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Introduction

Some statements are not provable in second
order arithmetic, (or even ZFCQC).

Focus on determinacy on Z»

and see some related results.



Def. of Infinite Game
(i) Let A C NN be a setinC.

(ii) Player I and II alternately choose natural

numbers as follows: 11 nq
(iii) I wins if ng,n1,no--- € A. Il wins if not.
(iv) Game on A is determinate if one of the

players has a winning strategy.



Notes
@® Difficulties to prove the determinacy of

game on A, (or, compute the winning strat-
egy)

= Depending on the complexities of set A.
(e.g. A could be AY? (clopen), =9 (open),
>9,A9,NY,... A7 (Borel) ....



What determinacy asserts?

® Game G4 is determinate means that one
of the players have a winning strategy.
@ It asserts the existence of real number with

certain complexity.

(e.g.)




Histrical Background
In early age of reverse mathematics:



Histrical Background

In early age of reverse mathematics:

® ZFC~ I/ Borel determinacy (Ai-Det). (F.
Friedman, 1971)



Histrical Background

In early age of reverse mathematics:

® ZFC~ I/ Borel determinacy (A}-Det).
® 7,1/ >8-Det. (H. Fiedman, 1971)



Histrical Background

In early age of reverse mathematics:

® ZFC~ I/ Borel determinacy (A}-Det).
® 7,/ >8-Det. (H. Fiedman, 1971)

® 7,/ >9-Det. (D. Martin, 1974)

10



Histrical Background

In early age of reverse mathematics:

® ZFC~ I/ Borel determinacy (A}-Det).

® 7,/ >8-Det. (H. Fiedman, 1971)

® 7,/ >9-Det. (D. Martin, 1974)

® ZFCI Borel determinacy. (D. Martin, 1975)

11



Histrical Background

In early age of reverse mathematics:
® ZFC~ I/ Borel determinacy (A}-Det).

® 7,1/ >P-Det. (
® 7,/ x8-Det. (

H. Fiedman, 1971)
D. Martin, 1974)

® ZFCI Borel determinacy. (D. Martin, 1975)
® And, in 1976 J. Steel showed that one of

the earliest results of Reverse Mathematics:

(RCAg) ATR« =§-

Det.

12



Histrorical Background
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Above ATR?
(RCAp)
® ATR 9-Det. (Steel, 1976)
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Importances of those theorems

@® Defference b/w Boldface and Lighrface
version.

(Boldface) RCAg F Mi-CA < =9 A NY-Det.
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Importances of those theorems (Lightface)
(i) ACAg F (Z9 ANY)-Det — M3-CA

(i) ATRg F M{-CA — (Z9 A NY)-Det

Base theory of (ii) can not be weaker than
ATRg
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Importances of those theorems (Lightface)
(i) ACAg - (Z§ ANY)-Det — N3I-CA

(i) ATRg - N}-CA — (Z9 A NY)-Det

Base theory of (ii) can not be weaker than
ATRg

(-.) Set of sure winning positions for player I
can be constructed by ATRq with Mi-oracle.
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Importances of those theorems

@® Letting players construct sets in the games.
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Importances of those theorems

@® Letting players construct sets in the games.

(e.g.) In the proof of

“>9 AMY-Det — N3-CA",

an infinite sequence of natural numbers sat-
isfying Mi-formula will be constructed in the

game by players.
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Importances of those theorems

@® Letting players construct sets in the games.

(e.g.) In the proof of

“> 9 ANY-Det — N3-CA",

For any o(n) : M{, there exists 6(n, X) : A§
S.t.

p(n) <> VfImb(n, flm]).

24



Above ATR?

(RCAQ)

® ATR 9-Det. (Steel, 1976)

® MNi-CA « =9 ANY-Det. (Tanaka, 1990)
® MNi-TR < AY-Det. (Tanaka, 1990)

® > i-ID < ¥9-Det (Tanaka, 1991)
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> 1-IDg, a new axiom system of Z»

@® It asserts the existence of inductively de-
fined pre-well-ordering. (We will See next)
@® Different with comprehension axioms as
before. (Some reason?)

@® Some Varieties of ¥1-IDgy? (Future stud-
ies)
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Def. of £1-IDg

>An operator I is a function from " : P(N) —
P(N).

> If “z € M(X)" is represented by a X1 for-
mula, then I is called 7 operator.

@® > {-ID: for any X i-operator I', there exists
pre-wellordering V C N x N s.t. the following
holds:
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Def. Cont

@® > i-ID: for any X i-operator I, there exists
pre-wellordering V C N x N s.t. the following
holds:

>Vr € F(Ve =T (Vaz) U Vz),

> (F) C F.

where

Voe={y el :y<yuz},

Vea={yeF y<yaz}, F={x:z <y x}.
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Image of X{-ID
> Apply " to 0

()
0
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Image of X{-ID
> Apply ' to (@) and take the union:

F@)urr@))
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Image of 3-ID
> Keep doing this until ...

