Some Progress on Kierstead’s Conjecture

Wu Guohua

School of Physical and Mathematical Sciences

Nanyang Technological University

CTFM 2015, TIT
In celebration of Prof. Tanaka’s 60th Birthday.
Computable Linear Orderings

\((L, \leq)\) is a computable linear ordering, if \(\leq\) is a linear ordering on \(L\) and both \(L\) and \(\leq\) are computable.

Some order types:

- \(\omega\);
- \(\omega^*\);
- \(\eta\);
- \(\zeta\);
- addition and product.

Folklore

There is a computable linear ordering \(L\) of order type \(\omega\) with \(S(x)\), the successor function, not computable.

References:

- **Computability Theory and Linear Orderings**, Rod Downey, Chapter 14 in “Handbook of Recursive Mathematics”.
About η

Folklore

η is computably categorical (or autostable).
About \(\eta \)

Folklore
\(\eta \) is computably categorical (or autostable).

Remmel’s Characterization
A computable linear ordering \((L, \leq)\) is computably categorical if and only if it has only finitely many successivities.
A classical result
Any infinite linear ordering has an infinite subordering of order type either ω or ω^*.

Theorem (Tennenbaum, Denisov)
There is a computable linear ordering of order type $\omega + \omega^*$ with no infinite computably enumerable suborderings of order type ω or ω^*.
A classical result
Any infinite linear ordering has an infinite subordering of order type either ω or ω^*.

Theorem (Tennenbaum, Denisov)
There is a computable linear ordering of order type $\omega + \omega^*$ with no infinite computably enumerable suborderings of order type ω or ω^*.

View from reverse math.
More on Effective considerations

Theorem (Rosenstein)
If \((L, \leq)\) is a computable linear ordering, then it has a computable subordering of type \(\omega, \omega^*, \omega + \omega^* \) or \(\omega + \zeta \eta + \omega^*\).
More on Effective considerations

Theorem (Rosenstein)

If (L, \leq) is a computable linear ordering, then it has a computable subordering of type $\omega, \omega^*, \omega + \omega^*$ or $\omega + \zeta \eta + \omega^*$.

Rosenstein asks whether $\omega + \zeta \eta + \omega^*$ is necessary.
Theorem (Rosenstein)
If \((L, \leq)\) is a computable linear ordering, then it has a computable subordering of type \(\omega, \omega^*, \omega + \omega^*\) or \(\omega + \zeta \eta + \omega^*\).

Rosenstein asks whether \(\omega + \zeta \eta + \omega^*\) is necessary.

Theorem (Lerman)
There is a computable linear ordering with no computable subordering of type \(\omega, \omega^*, \) or \(\omega + \omega^*\).
More on Effective considerations

Theorem (Rosenstein)
If \((L, \leq)\) is a computable linear ordering, then it has a computable subordering of type \(\omega, \omega^*, \omega + \omega^*\) or \(\omega + \zeta \eta + \omega^*\).

Rosenstein asks whether \(\omega + \zeta \eta + \omega^*\) is necessary.

Theorem (Lerman)
There is a computable linear ordering with no computable subordering of type \(\omega, \omega^*, \text{ or } \omega + \omega^*\).

Theorem (Manaster)
If \((L, \leq)\) is an infinite computable linear ordering, then \(L\) has a \(\Pi_1\) subset of type \(\omega\) or \(\omega^*\).
Self-embeddings

Dushnik-Miller Theorem
Every countable infinite linear ordering has a nontrivial self-embedding.
Self-embeddings

Dushnik-Miller Theorem
Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)
There is a computable linear ordering with no nontrivial computable self-embedding.

Theorem (Downey and Lempp)
There is a computable linear ordering \((L, \leq)\) such that if \(f\) is a nontrivial self-embedding of \(L\), then \(f\) computes \(\emptyset'\).

Dushnik-Miller Theorem is equivalent to ACA\(_0\) over RCA\(_0\).

Theorem (Downey, Jockusch and Miller)
There is a computable linear ordering of order type \(\omega\) with no nontrivial \(0'\)-computable self-embedding.
Self-embeddings

Dushnik-Miller Theorem
Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)
There is a computable linear ordering with no nontrivial computable self-embedding.

Theorem (Downey and Lempp)
There is a computable linear ordering (L, \leq) such that if f is a nontrivial self-embedding of L, then f computes \emptyset'.

