not yet known but Tadatoshi Miyamoto proved that a local version
of FRP has the consistency strength strictly less than that of the corresponding
local versions of some other known set-theoretic reflection principles.

In this talk, I shall give a survey of the results around the principle FRP.
Most of the results I mention here are obtained in joint work with Istvan Juhász,
Hiroshi Sakai, Lajos Soukup, Zoltan Szentmiklóssy and Toshimichi Usuba.
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Universality and embeddability amongst the

models of set theory

Joel David Hamkins1,2,3,?

1 New York University, Department of Philosophy, 5 Washington Place
New York, New York 10003, USA

2 City University of New York, Graduate Center
Programs in Mathematics, in Philosophy, and in Computer Science

365 Fifth Avenue, New York, NY 10016, USA,
3 College of Staten Island of CUNY

Mathematics, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
jhamkins@gc.cuny.edu

http://jdh.hamkins.org

Abstract. Recent results on the embeddability phenomenon and uni-
versality amongst the models of set theory are an appealing blend of
ideas from set theory, model theory and computability theory. Central
questions remain open.

Keywords: embeddings, universality, hypnagogic digraph

A surprisingly vigorous embeddability phenomenon has recently been uncovered
amongst the countable models of set theory. It turns out, for instance, that
among these models embeddability is linear: for any two countable models of set
theory, one of them embeds into the other ([4]). Indeed, one countable model of
set theory M embeds into another N just in case the ordinals of M order-embed
into the ordinals of N . This leads to many surprising instances of embeddability:
every forcing extension of a countable model of set theory, for example, embeds
into its ground model, and every countable model of set theory, including every
well-founded model, embeds into its own constructible universe.

L

M

j

M

x 2 y  ! j(x) 2 j(y)

Although the embedding concept here is the usual model-theoretic embedding
concept for relational structures, namely, a map j : M ! N for which x 2M y

if and only if j(x) 2N j(y), it is a weaker embedding concept than is usually

? The author’s research has been supported in part by NSF grant DMS-0800762, PSC-
CUNY grant 64732-00-42 and Simons Foundation grant 209252. Commentary can be
made at http://jdh.hamkins.org/universality-and-embeddability-ctfm-2015-japan.
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considered in set theory, where embeddings are often elementary and typically
at least �0-elementary. Indeed, the embeddability result is surprising precisely
because we can easily prove that in many of these instances, there can be no
�0-elementary embedding.

The proof of the embedding theorem makes use of universality ideas in di-
graph combinatorics, including an acyclic version of the countable random di-
graph, the countable random Q-graded digraph, and higher analogues arising
as uncountable Fräıssé limits, leading to the hypnagogic digraph, a universal
homogeneous graded acyclic class digraph, closely connected with the surreal
numbers. Thus, the methods are a blend of ideas from set theory, model theory
and computability theory.

Results from [2] show that the embedding phenomenon does not generally
extend to uncountable models. Current work [1] is concerned with questions on
the extent to which the embeddings arising in the embedding theorem can exist
as classes inside the models in question. Since the embeddings of the theorem
are constructed externally to the model, by means of a back-and-forth-style
construction, there is little reason to expect, for example, that the resulting
embedding j : M ! L

M should be a class in M . Yet, it has not yet known
how to refute in ZFC the existence of a class embedding j : V ! L when
V 6= L. However, many partial results are known. For example, if the GCH
fails at an uncountable cardinal, if 0] exists, or if the universe is a nontrivial
forcing extension of some ground model, then there is no embedding j : V ! L.
Meanwhile, it is consistent that there are non-constructible reals, yet hP (!),2i
embeds into hP (!)L,2i.
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On the interpretation of HPC in the
Kreisel-Goodman Theory of Constructions

Hidenori Kurokawa

Kobe University

In this talk, we discuss the Kreisel-Goodman Theory of Constructions (ToC). This theory was orig-
inally introduced by Kreisel as an untyped theory which can handle the notion of mathematical con-
structions used in the BHK interpretation of intuitionistic logical constants. One of the theoretical goals
of ToC is to provide a formal theory of mathematical constructions “in terms of which the formal rules
of Heyting’s predicate calculus [HPC] can be interpreted (Kreisel, 1962).” However, the version of ToC
which satisfies all the desiderata considered by Kreisel turns out to be inconsistent (the Kreisel-Goodman
paradox). We first present our own analysis of the paradox and propose a consistent sub-theory of the
inconsistent version of ToC. We then discuss an outline of Goodman’s proof of the soundness of the
interpretation of HPC into this weaker version of ToC. This is a joint work with Walter Dean.

14



Instant structures and categoricity

Keng Meng Ng

Nanyang Technological University

In this talk we will study various aspects of instant structures. An instant
structure is a countable structure with domain omega, and where the relations
and functions are primitive recursive. Various related notions have been studied
in the literature, notably the early work of Cenzer and Remmel. We give some
intuition and explain why these structures are interesting. We also compare with
classical computable structures. We discuss notions of instant categoricity, and
show the surprising result that instant categoricity is different from classical
computable categoricity.

