
On the interpretation of HPC in the
Kreisel-Goodman Theory of Constructions

Computability Theory and Foundations of Mathematics
Tokyo Institute of Technology

9 September 2015

Hidenori Kurokawa
Dept. of Information Science

Kobe University
hidenori.kurokawa@gmail.com

maitlto:hidenori.kurokawa@gmail.com

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Background project (joint with Walter Dean)
Goal: to rehabilitate a form of construction-based semantics for
inutitionistic logic and mathematics known as the Theory of
Constructions [ToC] originally proposed by Kreisel (1962) and
Goodman (1968).

1) Provide a construction-based system in which Heyting
Predicate Calculus [HPC] can be interpreted (T0).

2) Extend T0 to T1 in which Heyting Arithmetic [HA] can be
interpreted.

3) Extend this to HAω and reprove Goodman’s Theorem:

HAω +AC is conservative over HA.

4) Proceed in a manner which is compatible with several adequacy
conditions on the proper analysis of “constructive validity”.

This is a report of this on-going project.

2/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Kreisel’s program

Our main purpose here is to enlarge the stock of formal rules of proof
which follow directly from the meaning of the basic intuitionistic
notions but not from the principles of classical mathematics so far
formulated. The specific problem which we have chosen to lead us to
these rules is also of independent interest: to set up a formal system,
called [the] ‘abstract theory of constructions’ for the basic notions
mentioned above, in terms of which formal rules of Heyting’s
predicate calculus can be interpreted.

In other words, we give a formal semantic foundation for intuitionistic

formal systems in terms of the abstract theory of constructions. This

is analogous to the semantic foundation for classical systems Tarski

(1935) in terms of abstract set theory.

Kreisel (1962) “Foundations of intuitionistic logic”

3/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Outline

I) The intended (i.e. BHK) interpretation and the analysis of
“constructive validity”.

II) The Kreisel-Goodman programme:
I language: the proof predicate πst
I rules about proofs: decidability, internalization, reflection
I the Kreisel-Goodman paradox
I responding to the paradox

III) Rehabilitating the programme:
I interpreting HPC: impredicativity & the second clause
I soundness

4/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Intuitionistic implication in BHK

The implication A → B can be asserted, if and only if we possess a

construction r, which, joined to any construction proving A

(presuming that the latter be effected), would automatically effect a

construction proving B. Heyting (1956)

Naive observations:

1) The original formulations do treat constructions as “first class
objects” (e.g. by quantifying over them).

2) But they do not (at least explicitly) mention type distinctions.

5/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

The Troelstra & van Dalen [1988] formulation of BHK
(P⊥) ⊥ has no proof.
(P∧) A proof of A ∧B consists of a proof of A and a proof of B.

(P∨) A proof of A ∨B consists of a proof of A or a proof of B.

(P→) A proof of A → B consists of a construction which transforms
any proof of A into a proof of B.∗

(P¬) A proof of ¬A consists of a construction which transforms any
hypothetical proof of A into a proof of ⊥.∗

(P∀) A proof of ∀xA consists of a construction which transforms all
c in the intended range of quantification into a proof of A(c).∗

(P∃) A proof of ∃xA consists of an object c in the intended range
of quantification together with a proof of A(c).

∗ In (e.g.) Troelstra (1977) and van Dalen (1973), “K” stands for

“Kreisel” and there are second clauses for →,¬, and ∀.
6/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Construction-based semantics

The reason that A is intuitionistically (constructively, if you prefer)

valid is that there is a specific term t such that ` t ∈ A is provable in

the theory of constructions. Scott (1970) “Constructive Validity”

I Goal: treating constructions s, t, u, . . . as primitives, analyze
the BHK clauses so as to prove

HPC ` A if and only if ` Pr(A, t)

for some t which is a formal term of the theory and

Pr(A, t) formalizes t satisfies the BHK proof conditions of A.

I Goodman (1970)’s goal: provide a “type- and logic-free”
foundation for intuitionistic logic and mathematics.

7/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Brouwer-Heyting-Kreisel interpretation

The Kreisel (1962) proposal:

(K∧) Π(A ∧ B, s) := λ~x.(Π(A,D1s) ∩k Π(B,D2s))

(K→) Π(A → B, s) := π(λy.(Π(A, y) ⊃k Π(B, (D2s)y)), D1s)

Compare: Π(A → B, s) := λ~x.λy.(Π(A, y) ⊃k Π(B, sy))

The clause (K→) formalizes

s = 〈s1, s2〉 is a proof A → B just in case s1 is a proof that
for all y, if Π(A, y), then Π(B, s2y)

I The requirement on s1 is the“second clause” added to
ensure the decidability of K→, K¬, and K∀.

