Coloring the rationals in reverse mathematics

Emanuele Frittaion

(joint work with Ludovic Patey)

CTFM 2015
Outline

Introduction
Outline

Introduction

A separation over RCA_0
Outline

Introduction

A separation over RCA_0

A separation over computable reducibility
Beyond the big five

Big five and the Zoo. Ramsey’s theorem for pairs RT^2_2 is the first example of statement not equivalent to one of the main systems of reverse mathematics. Many consequences of RT^2_2 have been studied, leading to many independent statements.

However, there are no natural statements between RT^2_2 and ACA_0. The only known candidate is the tree theorem for pairs TT^2_2.

We discuss another candidate, arguably more natural. This is a partition theorem due to Erdős and Rado, and it’s a strengthening of Ramsey’s theorem for pairs.
Theorem (Ramsey’s Theorem for pairs and two colors)

$$RT^2_2 \quad \text{Every coloring } f : [\mathbb{N}]^2 \rightarrow 2 \text{ has an infinite homogeneous set.}$$

Theorem (Pigeonhole Principle on natural numbers)

$$RT^1_{<\infty} \quad \text{Let } k \in \mathbb{N}. \text{ Every coloring } f : \mathbb{N} \rightarrow k \text{ has an infinite homogeneous set.}$$
Theorem (Erdős-Rado Theorem)

\((\aleph_0, \eta)^2\) Every coloring \(f : [\mathbb{Q}]^2 \to 2\) has either an infinite 0-homogeneous set or a dense 1-homogeneous set.

Theorem (Pigeonhole principle on rationals)

\((\eta)^1_{<\infty}\) Let \(k \in \mathbb{N}\). Every coloring \(f : \mathbb{Q} \to k\) has a dense homogeneous set.
Theorem (Tree Theorem for pairs and two colors)

\[\mathsf{TT}_2^2\] Every coloring \(f : [2^\mathbb{N}]^2 \rightarrow 2 \) has a homogeneous tree.

Theorem (Pigeonhole Principle on trees)

\[\mathsf{TT}_1^1\] Let \(k \in \mathbb{N} \). Every coloring \(f : 2^\mathbb{N} \rightarrow k \) has a homogeneous tree.
Lemma (RCA₀)

- ACA₀ → (ℕ₀, η)² → RT²₂
- (ℕ₀, η)² → (η)¹₁
- IΣ₀² → (η)¹₁_<∞ → BΣ₀²
Lemma (RCA₀)

- ACA₀ → (\aleph_0, \eta)^2 → RT^2_2
- (\aleph_0, \eta)^2 → (\eta)^1_{<\infty}
- IΣ^0_2 → (\eta)^1_{<\infty} → BΣ^0_2

Theorem (F. and Patey)

- RCA₀ + BΣ^0_2 \not\vdash (\eta)^1_{<\infty}
- (\aleph_0, \eta)^2 \not\leq_c RT^2_{<\infty}
We separate $(\eta)^1_{<\infty}$ from $B\Sigma^0_2$ by adapting the model-theoretic proof of Corduan, Groszek, and Mileti that separates TT^1 from $B\Sigma^0_2$.
We separate $(\eta)^{1}_{<\infty}$ from $B\Sigma^0_2$ by adapting the model-theoretic proof of Corduan, Groszek, and Mileti that separates TT^1 from $B\Sigma^0_2$.

Basically, in a model of $RCA_0 + \neg I\Sigma^0_2$, there is a real X and an X-recursive instance of $(\eta)^{1}_{<\infty}$ with no X-recursive solutions.
The proof consists of two steps.

Lemma (Step 1)

In a model M of RCA$_0$, for every $X \in M$, there is a uniform X-recursive way, given finitely many X-r.e. subsets of \mathbb{Q}, to compute a 2-coloring $f : \mathbb{Q} \to 2$ so as to defeat all the given potential homogeneous sets.
The proof consists of two steps.

Lemma (Step 1)

In a model M of RCA_0, for every $X \in M$, there is a uniform X-recursive way, given finitely many X-r.e. subsets of \mathbb{Q}, to compute a 2-coloring $f : \mathbb{Q} \to 2$ so as to defeat all the given potential homogeneous sets.

