Cardinal invariants of density

Dilip Raghavan

National University of Singapore

Computability Theory and Foundations of Mathematics 2015, Tokyo Institute of Technology, Tokyo, Japan
September 8, 2015
Basic definitions

Definition

$I \subseteq \mathcal{P}(\omega)$ is an \textbf{ideal on} ω if

1. I is closed under subsets and finite unions.
2. Every finite subset of ω belongs to I.
3. $\omega \notin I$.

In this talk I am primarily interested in I that are definable.
The P-ideals form a special class.

Definition

An ideal \mathcal{I} on ω is called a **P-ideal** if \mathcal{I} is countably directed mod finite. In other words, if $\{a_n : n \in \omega\} \subseteq \mathcal{I}$, then there exists $a \in \mathcal{I}$ such that $\forall n \in \omega \ [a_n \subseteq^* a]$.

Here $a \subseteq^* b$ means $a \setminus b$ is finite.
The P-ideals form a special class.

Definition

An ideal \mathcal{I} on ω is called a **P-ideal** if \mathcal{I} is countably directed mod finite. In other words, if $\{a_n : n \in \omega\} \subseteq \mathcal{I}$, then there exists $a \in \mathcal{I}$ such that $\forall n \in \omega \ [a_n \subseteq^* a]$.

Here $a \subseteq^* b$ means $a \setminus b$ is finite.

Being a P-ideal has a strong influence on the structure of an ideal \mathcal{I}.

It also influences the possible definable complexity of \mathcal{I}.
• $\mathcal{P}(\omega)$ is a Polish space with the usual Cantor topology.
• Sets of the form $\{X \subseteq \omega : n \in X\}$ and $\{X \subseteq \omega : n \notin X\}$ form a sub-basis.
• We can talk about the complexity of \mathcal{I} in the descriptive sense.
• The simplest are the \mathcal{F}_σ ideals.
These have a characterization in terms of sub-measures:

Definition

A function $\phi : \mathcal{P}(\omega) \to [0, \infty]$ is called a **sub-measure** if

1. $\phi(0) = 0$ and $\phi(\{n\}) < \infty$, for every $n \in \omega$;
2. $X \subseteq Y \Rightarrow \phi(X) \leq \phi(Y)$;
3. $\phi(X \cup Y) \leq \phi(X) + \phi(Y)$;

Definition

A sub-measure ϕ is **lower semi-continuous (lsc)** if for any $X \subseteq \omega$,

$$\phi(X) = \lim_{n \to \infty} \phi(X \cap n).$$
Fact (Mazur)

An ideal \(\mathcal{I} \) on \(\omega \) is \(F_\sigma \) iff \(\mathcal{I} = \text{Fin}(\phi) = \{X \subseteq \omega : \phi(X) < \infty\} \).

Example

\(\mathcal{I} \frac{1}{n} \) is the ideal of **summable sets**. That is

\[
\mathcal{I} \frac{1}{n} = \left\{ X \subseteq \omega : \sum_{n \in X} \frac{1}{n} < \infty \right\}
\]

- \(\mathcal{I} \frac{1}{n} \) is actually a P-ideal.
- The sub-measure here is just \(\phi(X) = \sum_{n \in X} \frac{1}{n} \).
- Can replace \(\frac{1}{n} \) by any divergent series (the ideals are quite different though!).
Example

\(\mathcal{ED} \) is the ideal on \(\omega \times \omega \) generated by the vertical columns and graphs of functions. That is \(\mathcal{ED} = \)

\[\{ X \subseteq \omega \times \omega : \exists k, l \in \omega \forall n > k \left[|\{ m \in \omega : \langle n, m \rangle \in X \}| \leq l \right] \} \]

- This is an \(F_\sigma \) ideal which is not P.
Moving up the complexity hierarchy, it turns out that every analytic P-ideal is $F_{\sigma\delta}$.

So at least for P-ideals, there is nothing between $F_{\sigma\delta}$ and Π_1^1.
Moving up the complexity hierarchy, it turns out that every analytic P-ideal is $F_{\sigma\delta}$.

So at least for P-ideals, there is nothing between $F_{\sigma\delta}$ and Π_1^1.

Theorem (Solecki)

Let I be an ideal on ω.

