A Survey of Determinacy of Infinite Games in Second Order Arithmetic,

dedicating to 60's birthday of Professor Tanaka.

Keisuke Yoshii National Institute of Technology, Okinawa College

Introduction

Some statements are not provable in second order arithmetic, (or even ZFC).

Introduction

Some statements are not provable in second order arithmetic, (or even ZFC). Focus on determinacy on Z_2 and see some related results.

Def. of Infinite Game (i) Let $A \subseteq \mathbb{N}^{\mathbb{N}}$ be a set in \mathcal{C} . (ii) Player I and II alternately choose natural

I n_0 n_2 ...

numbers as follows: II $n_1 \dots$

(iii) I wins if $n_0, n_1, n_2 \cdots \in A$. II wins if not.

(iv) Game on A is determinate if one of the players has a winning strategy.

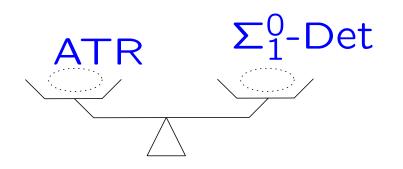
Notes

• Difficulties to prove the determinacy of game on *A*, (or, compute the winning strategy)

⇒ Depending on the complexities of set *A*. (e.g. *A* could be Δ_1^0 (clopen), Σ_1^0 (open), $\Sigma_2^0, \Delta_3^0, \Pi_3^0, \dots \Delta_1^1$ (Borel) What determinacy asserts?

Game G_A is determinate means that one of the players have a winning strategy.
It asserts the existence of real number with certain complexity.

(e.g.)



In early age of reverse mathematics:

• $ZFC^{-} \not\vdash Borel determinacy (\Delta_1^1-Det)$. (F.

Friedman, 1971)

- $ZFC^{-} \not\vdash$ Borel determinacy (Δ_1^1 -Det).
- $Z_2 \not\vdash \Sigma_5^0$ -Det. (H. Fiedman, 1971)

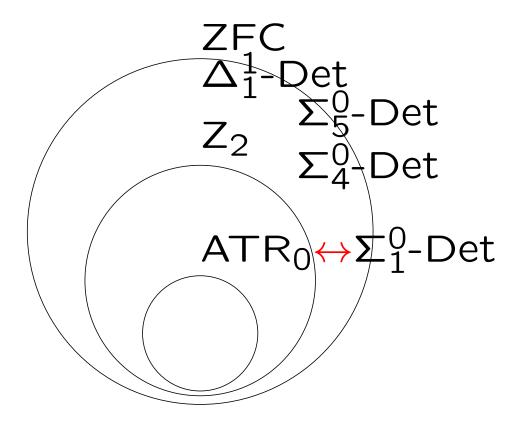
- $ZFC^{-} \not\vdash$ Borel determinacy (Δ_1^1 -Det).
- $Z_2 \not\vdash \Sigma_5^0$ -Det. (H. Fiedman, 1971)
- $Z_2 \not\vdash \Sigma_4^0$ -Det. (D. Martin, 1974)

- $ZFC^{-} \not\vdash$ Borel determinacy (Δ_1^1 -Det).
- $Z_2 \not\vdash \Sigma_5^0$ -Det. (H. Fiedman, 1971)
- $Z_2 \not\vdash \Sigma_4^0$ -Det. (D. Martin, 1974)
- ZFC⊢ Borel determinacy. (D. Martin, 1975)

In early age of reverse mathematics:

- $ZFC^{-} \not\vdash Borel determinacy (\Delta_1^1-Det).$
- $Z_2 \not\vdash \Sigma_5^0$ -Det. (H. Fiedman, 1971)
- $Z_2 \not\vdash \Sigma_4^0$ -Det. (D. Martin, 1974)
- OZFC⊢ Borel determinacy. (D. Martin, 1975)
- And, in 1976 J. Steel showed that one of

the earliest results of Reverse Mathematics: (RCA₀) ATR $\leftrightarrow \Sigma_1^0$ -Det.



Above ATR? (RCA₀) • ATR $\leftrightarrow \Sigma_1^0$ -Det. (Steel, 1976)

Above ATR? (RCA₀) • ATR $\leftrightarrow \Sigma_1^0$ -Det. (Steel, 1976) • Π_1^1 -CA $\leftrightarrow \Sigma_1^0 \wedge \Pi_1^0$ -Det. (Tanaka, 1990)

Above ATR? (RCA₀) • ATR $\leftrightarrow \Sigma_1^0$ -Det. (Steel, 1976) • Π_1^1 -CA $\leftrightarrow \Sigma_1^0 \wedge \Pi_1^0$ -Det. (Tanaka, 1990) • Π_1^1 -TR $\leftrightarrow \Delta_2^0$ -Det. (Tanaka, 1990)

Above ATR?

 (RCA_0)

- ATR $\leftrightarrow \Sigma_1^0$ -Det. (Steel, 1976)
- Π_1^1 -CA $\leftrightarrow \Sigma_1^0 \wedge \Pi_1^0$ -Det. (Tanaka, 1990)
- Π_1^1 -TR $\leftrightarrow \Delta_2^0$ -Det. (Tanaka, 1990)
- Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (Tanaka, 1991)

i

Above ATR?

 (RCA_0)

- ATR $\leftrightarrow \Sigma_1^0$ -Det. (Steel, 1976)
- Π_1^1 -CA $\leftrightarrow \Sigma_1^0 \wedge \Pi_1^0$ -Det. (Tanaka, 1990)
- Π_1^1 -TR $\leftrightarrow \Delta_2^0$ -Det. (Tanaka, 1990)
- Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (Tanaka, 1991)

i

Defference b/w Boldface and Lightface version.