I Why worry about decidability? To ensure that the proof
conditions of →, ¬, ∀ do not quantify over “all proofs” in a
impredicative/circular manner. 8/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Gödel on BHK

[The Heyting interpretation does] violate the principle . . . that the
word “any” can be applied only to those totalities for which we have a
finite procedure for generating all their elements. For the totality of
all possible proofs certainly does not possess this character, and
nevertheless the word “any” is applied to this totality in Heyting’s
axioms, as you can see from the example which I mentioned before,
which reads: “Given any proof for a proposition p, you can construct
a reductio ad absurdum for the proposition ¬p”. Totalities whose
elements cannot be generated by a well-defined procedure are in some
sense vague and indefinite as to their borders. And this objection
applied particularly to the totality of intuitionistic proofs because of
the vagueness of the notion of constructivity.

Gödel (1933) “The present situation in the foundations of mathematics”

9/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Red herrings?

Goodman (1968)’s main result is “Goodman’s theorem”:

HAω +AC is conservative over HAω (and hence HA).

But ToC has been dismissed for several reasons – e.g.:

1) a paradox (Kreisel-Goodman paradox)
I due to “reflection principle” (provability implies truth).
I due to “the second clause” ? (Weinstein (1983). But we claim

“No.”)

2) Goodman’s unmotivated solutions (stratification of the domain
of proofs)

However:

I For some theoretical purposes, “reflection” is not used.
I Then no worries about the Paradox and stratification
I The second clause makes some sense to make sure

“decidability” 10/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

The theory T ∗: syntax

We will first present an inconsistent theory T ∗ similar to that of Kreisel

(1962) before isolating a consistent subtheory T0 ⊆ T ∗.

I Terms:
s := x, y, z . . . | > | ⊥ | cp | Dtu | D1t | D2t | λx.t | tu | πut
>,⊥ (truth values), D (pairing), D1, D2 (projection)

I Following Curry and Feys (1958), Goodman took D,D1, D2

as primitives. But we don’t have to:
D =df λx.λy.λz.zxy, D1 =df λp.p>, D2 =df λp.p⊥

I Formulas: s ≡ t

I Since T ∗ is based on the untyped lambda calculus, terms
need not always be defined (i.e. reduce to a normal form).

11/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

The theory T ∗: axioms, sequents, rules

I T ∗ is a single conclusion sequent calculus consisting of

1) structural rules: weakening, substitution
2) the equational theory of λβη-equality (cf. [Hindley, 1986])
3) special axioms and rules about π

I Sequents: ∆ ` s ≡ t

I Intended interpretation:

πst ≡ > iff t is a constructive proof of s ≡ >
I Special rules about π:

(Dec)

∆, πuv ≡ ⊥ ` s ≡ t ∆, πuv ≡ > ` s ≡ t

∆ ` s ≡ t

(ExpRfn) ∆, πst ≡ > ` s ≡ >
(Int) ` s ≡ > with derivation p, then ` πscp ≡ >

12/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Motivating the rules: Dec

∆, πuv ≡ ⊥ ` s ≡ t ∆, πuv ≡ > ` s ≡ t

∆ ` s ≡ t

I Dec is intended to formalize that πst ≡ > is decidable.

I Reconstructing Kreisel’s motivation:
I Kreisel (1965): “we recognize a proof when we see one”

I Analogy with T ` ProofT(n, pAq) or T ` ¬ProofT(n, pAq)
since ProofT(x, y) is a ∆0

1-formula.

I The goal is to define Π(A, s) in terms of π so that that it too
is decidable in the sense of Dec.

I NB: what Dec really formalizes is that πst may be assumed
to be always defined and equal to > or ⊥.

13/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Motivating the rules: Int

` s ≡ > with derivation p, then ` πscp ≡ >

I Int is a form of internalization principle – i.e. if s is provable,
then we can “internalize” its derivation within T ∗.

I Arithmetical analogue:

(HB1) If ` A, then exists n ∈ N s.t. ` ProofT(n, pAq)

I Status:
I This is an again intuitively plausible principle about

constructive provability.
I But the reason K & G included it appears to have been

intrustrumental – i.e. it’s needed to secure the decidability of
the proof condition for A → B.