1. I is an analytic P-ideal iff there exists a lower semi-continuous sub-measure ϕ such that $I = \text{Exh}(\phi) = \{X \subseteq \omega : \lim_{n \to \infty} \phi(X \setminus n) = 0\}$.

2. I is an $F_{\sigma\delta}$ P-ideal iff there exists a lower semi-continuous sub-measure ϕ such that $I = \text{Fin}(\phi) = \text{Exh}(\phi)$.

Exh(ϕ) is always an $F_{\sigma\delta}$ P-ideal.
A set $A \subseteq \omega$ is said to have asymptotic density 0 if \(\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \).

\[Z_0 = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \right\} . \]

- This an \(F_{\sigma\delta} \) P-ideal.
- Suppose \(\{a_n : n \in \omega\} \subseteq Z_0 \).
- WLOG they are pairwise disjoint.
Let $b_n = \bigcup_{m \leq n} a_m$ and let k_n be minimal such that for all $k \geq k_n$,
\[
\frac{|b_n \cap k|}{k} \leq 2^{-n}.
\]
Let $a = \bigcup_{n \in \omega} (a_n \setminus k_n)$.

This set a works.
Three basic invariants

- Cardinals invariants are cardinal between \aleph_1 and $c = 2^{\aleph_0}$.
- They identify places where basic diagonalization arguments first fail.
Three basic invariants

Cardinals invariants are cardinal between \aleph_1 and $c = 2^{\aleph_0}$.
They identify places where basic diagonalization arguments first fail.

Definition

For $f, g \in \omega^\omega$, $f <^* g$ means that $|\{n \in \omega : g(n) \leq f(n)\}| < \omega$. A set $F \subseteq \omega^\omega$ is said to be **unbounded** if there does not exist $g \in \omega^\omega$ such that $\forall f \in F [f <^* g]$. A set $F \subseteq \omega^\omega$ is said to be **dominating or cofinal** if $\forall f \in \omega^\omega \exists g \in F [f <^* g]$.
Three basic invariants

- Cardinals invariants are cardinal between \aleph_1 and $\mathfrak{c} = 2^{\aleph_0}$.
- They identify places where basic diagonalization arguments first fail.

Definition

For $f, g \in \omega^\omega$, $f <^* g$ means that $|\{n \in \omega : g(n) \leq f(n)\}| < \omega$. A set $F \subseteq \omega^\omega$ is said to be **unbounded** if there does not exist $g \in \omega^\omega$ such that $\forall f \in F [f <^* g]$. A set $F \subseteq \omega^\omega$ is said to be **dominating or cofinal** if $\forall f \in \omega^\omega \exists g \in F [f <^* g]$.

Definition

For $a, b \in \mathcal{P}(\omega)$ we say that a **splits** b if both $b \cap a$ and $b \cap (\omega \setminus a)$ are infinite. A family $F \subseteq \mathcal{P}(\omega)$ is called a **splitting family** if $\forall b \in [\omega]^{\omega} \exists a \in F [a \text{ splits } b]$.
We define the cardinal invariants b, d, and s as follows:

$$b = \min\{|F| : F \subseteq \omega^\omega \land F \text{ is unbounded}\};$$
$$d = \min\{|F| : F \subseteq \omega^\omega \land F \text{ is dominating}\};$$
$$s = \min\{|F| : F \subseteq \mathcal{P}(\omega) \land F \text{ is a splitting family}\}.$$

Fact

$\aleph_1 \leq \max\{b, s\} \leq d \leq c$.

- This is all that can be proved in ZFC.
We consider cardinal invariants associated with analytic P-ideals.

Two possibilities: invariants associated with the quotient $\mathcal{P}(\omega)/\mathcal{I}$ and cardinals associated with \mathcal{I} itself.

Former is similar to $\mathcal{P}(\omega)/\text{FIN}$.

The latter involves possibilities that don’t make sense for FIN because FIN is not a tall ideal.

Definition

*Recall that an ideal \mathcal{I} on ω is **tall** if it has the property that*

$$\forall a \in [\omega]^\omega \exists b \in [a]^\omega [b \in \mathcal{I}].$$
• When \mathcal{I} is a tall P-ideal, we can define invariants associated with \mathcal{I} that don’t make sense for FIN.

• There are many interesting open problems about invariants associated with $\mathcal{P}(\omega)/\mathcal{I}$ (not our topic for today, but . . .).
When \mathcal{I} is a tall P-ideal, we can define invariants associated with \mathcal{I} that don’t make sense for FIN.

