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Ascending descending sequence

Today’s target:

Definition
ADS: every infinite linear ordering has an infinite ascending or
descending sequence.

ADS is an easy consequence of RT2
2.

In fact, we can easily see the following.

Theorem (Shore/Hirschfeldt 2007)

ADS is equivalent to transitive RT2
2, i.e., Ramsey’s theorem for

transitive colorings.
(Here, P : [N]2 → 2 is said to be transitive if
P(a, b) = P(b , c)→ P(a, b) = P(a, c).)

So, ADS is a restricted version of RT2
2.
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Main question

Question
What is the proof-theoretic strength, or provably total functions (in
other words, Π0

2-part) of ADS?

In fact, we already know the result.

Theorem (Chong/Slaman/Yang 2012)

ADS + WKL0 is a Π1
1-conservative extension of BΣ0

2.

Corollary (“Proof-theoretic proof” by Kreuzer 2012”)

The Π0
2-part of ADS + WKL0 is PRA.

The proof of the above theorem is very complicated.
Careful checking is needed to know the consistency strength.

Today, we would like to give a simpler proof of this corollary.
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Ramsey’s theorem and its finite approximation

The Π0
2-part of (infinite) Ramsey’s theorem is characterized by

iterated Paris-Harrington-like principles.

Definition (RCA0)

A finite set X ⊆ N is said to be 0-dense(n, k) if |X | ≥ min X.

A finite set X is said to be m + 1-dense(n, k) if for any
P : [X ]n → k , there exists Y ⊆ X which is m-dense(n, k) and
P-homogeneous.

Note that “X is m-dense(n, k)” can be expressed by a Σ0
0-formula.

Definition

mPHn
k : for any a ∈ N there exists an m-dense(n, k) set X

such that min X > a.
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Paris’s argument

By the usual indicator arguments introduced by Paris, the following
is known.

Theorem (essentially due to Paris 1978)

WKL0 + RTn
k is a conservative extension of IΣ1 + {mPHn

k | m ∈ ω}
with respect to Π0

2-sentences.

Note that similar arguments work for Π0
3 and Π0

4-part.
The above conservation proof is formalizable within WKL0, and
thus we have the following.

Theorem

Over IΣ1, ∀m mPHn
k is equivalent to the Σ1-soundness of

WKL0 + RTn
k .

Note that a similar argument works with a weaker base system
RCA∗0.
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ADS and its finite approximation

Since ADS is equivalent to the transitive Ramsey’s theorem, its
Π0

2-part is characterized by the same arguments.

Definition (RCA0)

A finite set X ⊆ N is said to be 0-dense for ADS if |X | ≥ min X.

A finite set X is said to be m + 1-dense for ADS if for any
transitive P : [X ]2 → 2, there exists Y ⊆ X which is m-dense
for ADS and P-homogeneous.

Definition

mPHADS: for any a ∈ N there exists an m-dense for ADS set
X such that min X > a.
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Paris’s argument for ADS

Theorem
WKL0 + ADS is a conservative extension of
IΣ1 + {mPHADS | m ∈ ω} with respect to Π0

2-sentences.

The above conservation proof is again formalizable within WKL0,
and thus we have the following.

Theorem

Over IΣ1, ∀m mPHADS is equivalent to the Σ1-soundness of
WKL0 + ADS.

What we need to know is mPHADS.
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α-large sets

We want to calculate the size of m-dense set for ADS.
We use a tool from proof theory.

Definition
For ordinals below ωω (with a fixed primitive recursive ordinal
notation),

X is said to be α+ 1-large if X − {min X} is α-large,

X is said to be γ-large if X is γ[min X ]-large (γ: limit),
where α+ ωk [x] = α+ ωk−1 · x.

X is m-large if |X | ≥ m.

X is ω-large if |X | ≥ min X, i.e., relatively large.

X is ω2-large if X splits up into min X many ω-large sets.

. . .
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Density vs α-largeness

Here is a classical important result connecting α-largeness and
PH-like statements.

Theorem (Solovay/Katonen 1981)

X is ωk+3 + ω3 + k + 4-large⇒ X is 1-dense(2, k).

Question
How big α is enough for the following?
X is α-large⇒ X is m-dense(2, 2).

An optimal answer to this question gives the proof-theoretic
strength of RT2

2, which is a famous open question in the field
of reverse math.
A naive approach only gives an upper bound ωm+1 for
m-dense(2, 2).

On the other hand, this approach works well for ADS.
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Calculation

By S/K-theorem, ω6-largeness is enough for 1-dense for ADS.
Thus, X is 2-dense for ADS if it is large enough to find a ω6-large
solution.

Definition

X is said to be (1, α)-dense for ADS if for any transitive
P : [X ]2 → 2, there exists Y ⊆ X which is α-large and
P-homogeneous.

Thanks to the transitivity, we can calculate the size of the above
sets directly.

Lemma

X is 1-dense(2, 2k)⇒ X is (1, ωk )-dense for ADS.
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Calculation

Now we can calculate the size of 2-dense sets.

2-dense for ADS⇐ (1, ω6)-dense for ADS
⇐ 1-dense(2, 12)⇐ ω16-large.

We can repeat this process.

3-dense for ADS⇐ (1, ω12)-dense for ADS
⇐ 1-dense(2, 24)⇐ ω28-large.

4-dense for ADS⇐ (1, ω28)-dense for ADS
⇐ 1-dense(2, 56)⇐ ω60-large.

. . .

Theorem

X is ω3m+1
-large⇒ X is m-dense for ADS.
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ADS and its finite approximation (review)

Definition

mPHADS: for any a ∈ N there exists an m-dense for ADS set
X such that min X > a.

Theorem
WKL0 + ADS is a conservative extension of
IΣ1 + {mPHADS | m ∈ ω} with respect to Π0

2-sentences.

Theorem

Over IΣ1, ∀mPHADS is equivalent to the Σ1-soundness of
WKL0 + ADS.
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The strength of ADS

Lemma

For any a ∈ N, [a,Fm(a)] is a ωm-large set.

Theorem

For any m ∈ ω, PRA ⊢ mPHADS.

Corollary

The Π0
2-part of ADS + WKL0 is IΣ1, or equivalently, PRA.

This conservation proof is easily formalizable within WKL0. Thus,
we have the following.

Corollary

Con(ADS + WKL0) is equivalent to Con(PRA) over PRA.
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Questions

Question
Is there a speed-up between ADS + WKL0 and RCA0?

A good lower bound for m-dense for ADS would give a positive
answer.

And, again,

Question
how big α is enough for the following?
X is α-large⇒ X is m-dense(2, 2).
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