15



Intuitionistic Provability, Classical Validity and
Situation-Dependent Propositions

A Consideration based on Gödel’s Modal Embedding

Kengo Okamoto

Tokyo Metropolitan University

It is well-known that there exists a sound and faithful embedding of the
sequents deducible in intuitionistic logic (IL) into those deducible in the modal
logic S4: for any sequent S of IL, IL proves S if and only if S4 proves the
modal translation (i.e. the so-called Gödel translation) of S. Moreover, we can
show that there exists a more exact model theoretic correspondence between IL
propositions (i.e. IL formulae) and their S4 translations: for any Kripke model M
of S4, we can construct i) a mapping f on the set W of possible worlds in M and
ii) a Kripke model L of IL that is defined in terms of the mapping f , such that
for any S4 proposition P that is the modal translation of some IL proposition Q
(i.e. P is the Gödel translation of Q), (1) f not only strictly preserves the truth
(i.e. P is true in M iff Q is true in L), (2) but also maps the truth set of P in M
(i.e. the set of the words in W in which P is true) exactly into that of Q in L (i.e.
the set of possible states of L in which Q is true). The converse mapping from
IL Kripke models to S4 Kripke models can be also (rather trivially) constructed.

One might say these facts justify the claim that intuitionistic propositions
be literally construed in accordance with their modal translations: for example,
for any IL primitive proposition q, we could construed it as stating that the
corresponding S4 primitive proposition (usually this latter proposition is itself
symbolized by “q”, but we are free to assign to it any S4 primitive proposition
whatever) is “necessary”, since the Gödel translation of q is the necessitation of
the corresponding S4 primitive proposition. Note that the notion of necessity in
question here is nothing other than that of the intuitionistic provability.

Now, similar observations could be made with respect to classical logic (CL)
and the modal logic S5: (1) the modal translation embeds sequents deducible
in CL into those deducible in S5 in a sound and faithful way and (2) there
exists an exact model theoretic correspondence between CL propositions and
their S5 translations. As might easily be seen, in this case the relevant notion
of necessity is nothing other than that of classical validity: for example, the CL
primitive proposition q could be construed as stating that the corresponding S5
primitive proposition is classically valid.

These considerations induce the following question: what are the (primitive)
propositions of S4 and S5? We attempt to show that they are in general to be
identified with situation-dependent propositions (some authors say they are the
propositions seen from the “internal” or “local” point of view) and that this
construal also throw some light on the relationships between intuitionistic and
classical formal arithmetical theories.

16



Cardinal invariants of density

Dilip Raghavan

National University of Singapore

I will talk about some recent work on cardinal invariants associated with the
ideal Z0 of sets of asymptotic density 0. In particular I will discuss some upper
bounds for cov∗(Z0), which is the minimal number of density 0 sets needed to
intersect every infinite subset of ω on an infinite set. This dualizes to give a
lower bound for non∗(Z0). Some of the results I will present are joint work with
Shelah.
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Cofinality of Classes of Ideals with Respect to
Katětov and Katětov-Blass Orders

Hiroshi Sakai

Graduate School of System Informatics, Kobe University

The Katětov order ≤K and the Katětov-Blass order ≤KB are orders on ideals
over ω. For ideals I and J over ω, I ≤K J if there is a function f : ω → ω such
that f−1[A] ∈ J for any A ∈ I. Moreover I ≤KB J if there is such a finite to
one function f .

The Katětov order was introduced by Katětov [2] to study convergence in
topological spaces. After that it has turned out that many combinatorial prop-
erties of ideals over ω can be characterized using ≤K and ≤KB. For example,
Solecki [3] introduced a certain Fσ-ideal S and proved that an ideal I over ω
has the Fubini property if and only if S ̸≤K I|X for any X ∈ I+. Moreover,
in these characterizations of properties of ideals, it is often the case that there
is some critical Borel ideal such as S in Solecki’s characterization of the Fubini
property. Hrušák [1] studies ≤K and ≤KB on Borel ideals systematically.

In this talk we discuss the cofinal types of classes of ideals with respect to ≤K

and ≤KB. Among other things, we study the classes of all Fσ-ideals, Analytic
P-ideals and Borel ideals. This is a joint work with Hiroaki Minami.
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Kazuyuki Tanaka’s work on AND-OR trees and
subsequent development

Septermber, 2015

Toshio Suzuki

Dept. of Math. and Information Sci., Tokyo Metropolitan University,
Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

toshio-suzuki@tmu.ac.jp

Searching a game tree is an important subject of artificial intelligence. In
the case where the evaluation function is bi-valued, the subject is interesting for
logicians, because a game tree in this case is a Boolean function. Among such
trees, the most basic one is a binary uniform NAND tree. By moving negations,
we may identify such a tree with an AND-OR tree.