14/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

On the rule ExpRfn

πst ≡ > ` s ≡ >

I ExpRfn is a form of reflection principle – i.e. if s is proven
by t, then s is true.

I Kreisel (1962): “intuitively obvious on the intended
interpretation”

I Arithmetical analogy

Rfn(T) ProofT(x, pAq) → A

I ExpRfn also isn’t needed to prove the soundness of
Goodman’s interpretation of HPC or HA.

I Note that ExpRfn is formulated in the interpreting theory,
and there is no way of expressing reflection via Π.

15/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

On the rule ExpRfn

πst ≡ > ` s ≡ >

I ExpRfn is a form of reflection principle – i.e. if s is proven
by t, then s is true.

I Kreisel (1962): “intuitively obvious on the intended
interpretation”

I Arithmetical analogy

Rfn(T) ProofT(x, pAq) → A

I ExpRfn also isn’t needed to prove the soundness of
Goodman’s interpretation of HPC or HA.

I Note that ExpRfn is formulated in the interpreting theory,
and there is no way of expressing reflection via Π.

15/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Background for the Kreisel-Goodman paradox

I Goodman (1970) sketched a derivation of a contradiction in
T ∗ which resembles Montague (1963)’s paradox :

I self-reference (e.g. T ⊇ Q satisfies the Diagonal Lemma)
I a “provability like” predicate P (x)

(Rfn) P (pAq) → A (reflection)
(Nec) ` A ∴ ` P (pAq) (necessitation)

I In T ∗ we get self-reference via fixed-point combinators – e.g.

Y =df λt.(λx.t(xx))(λx.t(xx))

is s.t. ` Y t ≡ t(Y t).

I A term which is “equivalent to is own unprovability”
I Let h(y, x) =df λy.λx.(πyx ⊃1 ⊥).
I Then ` Y (h(y, x)) ≡ h(Y (h(y, x)), x).

16/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Derivations

Montague (1963) ≈ Goodman (1970)
` D ↔ ¬P (pDq) ` Y (h(y, x)) ≡ h(Y (h(y, x)), x) FP
` P (pDq) → D π(Y (h(y, x)))x ≡ > ` Y (h(y, x)) ≡ > ExpRfn

π(Y (h(y, x)))x ≡ > ` h(Y (h(y, x)), x) ≡ >
π(Y (h(y, x)))x ≡ > ` (π(Y (h(y, x)))x ⊃1 ⊥) ≡ >
π(Y (h(y, x)))x ≡ > ` ⊥ ≡ >

` ¬P (pDq) ` π(Y (h(y, x)))x ≡ ⊥ Dec
` (π(Y (h(y, x)))x ⊃1 ⊥) ≡ >
` h(Y (h(y, x)), x) ≡ >

` D ` Y (h(y, x)) ≡ >
` P (pDq) ` π(Y (h(y, x)))cp ≡ > Int

` π(Y (h(y, x)))cp ≡ ⊥ subst
` ⊥ ` > ≡ ⊥

17/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

The theory T0
Out view: the paradox has nothing to do with “the second clause.”

I Goal: to isolate a sub-theory T0 of T ∗ s.t.
I consistent
I unstratified (and hence more “type- and logic-free”)
I can be used to interpret the BHK clauses such that soundness

and completeness of HPC are provable

I Proposal: Reflection isn’t used in Goodman’s original
interpretation of HPC in T ∗. So we consider the system
T0 = T ∗ −ExpRfnR.

I Other options are available:
I Prohibit the application Int to consequences of ExpRfn.
I A finer grained treatment of internalization resembling

“lifting” in the sense of Artemov (2001)’s LP.

18/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

The mapping Π(A, x)

We want to define a mapping

Π : FormHPC × TermT0 → TermT0

s.t. Π(A, s) ≡ > expresses “s is a proof of A” à la BHK and is a
decidable predicate.

I Straightforward in the case of ∧ , ∨ ,∃.
I Trickier in the case of → in virtue of the putative

impredicativity of (P→) – e.g.

Pr(A → B, t) iff for all proof s, if Pr(A, s), then Pr(B, t(s))

I This seems analogous to a Π0
1 statement about N – i.e

a priori undecidable.