F@)ur@)ur@urd©)))
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Image of X{-ID
> until the fixed point:

M(F) CF Fixed point

F = {:p (z,x) € V} = field(V)
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> 1-IDg, a new axiom system of Z,

@® It asserts the existence of inductively de-
fined pre-well-ordering. (We will See next)
® Different with comprehension axioms as
before. (Some?)

@® Some Varieties of ¥1-IDgy? (Future stud-
ies)
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Different with comprehension axioms as be-
fore.

® C-IDy — C-CAp

® Even Borel determinacy does not imply
A3-CA.

34



Different with comprehension axioms as be-
fore.

® C-IDy — C-CAp

® Even Borel determinacy does not imply
A3-CA.

— Logical equivalence can not be obtained
by CA for 8-Det.
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Even Borel det. doesn't deduce AA-CA
(MedSalem, Tanaka)[2007]

(-.)) By B-model reflection and 2nd Imcomp.

- A7-Det+35-DCo F “exist. of c.c. B-model

M of Af-Det.” (by 33-DCoF XJ-RFND)

M = Ai-Det+ A3-CAg (By Af-Det H Ad-CAp)

- M= A-Det + >3-DCo (by S3-DCo +» =1 -

IND + A3-CAQ) .

More details,see M. T[2007],Simpson[2009], VII
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> 1-IDg, a new axiom system of Z»

@® It asserts the existence of inductively de-
fined pre-well-ordering. (We will See next)
® Different with comprehension axioms as
before. (How and why?)

@® Some Varieties of ¥1-IDgy? (Future stud-
ies)
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Some Varieties of X 1-1Dg

® >i-ID < X9-Det (1991)

® > - IDTRg + A((X8))-Det (2012)
® [Z1]2-IDg +» (29),-Det (2008)

® [Z1]*IDg + (X9),-Det (2008)

® [Z1}]*IDTRg < A((Z9)4.1)-Det (2012)
| (k > 3)

® (Ni-TIy)[Z1] 'R-IDg ++ AS-Det (2008)
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Some Varieties of X 1-1Dg

® >i-ID « ¥Y-Det (1991)

® >}-IDTRg < A((ZY)o)-Det (2012)
w is a A(C) formula if

PP NANDp

wWhere ¢, n € C.
For any k> 1, (Z9), =9 A (N9),_ ;.
e.d. (28)2 = Zg A |_|8
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Some Varieties of X 1-1Dg

® >i-ID < X9-Det (1991)

® > - IDTRg « A((X9)2)-Det (2012)
® [~1]2-IDg +» (29),-Det (2008)

® [Z{]*IDg + (X9),-Det (2008)

® > 11" IDTRg < A((Z9);41)-Det (2012)
| (k > 3)

® (Ni-TIy)[Z1] 'R-IDg ++ AS-Det (2008)
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Image of X1-IDTRg

I_F<fr =r D.rFT(FT.)
| (F": fixed point)

7o Friorrflpr
J (F"1: fixed( poi>nt)

0 Fro 5 rO(Fro)

(F"0:fixed point)

where F~" = U{F"J v < r}]
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Related Results
@® Compare the determinacy strength between
Baire space and Cantor Space (Nemoto, Med-

Salem, and Tanaka ) such as:
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Related Results

@® Compare the determinacy strength between
Baire space and Cantor Space (Nemoto, Med-
Salem, and Tanaka ) such as:

(Det*: determinacy on Cantor sapce).

> WKL+ Z9-Det*

> ATR+ X 9-Det « >9-Det*

>[Z1]%-ID < (£9)) ¢ (29))1-Det”

(for k > 2)
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Related Results

@® The limit of determinacy in second order
arithmetic: (Montalban, Shore, 2012)

(1)

(ii)

>

a7



Related Results

@® The limit of determinacy in second order
arithmetic: (Monralban, Shore,2012)

(i) I m+2 -CA — (Z )m-Det (m > 1)

(||)A 1-CA £ (ZDm-Det (m > 1)

>
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Related Results

@® The limit of determinacy in second order

arit

(i)

(iNAL 1 >-CA 4 (ZDm-

12 »-CA — (Z3)m-

> Note that the reversa

since A}-Det 4 A3-CA

nmetic: (Monralban,

Shore, 2012)

Det (m > 1)

Det (m > 1)

of (i) does not hold
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Related Results

@® Set Theory

> Open determinacy for class games for Con(ZFQC),
(Hamkins)

>

>
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Related Results

@® Set Theory

> Open determinacy for class games for Con(ZFC)
(Hamkins)

> A Mathematician’s Year in Japan, by Hamkins

> Characterization of ~9-Det (S. Hatchman)

Then, thank very much Professor Tanaka

and.
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