Kazuyuki Tanaka has a wide range of research interests which include com-
plexity issues on AND-OR trees. In the joint paper with C.-G. Liu (2007) [3], he
studies distributional complexity of AND-OR trees. We overview this work and
subsequent development.

A truth assignment to the leaves is given and hidden. The goal of a tree
searching algorithm is to find the value of the root. For this purpose, an algorithm
successively makes queries to leaves. The cost is measured by the number of
leaves probed during the searching.

The alpha-beta pruning algorithm is a famous e�cient searching algorithm
(Knuth and Moore [2]). In the case of an AND-OR tree, an alpha-beta pruning
algorithm is characterized by the following two requirements. (1) It is depth-first,
that is, whenever it probes a leaf that is a descendant of an internal node, say
v, it never probes descendants of siblings of v until it knows the value of v. (2)
Whenever the algorithm knows a child of an AND-node has value 0 (false) it
knows that the AND-node has the same value without probing the other siblings.
A similar rule applies to OR-nodes, too.

In the case of independent and identical distributions (IID), the optimality
of the alpha-beta pruning algorithms is studied by Baudet [1] and Pearl [4], and
the optimality is shown by Pearl [5] and Tarsi [9].

Yao [10] observed a variation of von Neumann’s minimax theorem. The dis-

tributional complexity P of a given tree T is defined as follows.

P = max
d

min
AD

C(A
D

, d)

Here, d runs over the distributions on the truth assignments, and A

D

runs over
the deterministic algorithms. C(A

D

, d) denotes (expected value of) the cost.
The randomized complexity R of a given tree T is defined as follows.

R = min
AR

max
x

C(A
R

, x)
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Here, A
R

runs over the randomized algorithms, and x runs over the truth as-
signments. Yao’s principle is an assertion that P = R. Saks and Wigderson [6]
show basic results on the equilibriums.

Liu and Tanaka [3] extend the work of Saks and Wigderson. In [3], a proba-
bility distribution on the truth assignment that achieves the distributional com-
plexity is called an eigen-distribution.

(1) The case of ID (independent distribution on the truth assignments): They
study which distribution is an eigen-distribution, and investigate asymptotic
behavior of eigen-distributions with respect to the height of the tree.

(2) The case of CD (correlated distributions): By extending the concepts
of the reluctant inputs of Saks and Wigderson, they introduce the concepts of
E1-distribution, and show that E1-distribution is the unique eigen-distribution.

The result (2) is extended to the case where distributions and algorithms run
over the elements of given classes (S. and Nakamura, 2012 [7]).

In the course of showing (1), Liu and Tanaka state, without a proof, that
if a distribution achieves the distributional complexity among IDs then it is
an IID (Theorem 4 of [3]). S. and Niida [8] show fundamental relationships
between probability and expected cost of uniform binary OR-AND trees, and
by means of the relationships, give a rigorous proof for Theorem 4 of [3]. More
recently, NingNing Peng et al. extends the result in [8] to uniform level-by-level
k-branching AND-OR trees.
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Models of Weak König’s Lemma

Tin Lok Wong

Kurt Gödel Research Center for Mathematical Logic, University of Vienna

tin.lok.wong@univie.ac.at

Weak König’s Lemma (WKL) states that every infinite binary tree contains
an infinite branch. Its formalization in second-order arithmetic occupies a promi-
nent position in the foundations of mathematics.

Tanaka and his collaborators made significant contributions to the under-
standing of nonstandard models of WKL. On the one hand, he introduced self-
embeddings to second-order arithmetic, and explained why WKL is relevant in
such constructions [2]. On the other hand, research about Tanaka’s conjecture
on the conservativity of WKL led to the discovery of a novel technique, due
jointly to Simpson, Tanaka and Yamazaki [1], for producing very similar yet
very di↵erent models of WKL.

In my talk, I will survey these results, and report on some ongoing work in
collaboration with Ali Enayat (Gothenburg) in refining them.

References

1. Simpson, S.G., Tanaka, K., Yamazaki, T.: Some conservation results on Weak

König’s Lemma. Annals of Pure and Applied Logic 118, 87–114 (Dec 2002)

2. Tanaka, K.: The self-embedding theorem of WKL0 and a non-standard method.

Annals of Pure and Applied Logic 84(1), 41–49 (Mar 1997)

21



Some progress on Kierstead’s conjecture

Guohua Wu

Nanyang Technological University

A well-known theorem of Dushnik-Miller says that any countably infinite lin-
ear ordering admits a nontrivial self-embedding. The effective version of Dushnik-
Miller theorem is not true (Hay and Rosenstein). Downey and Lempp proved
that the proof strength of the Dushnik-Miller theorem is the same as ACA0.

We are interested in the complexity of automorphisms associated. One of
Kierstead’s work initiates the study of η-like linear orderings, where Kierstead
shows the existence of a computable linear ordering of order type 2η with no
nontrivial Π0

1 -automorphism. Kierstead also conjectured that every computable
copy of a linear order L has a strongly nontrivial Π0

1 -automorphism if and only
if it contains an interval of order type η. Kierstead proved it for 2η and Downey
and M. Moses proved it for discrete linear orderings.