There are many interesting open problems about invariants associated with $\mathcal{P}(\omega)/\mathcal{I}$ (not our topic for today, but . . .).

Definition

A family $F \subseteq \mathcal{P}(\omega)$ is **splitting for** $\mathcal{P}(\omega)/\mathcal{I}_{\frac{1}{n}}$ if

$$\forall b \in \mathcal{I}_{\frac{1}{n}}^{+} \exists a \in F \left[b \cap a \in \mathcal{I}_{\frac{1}{n}}^{+} \wedge b \cap (\omega \setminus a) \in \mathcal{I}_{\frac{1}{n}}^{+} \right].$$
When \mathcal{I} is a tall P-ideal, we can define invariants associated with \mathcal{I} that don’t make sense for FIN.

There are many interesting open problems about invariants associated with $\mathcal{P}(\omega)/\mathcal{I}$ (not our topic for today, but . . .).

Definition

A family $F \subseteq \mathcal{P}(\omega)$ is **splitting for** $\mathcal{P}(\omega)/\mathcal{I}_{1/n}$ if

$$\forall b \in \mathcal{I}_{1/n}^+ \exists a \in F \left[b \cap a \in \mathcal{I}_{1/n}^+ \land b \cap (\omega \setminus a) \in \mathcal{I}_{1/n}^+ \right].$$

Definition

The analogue of s for $\mathcal{P}(\omega)/\mathcal{I}_{1/n}$ is:

$$s_{1/n} = \min \left\{|F| : F \subseteq \mathcal{P}(\omega) \text{ is splitting for } \mathcal{P}(\omega)/\mathcal{I}_{1/n}\right\}.$$
Theorem (Brendle)

It is consistent to have $\mathfrak{s} \frac{1}{n} < \mathfrak{s}$.

Question

Is $\mathfrak{s} < \mathfrak{s} \frac{1}{n}$ consistent?

Question

Is $\mathfrak{h} < \mathfrak{h} \frac{1}{n}$ consistent?
When \mathcal{I} is a tall P-ideal on ω you can define the following:

\[
\text{add}^*(\mathcal{I}) = \min\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \forall b \in \mathcal{I} \exists a \in \mathcal{F} \; [a \not\in^* b] \}, \\
\text{cov}^*(\mathcal{I}) = \min\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \forall a \in [\omega]^{\omega} \exists b \in \mathcal{F} \; [|a \cap b| = \omega] \}, \\
\text{cof}^*(\mathcal{I}) = \min\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \forall b \in \mathcal{I} \exists a \in \mathcal{F} \; [b \subseteq^* a] \}, \\
\text{non}^*(\mathcal{I}) = \min\{ |\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \land \forall b \in \mathcal{I} \exists a \in \mathcal{F} \; [|a \cap b| < \omega] \}.
\]
Definition

When \mathcal{I} is a tall P-ideal on ω you can define the following:

$$ add^*(\mathcal{I}) = \min\{|F| : F \subseteq \mathcal{I} \land \forall b \in \mathcal{I} \exists a \in F \left[a \not\subseteq^* b \right] \}, $$

$$ cov^*(\mathcal{I}) = \min\{|F| : F \subseteq \mathcal{I} \land \forall a \in [\omega]^{\omega} \exists b \in F \left[|a \cap b| = \omega \right] \}, $$

$$ cof^*(\mathcal{I}) = \min\{|F| : F \subseteq \mathcal{I} \land \forall b \in \mathcal{I} \exists a \in F \left[b \subseteq^* a \right] \}, $$

$$ non^*(\mathcal{I}) = \min\{|F| : F \subseteq [\omega]^{\omega} \land \forall b \in \mathcal{I} \exists a \in F \left[|a \cap b| < \omega \right] \}. $$

- If \mathcal{I} were not a P-ideal, $add^*(\mathcal{I})$ would be ω.
- If \mathcal{I} were not tall, then $cov^*(\mathcal{I})$ would be undefined, and $non^*(\mathcal{I})$ would be 1.
These invariants were investigated by Hernández-Hernández and Hrušák [2] and also by Brendle and Shelah [1].

Terminology is based on analogy with the following definitions which make sense for any ideal whatsoever.