19/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Interpreting the propositional calculus in T0

I The Church interpretation of the classical connectives in the
untyped lambda calculus:

> = λx.λy.x ⊥ = λx.λy.y
∩ = λa.λb.a(b⊥) ∪ = λa.λb.a(>b)
⊃ = λa.λb.a(b>) ∼ = λa.a(⊥>)

I E.g. ` ⊥ ∪ > ≡ (λa.λb.a(>b))(λx.λy.y)(λx.λy.x) ≡
(λb.((λx.λy.y)(>b))((λx.λy.x) ≡ (λx.λy.y)(>(λx.λy.x)) ≡
λx.λy.x =df >

20/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

The Brouwer-Heyting-Kreisel interpretation
The Kreisel (1962) proposal:

(K∧) Π(A ∧ B, s) := λ~x.(Π(A,D1s) ∩k Π(B,D2s))

(K∨) Π(A ∨ B, s) := λ~x.(Π(A,D1s) ∪k Π(B,D2s))

(K→) Π(A → B, s) := π(λy.(Π(A, y) ⊃k Π(B, (D2s)y)), D1s)

(K¬) Π(¬A, s) := λ~x.π(λy.(Π(A, y) ⊃k Π(⊥, (D2s)y)), D1s)

(K∀) Π(∀zA(z), s) := λ~x.π(λy.Π(A[y/z], (D2s)y), D1s)

(K∃) Π(∃zA(z), s) := λ~x.Π(A[(D2s)/z], D1s)

The clause (K→) formalizes

s = 〈s1, s2〉 is a proof A → B just in case s1 is a proof that
for all y, if Π(A, y), then Π(B, s2y)

The requirement on s1 is the“second clause” added to ensure the
decidability of K→, K¬, and K∀.

21/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

The Brouwer-Heyting-Kreisel interpretation
The Kreisel (1962) proposal:

(K∧) Π(A ∧ B, s) := λ~x.(Π(A,D1s) ∩k Π(B,D2s))

(K∨) Π(A ∨ B, s) := λ~x.(Π(A,D1s) ∪k Π(B,D2s))

(K→) Π(A → B, s) := π(λy.(Π(A, y) ⊃k Π(B, (D2s)y)), D1s)

(K¬) Π(¬A, s) := λ~x.π(λy.(Π(A, y) ⊃k Π(⊥, (D2s)y)), D1s)

(K∀) Π(∀zA(z), s) := λ~x.π(λy.Π(A[y/z], (D2s)y), D1s)

(K∃) Π(∃zA(z), s) := λ~x.Π(A[(D2s)/z], D1s)

The clause (K→) formalizes

s = 〈s1, s2〉 is a proof A → B just in case s1 is a proof that
for all y, if Π(A, y), then Π(B, s2y)

The requirement on s1 is the“second clause” added to ensure the
decidability of K→, K¬, and K∀.

21/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Formulating soundness and completeness

K & G both state versions of the following (K w/o proof):

Theorem HPC ` A iff there is a term t s.t. T ` Π(A, t) ≡ >.

I Our claim: The RHS gives an analysis of constructive validity
using ToC à la Scott (1970).

I The L-to-R direction expresses a form of soundness – i.e.

if HPC ` A, then |=i A.

I The R-to-L direction expresses a form of completeness – i.e.

if |=i A, then HPC ` A.

I Our goal is to prove these results for T = T0.

22/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Soundness (1)

I We show by induction on HPC derivations that

HPC ` A ⇒ T0 ` Π(A, t)

I E.g. some axioms:
I For A → A, we may take t = Dcp(λx.x) where p is a proof of

(Π(A, x) ⊃ Π(A, x)) ≡ >.
I For (A ∧ B) → A, we may take t = Dcp(λx.D1x)

I For modus ponens we have

If ` Π(A → B, s) ≡ > and ` Π(A, t) ≡ >,
then ` Π(B,D2st) ≡ >.

I So just like Curry-Howard:
I modus ponens ∼ β-conversion
I deduction theorem ∼ λ-abstraction

23/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Soundness (2): An observation on a “deduction theorem.”

Suppose that x does not occur in ∆ and

∆,Π(A, x) ≡ > ` Π(B, s) ≡ >

Then ∆ ` Π(A → B, t) for some term t.