Harris, Lee and Cooper extended these results by proving that Kierstead ’
s conjecture is true for a quite general subclass of η-like computable linear
orderings. In this talk, we will present our recent work towards further progress
on Kierstead’s conjecture. This is joint work with Zubkov.
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A survey of determinacy of infinite games
in second order arithmetic,

dedicating to 60’s birthday of Professor Tanaka.

Keisuke Yoshii

Department of Integrated Arts and Science,
National Institute of Technology, Okinawa College

keisuke.yoshii@gmail.com

What set existence axioms are needed to prove the theorems of ordinary math-
ematics? In 1970s, Harvey Friedman introduced this theme of reverse mathemat-
ics, and many mathematician are now working on this field all over the world.
Tanaka started his research on determinacy of infinite games in second order
arithmetic in 1980s, the early age of reverse mathematics.

It is now known that most of classical mathematics theorems are equivalent
to only five systems of second order arithmetic such as RCA0,WKL0,ACA0,ATR0

and Π1
1 -CA0. Determinacy of infinite games are treated in the strong systems

of second order arithmetic such as ATR0,Π1
1 -CA0, and more. After John Steel

showed in [2] that determinacy of open games (Σ0
1 -Det) is equivalent to ATR0,

Tanaka formalized Σ1
1 inductice definition (Σ1

1 -ID0) in second order arithmetic
([3]) and introduced it as a new axiom system. The importance of Σ1

1 induc-
tive definitions had been already established in descriptive set theory. Tanaka
showed that Σ1

1 -ID is derived from Σ0
2 -Det over ACA0 and, what is more, showed

that the reversal is not derived from over ACA0, considering the light face ver-
sions of them. It showed that the theme of reverse mathematics does not hold in
that case and emphasized the importance to establish proof-theoretic relations
among lightface statements. Other important aspect of determinacy in second
order arithmetic could be that equivalences between comprehension axioms and
determinacy of Σ0

2 and more complex classes can not be proved. Indeed, ∆1
2

comprehension axiom is not derived even from Borel determinacy. It makes the
situation harder to investigate the proof-theoretic strengths of determinacy, but
he and MedSalem succeeded to pin down ∆0

3 by introducing transfinite combi-
nations of Σ1

1 inductive definitions [1].
In this talk, dedicating to 60’s birthday of Professor Tanaka, we overview

his works on determinacy in second order arithmetic and some of related recent
works.

References

1. MedSalem, M. O. and Tanaka, K. ∆0
3-determinacy, comprehension and induction,

Journal of Symbolic Logic 72, 452-462, [2007].
2. Steel, J. R. Determinateness and Subsystems of Analysis, Ph.D. Thesis, University

of California, Berkely, [1976].

23



3. Tanaka, K. Weak Axioms of determinacy and subsystems of analysis II (Σ0
2

games), Annals of Pure and Applied Logic 52, 181-193, [1991].

24



On the reals which can be random

Liang Yu

Nanjing University

We investigate which reals can be L-random respect to some continuous
measure. This is a joint work with Yizheng Zhu.
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Partial functions and domination

Chi Tat Chong

National University of Singapore

A partial function f dominates a partial function g if for all but finitely many
inputs x, whenever x ∈ Dom(f) then f(x) ≤ g(y) for some y ≤ x in the domain
of g. A set A is pdominant if there is an e such that ΦA

e dominates every partial
recursive function. We discuss some recursion-theoretic properties of pdominant
sets. The talk is based on joint work with Gordon Hoi, Frank Stephan and Dan
Turetsky.
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Coloring rationals in reverse mathematics

Emanuele Frittaion
(Joint work with Ludovic Patey)

Mathematical Institute, Tohoku University.

frittaion@math.tohoku.ac.jp,
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I will present some new results about the reverse mathematics of a theorem
due to Erdös and Rado about colorings of rationals ([1])

Theorem 1 (Erdős, Rado 1952). The partition relation ⌘ ! (@0, ⌘)2 holds,

that is, for every coloring c: [Q]2 ! 2 there exists either an infinite 0-homogeneous

set or a dense 1-homogeneous set.

This Erdős-Rado theorem is known to lie between ACA0 and RT2
2, but its reverse

mathematics status remains open. However, we show that it does not computably
reduce to RT2

2, even though we are not able to generalize this “one-step” sepa-
ration to a separation over !-models, as in the case of the tree theorem for pairs
(see [2]). Moreover, we show that one of its consequences, that can be regarded
as the “pigeonhole principle” over the rationals, is provable in ⌃0

2 induction and
properly stronger than ⌃0

2 bounding, a feature shared by the tree theorem for
singletons (see [3]).