Definition

Let \mathcal{I} be any ideal on a set X. Define

\[
\text{add}(\mathcal{I}) = \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \bigcup \mathcal{F} \notin \mathcal{I} \}, \\
\text{cov}(\mathcal{I}) = \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \bigcup \mathcal{F} = X \}, \\
\text{cof}(\mathcal{I}) = \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \forall B \in \mathcal{I} \exists A \in \mathcal{F} \ [B \subseteq A] \}, \\
\text{non}(\mathcal{I}) = \{ |Y| : Y \subseteq X \land Y \notin \mathcal{I} \}.
\]
These invariants were investigated by Hernández-Hernández and Hrušák [2] and also by Brendle and Shelah [1].

Terminology is based on analogy with the following definitions which make sense for any ideal whatsoever.

Definition

Let \mathcal{I} be any ideal on a set X. Define

\[
\begin{align*}
\text{add}(\mathcal{I}) &= \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \bigcup \mathcal{F} \not\in \mathcal{I} \}, \\
\text{cov}(\mathcal{I}) &= \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \bigcup \mathcal{F} = X \}, \\
\text{cof}(\mathcal{I}) &= \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \forall B \in \mathcal{I} \exists A \in \mathcal{F} \ [B \subseteq A] \}, \\
\text{non}(\mathcal{I}) &= \{ |Y| : Y \subseteq X \land Y \not\in \mathcal{I} \}.
\end{align*}
\]

add(\mathcal{I}) and *cof*(\mathcal{I}) are duals. So are *cov*(\mathcal{I}) and *non*(\mathcal{I}).
For each $a \in \mathcal{P}(\omega)$, let $\hat{a} = \{b \subseteq \omega : |a \cap b| = \omega\}$.

For each $a \in \mathcal{P}(\omega)$, let $\hat{a} = \{b \subseteq \omega : |a \cap b| = \omega\}$.

For a tall ideal \mathcal{I}, $\hat{\mathcal{I}} = \{X \subseteq \mathcal{P}(\omega) : \exists a \in \mathcal{I} [X \subseteq \hat{a}]\}$ is an ideal on $\mathcal{P}(\omega)$ generated by Borel sets.
For each $a \in \mathcal{P}(\omega)$, let \(\hat{a} = \{ b \subseteq \omega : |a \cap b| = \omega \} \).

For each $a \in \mathcal{P}(\omega)$, let \(\hat{a} = \{ b \subseteq \omega : |a \cap b| = \omega \} \).

For a tall ideal \mathcal{I}, \(\hat{\mathcal{I}} = \{ X \subseteq \mathcal{P}(\omega) : \exists a \in \mathcal{I} [X \subseteq \hat{a}] \} \) is an ideal on $\mathcal{P}(\omega)$ generated by Borel sets.

\mathcal{I} is a P-ideal iff $\hat{\mathcal{I}}$ is a σ-ideal.

$\text{add}(\hat{\mathcal{I}}) = \text{add}^{*}(\mathcal{I})$, $\text{cov}(\hat{\mathcal{I}}) = \text{cov}^{*}(\mathcal{I})$, $\text{cof}(\hat{\mathcal{I}}) = \text{cof}^{*}(\mathcal{I})$, $\text{non}(\hat{\mathcal{I}}) = \text{non}^{*}(\mathcal{I})$ hold.
The Tukey and the Katětov orderings are relevant to these invariants.

Definition
Let I and J be ideals on ω. Recall that I is Katětov below J or $I \leq_K J$ if there is a function $f : \omega \to \omega$ such that $\forall a \in I \left[f^{-1}(a) \in J\right]$.

Definition
We say that $\langle I, \subseteq^* \rangle$ is Tukey below $\langle J, \subseteq^* \rangle$ and we write $I \leq_T^* J$ if there is a map $\varphi : I \to J$ such that if $X \subseteq I$ any set that does not have an upper bound in the partial order $\langle I, \subseteq^* \rangle$, then $\varphi''X$ does not have an upper bound in the partial order $\langle J, \subseteq^* \rangle$.
The Tukey and the Katětov orderings are relevant to these invariants.

Definition

Let I and J be ideals on ω. Recall that I is **Katětov below** J or $I \leq_K J$ if there is a function $f : \omega \to \omega$ such that $\forall a \in I \left[f^{-1}(a) \in J \right]$.