To obtain such a result, we use a combinatorial feature of $(\eta)_1^{<\infty}$ shared by TT^1.

The basic idea is as follows. We are given many dense potential sets W_e^X with $e < n$, and we build f by stages.
The basic strategy to diagonalize against a single W_e^X is to wait until we see 2 disjoint intervals with end-points in W_e^X and then color the two intervals with 0 and 1 respectively. This works in isolation.
The basic strategy to diagonalize against a single W_e^X is to wait until we see 2 disjoint intervals with end-points in W_e^X and then color the two intervals with 0 and 1 respectively. This works in isolation.

We take care of all W_e^X’s by fixing $4n$ disjoint intervals with end-points in W_e^X for every W_e^X that outputs $4n + 1$ points (we say that W_e^X requires attention). By a simple combinatorial argument, from $k \leq n$ tuples of $4n$ disjoint intervals we can select a pair from each tuple so as to have $2k$ disjoint intervals.
The basic strategy to diagonalize against a single W_e^X is to wait until we see 2 disjoint intervals with end-points in W_e^X and then color the two intervals with 0 and 1 respectively. This works in isolation.

We take care of all W_e^X’s by fixing $4n$ disjoint intervals with end-points in W_e^X for every W_e^X that outputs $4n + 1$ points (we say that W_e^X requires attention). By a simple combinatorial argument, from $k \leq n$ tuples of $4n$ disjoint intervals we can select a pair from each tuple so as to have $2k$ disjoint intervals.

At any stage we color every current pair of intervals with 0 and 1 respectively. Since there are finitely many W_e^X’s, we eventually stabilize on some pair for each W_e^X that requires attention.
Lemma (Step 2)

Let M be a model of RCA_0 and suppose that M does not satisfy $I\Sigma^0_2(X)$ for some $X \subseteq M$. Then there is an X-recursive coloring f of \mathbb{Q} into finitely many colors such that no X-recursive dense set is homogeneous for f.
Lemma (Step 2)

Let M be a model of RCA_0 and suppose that M does not satisfy $\Sigma^0_2(X)$ for some $X \subseteq M$. Then there is an X-recursive coloring f of \mathbb{Q} into finitely many colors such that no X-recursive dense set is homogeneous for f.

The failure of $\Sigma^0_2(X)$ implies that there is an X-recursive function $h: \mathbb{N}^2 \to \mathbb{N}$ such that for some number a, the range of the partial function $h(y) = \lim_{s \to \infty} h(y, s)$ is unbounded on $\{y : y < a\}$.
Theorem

Let P be a Π^1_1 sentence. Then $\text{RCA}_0 + P \vdash (\eta)^1_{<\infty}$ if and only if $\text{RCA}_0 + P \vdash I\Sigma^0_2$. In particular, $\text{RCA}_0 + \text{B}\Sigma^0_2 \nvdash (\eta)^1_{<\infty}$.
Theorem

Let P be a Π^1_1 sentence. Then $\text{RCA}_0 + P \vdash (\eta)^1_{<\infty}$ if and only if $\text{RCA}_0 + P \vdash \text{IΣ}^0_2$. In particular, $\text{RCA}_0 + \text{BΣ}^0_2 \nvdash (\eta)^1_{<\infty}$.

Proof sketch.

Let M be a model of $\text{RCA}_0 + P$ where IΣ^0_2 fails, and $X \in M$ as above. Then $\Delta^0_2(X)$ is a model of $\text{RCA}_0 + P$ where $(\eta)^1_{<\infty}$ fails.
Most implications of the form $Q \rightarrow P$ over RCA$_0$, where P and Q are Π^1_2 statements, make use only of one Q-instance to solve a P-instance. This is the notion of computable reducibility.

Definition

Fix two Π^1_2 statements P and Q. P is **computably reducible** to Q (written $P \leq_c Q$) if every P-instance I computes a Q-instance J such that, for every solution S to J, $I \oplus S$ computes a solution to I.

Emanuele Frittaion
Tohoku University
Most implications of the form $Q \rightarrow P$ over RCA$_0$, where P and Q are Π^1_2 statements, make use only of one Q-instance to solve a P-instance. This is the notion of computable reducibility.