Keywords: Reverse Mathematics, computable reducibility
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Some principles weaker than Markov’s principle

Makoto Fujiwara1,2, Hajime Ishihara1, and Takako Nemoto1

1 School of Information Science, Japan Advanced Institute of Science and
Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.

2 m-fuji@jaist.ac.jp

It is known that most of Bishop’s constructive mathematics can be formalized
within the system EL of intuitionistic second-order arithmetic (which is known
as a system of elementary analysis). On the other hand, Russian constructive
recursive mathematics has been accepted Markov’s principle, which is formalized
over EL but is known not to be provable in EL. With respect to constructive re-
verse mathematics (e.g. [5, 2]), several principles which are strictly weaker than
Markov’s principle but are not provable in EL, has been introduced in the pre-
vious studies ([4, 6, 1]). In this talk, we discuss the interrelations between these
principles as well as some other related principles: weak variants of the law of
excluded middle, de Morgan’s Law, and Markov’s principle. In particular, we
show over EL that ∆0

1-LEM in the sense of [1] is strictly weaker than disjunctive
Markov’s principle MP∨, and is not derived from weak Markov’s principle WMP
([3]).
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Cut in positive relevant logics without
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The first sequent calculi for positive relevant logics were formulated by Dunn
and Minc in [5] and [8]. In those calculi, the cut rule has the following form:

⇧ ` ' � ['] ` �

� [⇧] ` �
(cut)

where � [⇧] is the result of replacing arbitrarily many occurrences of ' in � [']
by ⇧ if ⇧ is non–empty, and otherwise by 0t0. The constant truth 0t0 is needed
to disable the inference of the modal fallacy ` ↵ ! (� ! �). Really, without 0t0,
we would have:

` � ! �

� ! � ` � ! �

↵,� ! � ` � ! �
(extensional thinning)

↵ ` � ! �

` ↵ ! (� ! �)
(! r)

(cut)

However, with 0t0, the admissibility of modus ponens, essential for the proof
of the equivalence between sequent calculi and their Hilbert–style formulations,
cannot be proved. Really, with 0t0 added as above, it cannot be proved that
whenever ` ↵ and ` ↵ ! � are both derivable in a sequent system, so is ` �.
This is the reason why some authors (e.g. Dunn [5], [6], Giambrone [4]), first add
0t0, essential for the admissibility of cut, but once cut–elimination is established,
they develop the techniques to get rid of 0t0.

We propose another formulation of the cut rule, for positive relevant logics,
where the constant 0t0 is not needed. Our cut rule is of the following forms:

⇧ ` ' � ['] ` �

� [⇧] ` �
(cut�i)

` ' � [';⇧] ` �

� [⇧] ` �
(cut�ii)

` ' ' ` �

` �
(cut�iii)

? This work is supported by the Ministary of Science and Technology of Serbia, grant
number ON174026.
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where ⇧ is non–empty. In (cut-i), � [⇧] is the result of replacing exactly one
occurrence of ' in � ['] by ⇧, in (cut-ii) the single occurrence of ' in � [';⇧] is
replaced by an empty multiset and similarly in (cut-iii).

The various versions of our cut rule, ensure that the modal fallacy remains
unprovable. Furthermore, they are enough for the proof of the equivalence be-
tween Hilbert–style formulation and the corresponding sequent calculus (e.g.,
this form of cut is used in the the sequent calculus formulation for the positive
contraction–less relevant logic RW �

+

, in [7]). However, it should be mentioned
that the use of 0t0 remains crucial in sequent calculus for TW

+

and in sequent
calculi for other weaker, permutation–less, relevance logics such as B

+

, E
+

and
even T! (there is a sequent calculus for T! without 0t0 in [2], however the one
with 0t0 is much easier to use), where 0t0 precludes intensional structures from
becoming scrambled, see e.g. [3].
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Sequent calculi of quantum logic
with strict implication
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Quantum logic is the logic witch describe a propositional space of quantum
physics. It corresponds to a complete orthomodular lattice. Orthomodular lattice
has been studied from the point of view of physics and also from the point of
view of logic. One feature of quantum logic is that the distributive law is not
satisfied in a orthomodular lattice like the law of excluded middle is not satisfied
in a intuitionistic logic.

Many syntax of quantum logic are studied. There are Hilbert style calculi,
natural deduction, sequent calculi, and so on. In general, they only include nega-
tion, conjunction and disjunction. When we try to add the notion of implication
in quantum logic, there is some problems. In quantum logic, if we treat a impli-
cation as ¬A∨B as in classical logic, modus ponens is failed. There is some main
conditions which implication has to satisfy like modus ponens. These conditions
are index for making a new implication.