Definition

We say that $\langle I, \subseteq^* \rangle$ is **Tukey below** $\langle J, \subseteq^* \rangle$ and we write $I \leq_T^* J$ if there is a map $\varphi : I \to J$ such that if $X \subseteq I$ any set that does not have an upper bound in the partial order $\langle I, \subseteq^* \rangle$, then $\varphi''X$ does not have an upper bound in the partial order $\langle J, \subseteq^* \rangle$.

- $I \leq_K J$ implies both that $\text{cov}^*(I) \geq \text{cov}^*(J)$ and that $\text{non}^*(I) \leq \text{non}^*(J)$.
- If $I \leq_T^* J$, then $\text{add}^*(I) \geq \text{add}^*(J)$ and $\text{cof}^*(I) \leq \text{cof}^*(J)$.
Summary of some known results:

Fact

Let \mathcal{I} be a tall P-ideal on ω.

1. $\aleph_1 \leq \text{add}^*(\mathcal{I}) \leq \min\{\text{non}^*(\mathcal{I}), \text{cov}^*(\mathcal{I})\} \leq \max\{\text{non}^*(\mathcal{I}), \text{cov}^*(\mathcal{I})\} \leq \text{cof}^*(\mathcal{I}) \leq c$.

2. $p \leq \text{cov}^*(\mathcal{I})$.
The following hold:

1. \[\text{add}^*\left(\mathcal{I}_{\frac{1}{n}}\right) = \text{add}(\mathcal{N}).\]

2. (Todorcevic) For every analytic P-ideal \(\mathcal{I}\), \(0 \times \text{FIN} \leq^*_T \mathcal{I} \leq^*_T \mathcal{I}_{\frac{1}{n}}\).
 Therefore \(\text{add}(\mathcal{N}) \leq \text{add}^*(\mathcal{I}) \leq b\) for all analytic P-ideals \(\mathcal{I}\). Here \(0 \times \text{FIN}\) is
 \[\{X \subseteq \omega \times \omega : \forall n \in \omega \left[\{m \in \omega : \langle n, m \rangle \in X\} \text{ is finite}\right]\}\]

3. (Fremlin) \(\text{add}^*(\mathcal{Z}_0) = \text{add}(\mathcal{N})\) and \(\text{cof}^*(\mathcal{Z}_0) = \text{cof}(\mathcal{N})\).
Theorem (Hernández-Hernández and Hrušák)

\[\min\{\text{cov}(\mathcal{N}), b\} \leq \text{cov}^*(\mathcal{Z}_0) \leq \max\{b, \text{non}(\mathcal{N})\} \text{ and } \]
\[\min\{d, \text{cov}(\mathcal{N})\} \leq \text{non}^*(\mathcal{Z}_0) \leq \max\{d, \text{non}(\mathcal{N})\} \text{ hold.} \]

Question ([2])

Is \(\text{cov}^*(\mathcal{Z}_0) \leq d \)?
This question also has a motivation coming from forcing theory.

Definition

Let \mathcal{V} be any ground model and $P \in \mathcal{V}$ be a notion of forcing. Let $I \in \mathcal{V}$ be an ideal on ω. We say that P **diagonalizes** $\mathcal{V} \cap I$ if there exists $\hat{A} \in \mathcal{V}^P$ such that $\Vdash P \hat{A} \in [\omega]^{\omega}$ and for each $X \in \mathcal{V} \cap I$, $\Vdash |X \cap \hat{A}| < \omega$.

Theorem (Laflamme [3])

Any F_{σ} ideal can be diagonalized by a proper ω_ω-bounding forcing.

Corollary

There is a model where $\text{cov}^*(I) > d$ for every tall F_{σ} ideal I.

Dilip Raghavan
Cardinal invariants of density
This question also has a motivation coming from forcing theory.

Definition

Let \mathcal{V} be any ground model and $\mathbb{P} \in \mathcal{V}$ be a notion of forcing. Let $\mathcal{I} \in \mathcal{V}$ be an ideal on ω. We say that \mathbb{P} **diagonalizes** $\mathcal{V} \cap \mathcal{I}$ if there exists $\mathbb{A} \in \mathcal{V}^\mathbb{P}$ such that $\Vdash \mathbb{P}\mathbb{A} \in [\omega]^\omega$ and for each $X \in \mathcal{V} \cap \mathcal{I}$, $\Vdash \mathbb{P}\left|X \cap \mathbb{A}\right| < \omega$.