Proof: The hypotheses imply ∆,Π(A, x) ≡ > ` Π(B, λx.s′x) ≡ > (for
some s′) and thus since Π(A, x) is decidable, we have by the truth
functional Deduction Theorem that

∆ ` (Π(A, x) ⊃ Π(B, λx.s′x)) ≡ >

By applying the rule Int there is hence a term cp such that

∆ ` π((Π(A, x) ⊃ Π(B, λx.s′x)), cp) ≡ >

So we may take t = Dcp(λx.s
′) as the term s.t. ∆ ` Π(A → B, t) ≡ >.

24/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Consistency

Before proving the soundness of the “Kreisel interpretation” of HPC, we
must show that the revised system T0 is consistent.

Outline of a consistency proof of ToC, i.e. T0, à la Goodman (1968).

1) Define a “deterministic” reduction relation for terms of ToC

2) Define a notion of satisfaction and validity.

I t ≡ s is satisfiable with respect to a sequence giving a
substitution of a free variable with reduced terms if t and s
reduced to the same term.

I t ≡ s is valid if it is satisfiable with respect to every such
sequence.

3) Show that all sequents ∆ ` t ≡ s derivable in T0 are valid.

4) Observe that (e.g.) λxy.x ≡ λxyz.xz(yz) is not valid.

We have yet to fill out some “gaps” that Goodman left in his text.

25/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Artemov, S. N. (2001). Explicit provability and constructive semantics. The
Bulletin of Symbolic Logic, 7(1):1–36.

Curry, H. and Feys, R. (1958). Combinatory logic, vol. 1. North-Holland Publ.

Feferman, S., editor (1995).
Kurt Gödel Collected Works. Vol. III. Unpublished Lectures and Essays.
Oxford Univeristy Press.

Fitting, M. (2014). Possible world semantics for first-order logic of proofs.
Annals of Pure and Applied Logic, 165(1):225–240.

Girard, J.-Y. (1972). Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, PhD thesis, Universit e Paris
VII.

Gödel, K. (1933). An interpretation of the intuitionistic propositional calculus.
In Feferman, S., editor, Collected Works Volume 1, pages 301–303. Oxford
Univeristy Press.

Gödel, K. (1933). The present situation in the foundations of mathematics. In
Feferman (1995), pages 36–53.

Gödel, K. (1938). Lecture at Zilsel’s. In Feferman (1995), pages 62–113.

26/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Goodman, N. (1968). Intuitionistic Arithmetic as a Theory of Constructions.
PhD thesis, Stanford.

Goodman, N. (1970). A theory of constructions equivalent to arithmetic. In
A. Kino, J. M. and Vesley, R., editors, Intuitionism and Proof Theory, pages
101–120. Elsevier.

Goodman, N. (1973). The faithfulness of the interpretation of arithmetic in the
theory of constructions. The Journal of Symbolic Logic, 38(3):pp. 453–459.

Heyting, A. (1956). Intuitionism. An introduction. North-Holland, Amsterdam.

Kreisel, G. (1962). Foundations of intuitionistic logic. In Studies in Logic and
the Foundations of Mathematics, volume 44, pages 198–210. Elsevier.

Kreisel, G. (1965). Mathematical logic. In Saaty, T., editor, Lectures on
Modern Mathematics, Vol. III, pages 95–195. Wiley.

Läuchli, H. (1970). An abstract notion of realizability for which intuitionistic
predicate calculus is complete. In Intuitionism and Proof Theory, volume 60,
pages 227–234. Elsevier.

Martin-Löf, P. (1984). Intuitionistic Type Theory. Bibliopolis, Naples.

27/28

BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Montague, R. (1963). Syntactical treatments of modality, with corollaries on
reflexion principles and finite axiomatizability. Acta Philosophica Fennica,
16:153–167.

Scott, D. (1970). Constructive validity. In
Symposium on Automatic Demonstration, pages 237–275. Springer.

Tarski, A. (1935). Der wahrheitsbegriff in den formalisierten sprachen. Studia
philosophica, 1:261–405.

Troelstra, A. S. (1977). Aspects of constructive mathematics. In Barwise, J.,
editor, Handbook of Mathematical Logic, volume 90, pages 973–1052.
Elsevier.

van Dalen, D. (1973). Lectures on intuitionism. Cambridge Summer School in
Mathematical Logic, pages 1–94.

Weinstein, S. (1983). The intended interpretation of intuitionistic logic.

Journal of Philosophical Logic, pages 261–270.

28/28

	BHK & Constructive validity
	An overview of ToC
	The paradox
	Interpreting HPC