When we think about Kripke semantics, most plausible and descriptive im-
plication is strict implication as its definition is similar to the implication in intu-
itionistic logic. I will present about a new sequent calculi for quantum logic which
include this special implication and prove completeness and cut-elimination.
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Effective Reducibility for Smooth and Analytic
Equivalence Relations on a Cone
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The oracle relativization of a computability-theoretic concept sometimes has
applications in other areas of mathematics which does not involve any notion
concerning computability. For example, authors [2–4] discovered unexpected ap-
plications of Turing degree spectra on a cone (or relative to an oracle) in var-
ious areas of mathematics such as descriptive set theory, infinite dimensional
topology, and Banach space theory. As for another example, Becker [1] and
Knight-Montalbán (see [5]) independently showed that if there is no first-order
axiomatizable class of countable structures whose isomorphism relation is inter-
mediate w.r.t. computable reducibility on a cone, then the Vaught conjecture,
one of the most notable conjectures in model theory, turns out to be true; that
is, the number of countable models of a first-order theory is at most countable
or 2ℵ0 .

Here we say, for equivalence relations E and F on spaces X and Y respec-
tively, that E is computable reducible to F on a cone (written as E ≤cone

eff F )
if there is an oracle r such that for any oracle z ≥T r, there is a partial com-
putable function f :⊆ ω → ω such that for any indices d, e ∈ ω, whenever the i-
and j-th Turing computations Φz

i and Φz
j with oracle z determine points in X ,

Φz
f(i) and Φz

f(j) also determine points in Y and Φz
iEΦz

j if and only if Φz
f(i)FΦz

f(j).
An equivalence relation is intermediate w.r.t. ≤cone

eff if it is neither Borel nor
≤cone

eff -complete among analytic equivalence relations.
In this talk, we study how cone-computable reducibility behaves differently

from continuous and Borel reducibility. In particular, we give a few results on
smooth equivalence relations and intermediate analytic equivalence relations
w.r.t. ≤cone

eff . This is ongoing work with Antonio Montalbán.
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Reducibilities as refinements of the randomness
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The theory of algorithmic randomness has studied many randomness notions,
most of which are linearly ordered in the sense that one randomness notion
implies another randomness notion. For instance, 2-randomness implies ML-
random, which in turn implies Schnorr randomness, which also implies Kurtz
randomness. Here, we say that 2-randomness is stronger than ML-randomness
and so on, and we call this order randomness hierarchy. Notice that this fact can
be used as a measure of how random a set is.

Another way of measuring randomness is reducibility. Levin-Schnorr’s theo-
rem says that a set A is ML-random if and only if K(A ! n) > n− O(1) where
K is the prefix-free Kolmogorov complexity. With this in mind, we say that A

is K-reducible to B, denoted by A ≤K B, if K(A ! n) < K(B ! n) + O(1),
whose intuitive meaning is that B is more random than A. This K-reducibility
has been studied the most, while similar reducibilities also has been studied.

We expect that, if B is more random than A and A is random, then B

should be random. However, this does not hold for K-reducibility and Schnorr
randomness in the sense that, even if A ≤K B and A is Schnorr random, B
may not be Schnorr random. Thus, the two measures of randomness are not
completely consistent.

Definition 1. We say that a reduciblity ≤r of randomness is consistent with a
randomness notion R if the following holds: if A ≤r B and A is R-random, then
B is R-random.

Now, we ask which pairs of reducibilities and randomness notions are consis-
tent. The answers are immediate from known results for most pairs. For instance,
≤K and ≤C are consistent with ML-randomness and n-randomness for all n ≥ 2,
but not with Schnorr randomness and Kurtz randomness.

In contrast, the consistency is not obvious for some pairs. The decidable
prefix-free machine reducibility≤dm is consistent with Kurtz randomness, Schnorr
randomness, ML-randomness and n-randomness for all n ≥ 2. Thus, ≤dm can be
seen as a refinment of this part of the randomness hierarchy. This is somewhat
understandable when considering that dedicable prefix-free machines character-
ize many randomness notions. Furthermore, the total-machine reducibility ≤tm

is also consistent with Kurtz randomness, Schnorr randomness, ML-randomness,
and n-randomness for all n ≥ 2.

We need to do some work for Schnorr reducibility ≤Sch.

Theorem 1. The Schnorr reducibility is consistent with 2-randomness.

34



2 Kenshi Miyabe

For the proof of this, we extended the counting theorem for a machine that
may not be universal.

In contrast, it is open whether the Schnorr reducibility is consistent with
ML-randomness. The counterexample should be deep in the sense of Bennett.

In this study we also obtain the following.

Theorem 2. The following are equivalent for a set:

(i) X is 2-Z-random.
(ii) C(X ! (Z ! n)) > Z ! n−O(1).

Corollary 1. A set X is 3-random if and only if C(X ! (Ω ! n)) > Ω ! n−O(1).

This is a characterization of 3-randomness via complexity. The characteriza-
tion uses Ω (or any set in the degree 0′), but not as an oracle. It seems that how
random a 2-random set is can be measured by when complexities of the initial
segment is maximal up to a constant.
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On the “finitary” infinite Ramsey’s theorem and
the parametrised Paris–Harrington principle
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We examine two di↵erent “finitary” Ramsey principles and compare them to
the infinite Ramsey’s theorem. One is based on Gaspar and Kohlenbach’s “fini-
tary” infinite pigeonhole principle in [1], the other is based on the Weiermann-
style parametrisation of the Paris–Harrington principle from [2].