Definition

Fix two Π^1_2 statements P and Q. P is **computably reducible** to Q (written $P \leq_c Q$) if every P-instance I computes a Q-instance J such that, for every solution S to J, $I \oplus S$ computes a solution to I.

To show that $P \not\leq_c Q$, it is “enough” to produce a computable P-instance I such that every computable Q-instance has a solution that does not compute a solution to I.
$P \leq_c Q$ does not mean that $\text{RCA}_0 \vdash Q \rightarrow P$. In some cases, it is possible to obtain a separation over ω-models from a one-step non-reduction.

- ADS does not imply CAC over RCA_0 (Lerman, Solomon, and Towsner)
- EM does not imply RT^2_2 over RCA_0 (Lerman, Solomon, and Towsner)
- RT^2_2 does not imply TT^2_2 over RCA_0 (Patey)

The above results use a general framework.

We prove that $(\mathbb{N}_0, \eta)^2 \not\leq_c \text{RT}^2_{<\infty}$. However, we are not able to generalize this result to a separation over ω-models.
Why?

Basically, we want to produce an instance \(f : [\mathbb{Q}]^2 \to 2 \) of \((\omega_0, \eta)^2\) and solve instances of \(\text{RT}_2^2 \) without computing solutions to \(f \). We can view this as a game.
Why?

Basically, we want to produce an instance $f : \mathbb{Q}^2 \to 2$ of $(\aleph_0, \eta)^2$ and solve instances of RT_2^2 without computing solutions to f. We can view this as a game.

Given an instance g of RT_2^2 we are trying to build a solution H to g which does not compute a solution to f. We regard f as our opponent. So, suppose we want to diagonalize against $\Phi_{g \oplus H}^0$ and $\Phi_{g \oplus H}^1$, where $\Phi_{i}^{g \oplus H}$ is a potential homogeneous set of color i. Our opponent f commits to make $\Phi_{0}^{g \oplus H}$ infinite or $\Phi_{1}^{g \oplus H}$ dense.
Why?

Basically, we want to produce an instance $f : [\mathbb{Q}]^2 \rightarrow 2$ of $(\aleph_0, \eta)^2$ and solve instances of RT_2^2 without computing solutions to f. We can view this as a game.

Given an instance g of RT_2^2 we are trying to build a solution H to g which does not compute a solution to f. We regard f as our opponent. So, suppose we want to diagonalize against $\Phi_{g \oplus H}^0$ and $\Phi_{g \oplus H}^1$, where $\Phi_{g \oplus H}^i$ is a potential homogeneous set of color i. Our opponent f commits to make $\Phi_{g \oplus H}^0$ infinite or $\Phi_{g \oplus H}^1$ dense.

In the case of TT_2^2, our opponent commits to build a full binary tree in either case.
Why?

Basically, we want to produce an instance $f : [\mathbb{Q}]^2 \rightarrow 2$ of $(\mathbb{N}_0, \eta)^2$ and solve instances of RT^2_2 without computing solutions to f. We can view this as a game.

Given an instance g of RT^2_2 we are trying to build a solution H to g which does not compute a solution to f. We regard f as our opponent. So, suppose we want to diagonalize against $\Phi^g_0 \oplus H$ and $\Phi^g_1 \oplus H$, where $\Phi^g_i \oplus H$ is a potential homogeneous set of color i. Our opponent f commits to make $\Phi^g_0 \oplus H$ infinite or $\Phi^g_1 \oplus H$ dense.

In the case of TT^2_2, our opponent commits to build a full binary tree in either case.

This half commitment property is the main combinatorial difference between the two principles that prevents us from adapting the proof for TT^2_2.
To show that $(\mathbb{N}_0, \eta)^2$ does not computably reduce to $\text{RT}^2_{<\infty}$, we consider the asymmetric version of $(\eta)^1_{<\infty}$.

$(\mathbb{N}_0, \eta)^1$ For every partition $A_0 \cup A_1 = \mathbb{Q}$ there is either an infinite subset of A_0 or a dense subset of A_1.
To show that \((\mathbb{N}_0, \eta)^2\) does not computably reduce to \(\text{RT}^2_{<\infty}\), we consider the asymmetric version of \((\eta)^1_{<\infty}\).