Theorem (Laflamme [3])

Any F_σ ideal can be diagonalized by a proper ω^ω-bounding forcing.

Corollary

There is a model where $\text{cov}^*(\mathcal{I}) > \mathfrak{d}$ for every tall F_σ ideal \mathcal{I}.
Question

Suppose $\mathcal{I} \in V$ is an $F_{\sigma\delta}$ P-ideal. Does there exist a proper ω^ω-bounding $P \in V$ which diagonalizes $V \cap \mathcal{I}$? Is it consistent that $\text{cov}^*(\mathcal{I}) > \mathfrak{d}$ holds for all tall $F_{\sigma\delta}$ P-ideals \mathcal{I}?

- If you move one level up to $F_{\sigma\delta\sigma}$ ideals, then this totally fails.
- The ideal $\text{FIN} \times \text{FIN}$ is an $F_{\sigma\delta\sigma}$ ideal and any P that diagonalizes it must add a dominating real.
The Results

Theorem (R. and Shelah [4])
\[\text{cov}^*(\mathcal{Z}_0) \leq \mathfrak{d}. \]

Corollary
Let \(\mathcal{V} \) be any ground model and let \(E \in \mathcal{V} \) be a dominating family of minimal size. If \(\mathbb{P} \in \mathcal{V} \) diagonalizes \(\mathcal{Z}_0 \cap \mathcal{V} \), then \(E \) is no longer a dominating family in \(\mathcal{V}^{\mathbb{P}} \).
The Results

Theorem (R. and Shelah [4])

\[\text{cov}^*(\mathcal{Z}_0) \leq d. \]

Corollary

Let \(V \) be any ground model and let \(E \in V \) be a dominating family of minimal size. If \(P \in V \) diagonalizes \(\mathcal{Z}_0 \cap V \), then \(E \) is no longer a dominating family in \(V^P \).

Theorem (R.)

\[\text{cov}^*(\mathcal{Z}_0) \leq \max\{b, s\}. \]

- The proof dualizes to give \(\text{non}^*(\mathcal{Z}_0) \geq \min\{d, r\} \).
Theorem (R.)

Let κ be any cardinal. Suppose there exists a function $c : \kappa \times \omega \times \omega \to 2$ such that for any set $A \in [\omega]^{\omega}$ and any partition $\langle X_n : n \in \omega \rangle$ of κ into countably many pieces, there exists $n \in \omega$ such that
\[
\forall \sigma \in 2^n \exists k \in A \exists \alpha \in X_n \forall i < n [\sigma(i) = c(\alpha, k, i)].
\]
Then $\text{cov}^*(\mathcal{Z}_0) \leq \max\{b, \kappa\}$.

Claim

If $\kappa = \max\{b, s\}$, then there exists a function $c : \kappa \times \omega \times \omega \to 2$ as in the Theorem.
Open Questions

Question

Is \(\text{cov}^*(\mathcal{Z}_0) \leq b \)?

It is consistent to have \(\text{cov}^*(\mathcal{Z}_0) > s \).

This is because Suslin c.c.c. posets (and their FS iterations) do not increase \(s \).

\(\mathcal{M}(\mathcal{Z}^*0) \) is Suslin c.c.c.

Question

Does \(\text{add}^*(I) = \text{add}(N) \) for all tall analytic P-ideals?
Open Questions

Question

Is $\text{cov}^*(\mathcal{Z}_0) \leq b$?

- It is consistent to have $\text{cov}^*(\mathcal{Z}_0) > s$.
- This is because Suslin c.c.c. posets (and their FS iterations) do not increase s.
- $\mathcal{M}(\mathcal{Z}^*_0)$ is Suslin c.c.c.
Open Questions

Question

Is $\text{cov}^*(\mathcal{Z}_0) \leq b$?

- It is consistent to have $\text{cov}^*(\mathcal{Z}_0) > s$.
- This is because Suslin c.c.c. posets (and their FS iterations) do not increase s.
- $\mathcal{M}(\mathcal{Z}_0^*)$ is Suslin c.c.c.

Question

Does $\text{add}^*(I) = \text{add}(N)$ for all tall analytic P-ideals?
Bibliography