Definition 1 (RTk
d).

For every C: [N]d ! k there exists an infinite C-homogeneous set.

Definition 2 (AS). A function F : {(codes of) finite subsets of N} ! N is

asymptotically stable if for every sequence X0 ✓ X1 ✓ X2 . . . of finite sets there

exists i such that F (Xj) = F (Xi) for all j � i.

Definition 3 (FRTk
d). For every F 2 AS there exists R such that for all

C: [0, R]d ! k there exists C-homogeneous H of size > F (H).

Definition 4 (PPHk
d). For all f :N ! N, a there exists R such that for all

C: [a,R]d ! k there exists C-homogeneous H of size f(minH).

The latter statement is a direct subcase of the first one. We have the following
implications for these statements:

Theorem 1.

(a) RCA0 ` FRTk
d ! RTk

d,

(b) WKL0 ` RTk
d ! FRTk

d,

(c) RCA0 ` WO("0) $ 8d, k.PPHk
d,

(d) RCA0 ` 8k.PPHk
d ! WO(!d).

Where WO(↵) is the statement “↵ is well-founded” , !1 = ! and !d+1 = !!d .
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Uniform AND-OR Trees
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In 2007, Liu and Tanaka [2] showed that for any uniform binary AND-OR tree
on the assignments that are independently distributed (ID), the distributional
complexity is achieved only if the assignments are also identically distributed
(IID).

We generalize Liu-Tanaka’s result to level-by-level uniform multi-branching
AND-OR tree. The proof technique is di↵erent from available ones. One ingre-
dient of our proof is a generalization of Suzuki-Niida’s [3] “fundamental rela-
tionships between costs and probabilities”. Another ingredient of our proof is a
careful analysis of the algorithms involved.
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Reverse Mathematics, Rees Theorem and
Artin-Wedderburn Theorem
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Abstract. Artin-Wedderburn Theorem is the structural theorem of rings.
Affected by this theorem, Rees proved the structural theorem of semi-
groups. I will talk about the ongoing research of reverse mathematics of
Rees Theorem and Artin-Wedderburn Theorem. This research is along
the way of [1] which analyze the fundamental theorem of finitely gener-
ated abelian groups-the structural theorem of groups.

Keywords: Reverse Mathematics, Second Order Arithmetic Rees The-
orem, Artin-Wedderburn Theorem
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Axiom schema of Markov’s principle
preserves disjunction and existence properties
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It is well-known that Heyting arithmetic HA is closed under Markov’s rule:

if ⊢ ∀x(A(x) ∨ ¬A(x)) and ⊢ ¬¬∃xA(x), then ⊢ ∃xA(x) ,

which is the formulation of Markov’s principle as a rule, and that HA enjoys
disjunction property (DP) and numerical existence property (n-EP)1:

(DP): if L ⊢ A ∨B, then L ⊢ A or L ⊢ B.
(n-EP): if L ⊢ ∃xA(x), then there exists a numeral m such that L ⊢ A(m)

(cf. Kleene [1], Troelstra[6]).

The properties (DP) and (n-EP) are regarded as distinguishing features and
characteristics of constructivity of HA (and other intuitionistic theories). In this
talk, we consider the axiom schematic counterpart MP to Markov’s principle:

MP : ∀x(A(x) ∨ ¬A(x)) ∧ ¬¬∃xA(x) ⊃ ∃xA(x) .

and show that the intermediate predicate logic obtained from intuitionistic pred-
icate logic by adding MP as an additional axiom schema enjoys DP as well as
the existence property (EP):

(EP): if L ⊢ ∃xA(x), then there exists a v such that L ⊢ A(v).

Since the language of intermediate predicate logics has neither individual
constants nor function symbols, the above v is chosen from individual variables.

We discuss finitely axiomatizable extensions of intuitionistic predicate logic
in the setting of intermediate predicate logics which enjoy DP and EP, and obtain
the above result as a corollary of our main theorem stated in terms of Kripke
semantics for intermediate predicate logics. That is, we show that if an axiom
schema satisfies a semantical condition described in terms of Kripke semantics,
then the intermediate predicate logic axiomatized by this axiom schema relative
to intuitionistic predicate logic enjoys DP and EP, and MP is shown to satisfy
this semantical sufficient condition.

⋆ This research is supported in part by Grant-in-Aid for Scientific Research (C) No.
24540120, Japan Society for the Promotion of Science.