\((\mathbb{N}_0, \eta)^1\) For every partition \(A_0 \cup A_1 = \mathbb{Q}\) there is either an infinite subset of \(A_0\) or a dense subset of \(A_1\).

Theorem (F. and Patey)

There is a \(\Delta^0_2\) instance \(A_0 \cup A_1 = \mathbb{Q}\) of \((\mathbb{N}_0, \eta)^1\) such that every computable coloring \(g: [\omega]^2 \to k\) has an infinite homogeneous set \(H\) that does not compute a solution to \(A_0 \cup A_1 = \mathbb{Q}\).
Corollary

There is a computable coloring $f : [\mathbb{Q}]^2 \to 2$ such that every computable coloring $g : [\omega]^2 \to k$ has an infinite homogeneous set H that does not compute a solution to f.

Proof.
Let $f(x, s)$ be such that $f(x) = \lim_s f(x, s)$ exists and $x \in A_f(x)$.
The fairness notion

We design a **fairness property** for instances $A_0 \cup A_1 = \mathbb{Q}$ of $(\mathbb{N}_0, \eta)^1$.
The fairness notion

We design a **fairness property** for instances $A_0 \cup A_1 = \mathbb{Q}$ of $(\mathbb{N}_0, \eta)^1$.

Again, we see an instance of $(\mathbb{N}_0, \eta)^1$ as our opponent. The opponent is **fair** in the sense that if we have infinitely many chances to diagonalize against it, then it will allow us to do it.
The fairness notion

We design a **fairness property** for instances $A_0 \cup A_1 = \mathbb{Q}$ of $(\mathbb{N}_0, \eta)^1$.

Again, we see an instance of $(\mathbb{N}_0, \eta)^1$ as our opponent. The opponent is **fair** in the sense that if we have infinitely many chances to diagonalize against it, then it will allow us to do it.

More precisely:

(F) Given $f : [\omega]^2 \to k$, we are able to build infinite homogeneous sets G_0, \ldots, G_{k-1}, where G_i is homogeneous with color i, such that for all k-tuples of Turing functionals $\Phi_0, \ldots, \Phi_{k-1}$, if every $\Phi_i^{G_i}$ is **large**, then one of them is not a solution to $A_0 \cup A_1 = \mathbb{Q}$.
The fairness notion for $(\aleph_0, \eta)^2$ is very technical. In general, it depends on the combinatorics of the problem (see CAC and TT_2^2).

- If an instance $A_0 \cup A_1 = \mathbb{Q}$ of $(\aleph_0, \eta)^1$ is fair with respect to a Scott set S of reals (\mathcal{F} holds for every $f \in S$), then every instance $f \in S$ of RT^2_{∞} has a solution that compute neither an infinite subset of A_0 nor a dense subset of A_1.

- The solutions to instances of RT^2_{∞} are built by using Mathias forcing over Scott sets.

- We can produce a Δ^2_0 instance of $(\aleph_0, \eta)^1$ as above.
Questions

Question

Does \((\aleph_0, \eta)^2 \) *imply* ACA\(_0\) *over* RCA\(_0\) *?*

Seetapun's argument does not work for \((\aleph_0, \eta)^2\). Actually, there is no forcing notion to build solutions to any instance of \((\aleph_0, \eta)^2\).
Questions

Question

Does \((\aleph_0, \eta)^2\) imply ACA\(_0\) over RCA\(_0\)?

Seetapun’s argument does not work for \((\aleph_0, \eta)^2\). Actually, there is no forcing notion to build solutions to any instance of \((\aleph_0, \eta)^2\).

Question

Does RT\(^2_2\) imply \((\aleph_0, \eta)^2\) over RCA\(_0\)?
Introduction

A separation over RCA₀

A separation over computable reducibility

Questions

Question

Does $(\aleph_0, \eta)^2$ imply ACA₀ over RCA₀?

Seetapun’s argument does not work for $(\aleph_0, \eta)^2$. Actually, there is no forcing notion to build solutions to any instance of $(\aleph_0, \eta)^2$.

Question

Does RT₂⁻¹ imply $(\aleph_0, \eta)^2$ over RCA₀?

Question

Does $(\eta)^1_{\leq \infty}$ imply $I\Sigma^0_2$ over RCA₀?
References

Thanks for your attention