Dushnik-Miller Theorem is equivalent to ACA$_0$ over RCA$_0$.

Self-embeddings

Dushnik-Miller Theorem
Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)
There is a computable linear ordering with no nontrivial computable self-embedding.

Theorem (Downey and Lempp)
There is a computable linear ordering \((L, \leq)\) such that if \(f\) is a nontrivial self-embedding of \(L\), then \(f\) computes \(\emptyset'\).

Dushnik-Miller Theorem is equivalent to \(ACA_0\) over \(RCA_0\).

Theorem (Downey, Jockusch and Miller)
There is a computable linear ordering of order type \(\omega\) with no nontrivial \(\emptyset'\)-computable self-embedding.
A linear ordering is computably rigid if it has no nontrivial computable automorphisms.

Theorem (Schwartz)
A computable linear ordering has a computably rigid copy if and only if it has no *interval* of order type η.
A linear ordering is computably rigid if it has no nontrivial computable automorphisms.

Theorem (Schwartz)
A computable linear ordering has a computably rigid copy if and only if it has no interval of order type η.

Theorem (Kierstead)
There is a computable linear ordering of type $2 \cdot \eta$ with no nontrivial Π_1 automorphism.
Kierstead’s conjecture

Definition (Kierstead)
An automorphism is fairly trivial if for all \(x \), \([x, f(x)]\) is finite.
An automorphism is strongly nontrivial a nontrivial automorphism is not fairly trivial.

Kierstead’s Conjecture
For a computable linear ordering \(\mathcal{L} \), every computable copy of \(\mathcal{L} \) has a strongly nontrivial \(\Pi_1 \) automorphism if and only if the corresponding order type contains an interval of order type \(\eta \).
Kierstead’s conjecture

Definition (Kierstead)
An automorphism is fairly trivial if for all \(x \), \([x, f(x)]\) is finite. An automorphism is strongly nontrivial a nontrivial automorphism is not fairly trivial.

Kierstead’s Conjecture
For a computable linear ordering \(\mathcal{L} \), every computable copy of \(\mathcal{L} \) has a strongly nontrivial \(\Pi_1 \) automorphism if and only if the corresponding order type contains an interval of order type \(\eta \).

This conjecture is true for \(2 \cdot \eta \). For this case, there is no difference between “strongly nontrivial” and “nontrivial”.
Kierstead’s conjecture

Definition (Kierstead)
An automorphism is fairly trivial if for all x, $[x, f(x)]$ is finite.
An automorphism is strongly nontrivial a nontrivial automorphism is not fairly trivial.

Kierstead’s Conjecture
For a computable linear ordering L, every computable copy of L has a strongly nontrivial Π_1 automorphism if and only if the corresponding order type contains an interval of order type η.

This conjecture is true for $2 \cdot \eta$. For this case, there is no difference between “strongly nontrivial” and “nontrivial”.

Downey and Moses proved that it is also true for discrete computable linear orderings.

Here a linear ordering is discrete if every element has both an immediate predecessor and an immediate successor, except for the possible first and last elements.
η-like

A linear ordering \mathcal{L} is η-like if \mathcal{L} is isomorphic to

$$\sum_{q \in \mathbb{Q}} F(q),$$

where F is a function from \mathbb{Q} to $\mathbb{N}\setminus\{0\}$.

- $2 \cdot \eta$ is η-like.
η-like

A linear ordering \mathcal{L} is η-like if \mathcal{L} is isomorphic to

$$\sum_{q \in \mathbb{Q}} F(q),$$

where F is a function from \mathbb{Q} to $\mathbb{N}\setminus\{0\}$.

- $2 \cdot \eta$ is η-like.

Theorem (Harris, Lee and Cooper)

Suppose that $F : \mathbb{Q} \to \mathbb{N}\setminus\{0\}$ is \emptyset'-limitwise monotonic and that the linear ordering $\mathcal{L} \simeq \sum_{q \in \mathbb{Q}} F(q)$ has no dense intervals. Then \mathcal{L} has a computable copy with no (strongly) nontrivial Π_1-automorphisms.