1 Also known as explicit definability property.
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On the computational power of constant-depth
exact quantum circuits
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Abstract. We study the computational power of constant-depth
polynomial-size exact quantum circuits with unbounded fan-out gates,
which are called QNC0

f circuits. Our main result is that there exists a
QNC0

f circuit for the OR function. This is an a�rmative answer to the
question of Høyer and Špalek [1]. In sharp contrast to the strict hierarchy
of the classical complexity classes: NC0 ( AC0 ( TC0, our main result
with Høyer and Špalek’s one implies the collapse of the hierarchy of the
corresponding quantum classes: QNC0

f = QAC0
f = QTC0

f . As an appli-
cation of our main result, we show that, under a plausible assumption,
there exists a classically hard problem that is solvable by a QNC0

f circuit
with gates for the quantum Fourier transform. This talk is based on a
joint work with Seiichiro Tani [2].
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Set-theoretic geology with large cardinals

Toshimichi Usuba

Organization of Advanced Science and Technology, Kobe University
usuba@people.kobe-u.ac.jp

Laver [2] and Woodin showed that a ground model is definable in its forcing
extension, and Fuchs-Hamkins-Reitz [1] proved the ground models can be defined
uniformly.

Theorem 1 ([1]). There is a formula ϕ(r, x) such that:

1. For every r, the class Wr = {x : ϕ(r, x)} is a ground of the universe V , that
is, Wr is a transitive model of ZFC such that there are a poset P ∈ Wr and
a (Wr,P)-generic filter G with V = Wr[G].

2. For every ground M of V , there is r such that Wr = M .

Now the study of the structure of {Wr : r ∈ V } is called set-theoretic geology.

Theorem 2 ([1], Reitz [3]).

1. There is a class forcing which forces “the universe V has no proper grounds”.
2. Conversely, there is a class forcing which forces “there are class many proper

grounds”.

A class forcing in the item 1. preserves almost every large cardinals, and
a class forcing in 2. preserves supercompact cardinals. However, it does not
preserves large cardinals stronger than supercompact cardinals.

In this talk, we show that the statement that “there are class many proper
grounds” is actually inconsistent with some large cardinals.

Definition 1. Let n ∈ ω. We say that δ is n-supercompact if for every λ ≥ δ,
there is an elementary embedding j : V → M into some inner model M such
that the critical point of j is δ, λ < j(δ), and jn(λ)M ⊆ M . Where jk(α) is
defined as follows: j0(α) = α, and jk+1(α) = j(jk(α)).

Clearly 0-supercompactness is the same to the usual supercompactness, and a
1-supercompact cardinal is superhuge and extendible.

Theorem 3. Suppose there is a 1-supercompact cardinal δ. Then the following
hold:

1. For every ground M of the universe V , there are a poset P ∈ M ∩Vδ and an
(M,P)-generic G such that V = M [G]. That is, V must be a small forcing
extension of M .

2. In particular, V has at most δ many proper grounds.
3. Moreover if V = HOD holds, then V has a minimum ground.

As an immediate corollary of this theorem, we have a following extreme
destructibility of 1-supercompact cardinals:

Theorem 4. Let δ be an infinite cardinal. If a poset P is not forcing equivalent
to a poset of size < δ, then P forces that “δ is not a 1-supercompact cardinal”.
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Nash equilibrium is one of the most important notions in game theory. In
particular, we are interested in complexity of equilibrium. In this talk, we mainly
discuss the proof-theoretic strength of the existence of Nash equilibria for con-
tinuous games as mixed strategies. First, we think how to formalize a mixed
strategy in a weak subsystem of second order arithmetic. Next, we show that
Glicksberg’s theorem can be proved in ACA0, modifying some well-known proof
of the theorem. Then, we will introduce some reverse mathematical results which
appear in the proof.
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I will speak about joint works with Frank Stephan (NUS, Singapore), Yang
Sen (Inner Mongolia University, China) and Yu Liang (Nanjing University, China).
During the IMS-JSPS workshop at National University of Singapore in Septem-
ber 2014, Yang Sen has reported that over the base theory of WKL0, Stein
Theorem is equivalent to ACA0, where Stein Theorem says every countable
Whitehead group is free. This talk is a continuation of Yang Sen’s talk and in
particular we will look at what happens if we move the base theory to RCA0.
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A simple conservation proof for ADS
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Deciding the proof-theoretic strength of Ramsey’s theorem for pairs is a long-
term open problem in the study of reverse mathematics. In [1], Chong, Slaman
and Yang showed that two combinatorial principles called CAC and ADS, which
are both important consequences of Ramsey’s theorem for pairs, are both Π1

1 -
conservative over BΣ0

2 . Thus their proof-theoretic strength are equivalent to IΣ0
1 .

The proof is rather complicated since they use some recursion theoretic method
in nonstandard models. Using these ideas, Kreuzer[2] give a more proof-theoretic
proof for this result, and showed that CAC is Π0

2 -conservative over BΣ0
2 even

in the higher-order setting. In this talk, I will introduce a simpler proof for a
weaker statement that ADS is Π0

2 -conservative over BΣ
0
2 . The proof is based on

the classical Paris argument [3], and just directly calculate the increasing speed
of the indicator for ADS.
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