- This theorem improves Kierstead’s result a lot.
Extended \emptyset'-limitwise monotonic function

A function $F : \mathbb{Q} \rightarrow (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ is an extended \emptyset'-limitwise monotonic function if we assume $\zeta > n$ for each $n \in \mathbb{N}$ and there is a $0'$-limitwise monotonic function $f : \mathbb{Q} \times \mathbb{N} \rightarrow (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ such that

1. for all $q \in \mathbb{Q}, s \in \mathbb{N}$, $f(q, s) \leq f(q, s + 1)$;
2. for all $q \in \mathbb{Q}$, $\lim_{s \to \infty} f(q, s) = F(q)$;
3. if $\lim_{s \to \infty} f(q, s) = \zeta$, then there is an s_0 such that for all $s \geq s_0$, $f(q, s) = \zeta$.

For an extended \emptyset'-limitwise monotonic function F, we define linear ordering $\sum_{q \in \mathbb{Q}} F(q)$.
Extended \emptyset'-limitwise monotonic function

A function $F : \mathbb{Q} \to (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ is an extended \emptyset'-limitwise monotonic function if we assume $\zeta > n$ for each $n \in \mathbb{N}$ and there is a $0'$-limitwise monotonic function $f : \mathbb{Q} \times \mathbb{N} \to (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ such that

1. for all $q \in \mathbb{Q}, s \in \mathbb{N}$, $f(q, s) \leq f(q, s + 1)$;
2. for all $q \in \mathbb{Q}$, $\lim_{s \to \infty} f(q, s) = F(q)$;
3. if $\lim_{s \to \infty} f(q, s) = \zeta$, then there is an s_0 such that for all $s \geq s_0$, $f(q, s) = \zeta$.

For an extended \emptyset'-limitwise monotonic function F, we define linear ordering $\sum_{q \in \mathbb{Q}} F(q)$.

- This notion extends the one considered by Harris, Lee and Cooper, and maybe by Turetsky and Kach.

- $2 \cdot \eta + \zeta + 3 \cdot \eta$, $\zeta \cdot \eta$ are in our consideration, but not $\zeta \cdot \omega$.
Almost trivial automorphisms

An automorphism f of a linear ordering $\mathcal{L} = (L, \leq)$ is almost trivial if

$$(\forall x)[|\llbracket x \rrbracket_\mathcal{L}| > 1 \rightarrow f(\llbracket x \rrbracket_\mathcal{L}) = \llbracket x \rrbracket_\mathcal{L}].$$

- For discrete linear orderings, there is no difference between “fairly trivial” and “almost trivial”.

Theorem (Wu and Zubkov)

Suppose that F is an extended \emptyset'-limitwise monotonic function and that the linear ordering $L \simeq \sum_{q \in Q} F(q)$ has no dense intervals. Then L has a computable copy with only almost trivial Π_1-automorphisms.

This generalizes Harris-Lee-Cooper's result, and covers some instances of Downey-Moses' result.
Almost trivial automorphisms

An automorphism f of a linear ordering $\mathcal{L} = (L, \leq)$ is almost trivial if

$$(\forall x)[|[x]_\mathcal{L}| > 1 \rightarrow f([x]_\mathcal{L}) = [x]_\mathcal{L}].$$

- For discrete linear orderings, there is no difference between “fairly trivial” and “almost trivial”.

Theorem (Wu and Zubkov)
Suppose that F is an extended \emptyset'-limitwise monotonic function and that the linear ordering $\mathcal{L} \simeq \sum_{q \in \mathbb{Q}} F(q)$ has no dense intervals. Then \mathcal{L} has a computable copy with only almost trivial Π_1-automorphisms.
Almost trivial automorphisms

An automorphism f of a linear ordering $\mathcal{L} = (L, \leq)$ is **almost trivial** if

$$(\forall x)\left[|[x]_\mathcal{L}| > 1 \implies f([x]_\mathcal{L}) = [x]_\mathcal{L} \right].$$

- For discrete linear orderings, there is no difference between “fairly trivial” and “almost trivial”.

Theorem (Wu and Zubkov)

Suppose that F is an extended \emptyset'-limitwise monotonic function and that the linear ordering $\mathcal{L} \simeq \sum_{q \in \mathbb{Q}} F(q)$ has no dense intervals. Then \mathcal{L} has a computable copy with only almost trivial Π_1-automorphisms.

- This generalizes Harris-Lee-Cooper's result, and covers some instances of Downey-Moses' result.
Thanks!