(Boldface) $\mathsf{RCA}_0 \vdash \Pi_1^1 - \mathsf{CA} \leftrightarrow \Sigma_1^0 \land \Pi_1^0 - \mathsf{Det}.$

Importances of those theorems (Lightface) (i) $ACA_0 \vdash (\Sigma_1^0 \land \Pi_1^0)$ -Det $\rightarrow \Pi_1^1$ -CA (ii) $ATR_0 \vdash \Pi_1^1$ -CA $\rightarrow (\Sigma_1^0 \land \Pi_1^0)$ -Det Base theory of (ii) can not be weaker than ATR_0

Importances of those theorems (Lightface) (i) $ACA_0 \vdash (\Sigma_1^0 \land \Pi_1^0)$ -Det $\rightarrow \Pi_1^1$ -CA (ii) $ATR_0 \vdash \Pi_1^1$ -CA $\rightarrow (\Sigma_1^0 \land \Pi_1^0)$ -Det Base theory of (ii) can not be weaker than ATR_0

(·.·) Set of sure winning positions for player I can be constructed by ATR_0 with Π_1^1 -oracle.

Letting players construct sets in the games.

Letting players construct sets in the games.

(e.g.) In the proof of " $\Sigma_1^0 \wedge \Pi_1^0$ -Det $\rightarrow \Pi_1^1$ -CA", an infinite sequence of natural numbers satisfying Π_1^1 -formula will be constructed in the game by players.

Letting players construct sets in the games.

(e.g.) In the proof of " $\Sigma_1^0 \wedge \Pi_1^0$ -Det $\rightarrow \Pi_1^1$ -CA", For any $\varphi(n) : \Pi_1^1$, there exists $\theta(n, X) : \Delta_1^0$ s.t.

$$\varphi(n) \leftrightarrow \forall f \exists m \theta(n, f[m]).$$

Above ATR?

 (RCA_0)

- ATR $\leftrightarrow \Sigma_1^0$ -Det. (Steel, 1976)
- Π_1^1 -CA $\leftrightarrow \Sigma_1^0 \wedge \Pi_1^0$ -Det. (Tanaka, 1990)
- Π_1^1 -TR $\leftrightarrow \Delta_2^0$ -Det. (Tanaka, 1990)
- Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (Tanaka, 1991)

i

 Σ_1^{\perp} -ID₀, a new axiom system of Z₂ It asserts the existence of inductively defined pre-well-ordering. (We will See next) Output the comprehension axioms as before. (Some reason?) • Some Varieties of Σ_1^1 -ID₀? (Future studies)

Def. of Σ_1^1 -ID₀ >An operator Γ is a function from $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$.

▶ If " $x \in \Gamma(X)$ " is represented by a Σ_1^1 formula, then Γ is called Σ_1^1 operator. ● Σ_1^1 -ID: for any Σ_1^1 -operator Γ , there exists pre-wellordering $V \subset \mathbb{N} \times \mathbb{N}$ s.t. the following holds:

Def. Cont • Σ_1^1 -ID: for any Σ_1^1 -operator Γ , there exists pre-wellordering $V \subset \mathbb{N} \times \mathbb{N}$ s.t. the following holds:

$$\forall x \in F(V_x = \Gamma(V_{\leq x}) \cup V_{\leq x}), \\ \triangleright \Gamma(F) \subset F.$$

where

$$V_x = \{ y \in F : y \leq_V x \},\$$

$$V_{< x} = \{ y \in F : y <_V x \}, F = \{ x : x \leq_V x \}.$$

Image of Σ_1^1 -ID \triangleright Apply Γ to \emptyset

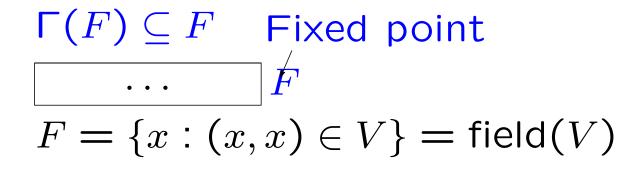
Image of Σ_1^1 -ID > Apply Γ to $\Gamma(\emptyset)$ and take the union:

$\Gamma(\emptyset) \cup \Gamma(\Gamma(\emptyset))$

Image of Σ_1^1 -ID \triangleright Keep doing this until ...

$\Gamma(\emptyset) \cup \Gamma(\Gamma(\emptyset)) \cup \Gamma(\Gamma(\emptyset)) \cup \Gamma(\Gamma(\emptyset)))$

Image of Σ_1^1 -ID \triangleright until the fixed point:



Σ¹₁-ID₀, a new axiom system of Z₂
It asserts the existence of inductively defined pre-well-ordering. (We will See next)
Different with comprehension axioms as before. (Some?)
Some Varieties of Σ¹₁-ID₀? (Future stud-

ies)

Different with comprehension axioms as before.

• $C\text{-ID}_0 \rightarrow C\text{-CA}_0$

• Even Borel determinacy does not imply Δ_2^1 -CA.

Different with comprehension axioms as before.

• $C\text{-ID}_0 \rightarrow C\text{-CA}_0$

• Even Borel determinacy does not imply Δ_2^1 -CA.

⇒ Logical equivalence can not be obtained by CA for Σ_2^0 -Det.

Even Borel det. doesn't deduce Δ_2^{\perp} -CA (MedSalem, Tanaka)[2007] (:) By β -model reflection and 2nd Imcomp. $\cdot \Delta_1^1$ -Det+ Σ_2^1 -DC₀ \vdash "exist. of c.c. β -model M of Δ_1^1 -Det." (by Σ_2^1 -DC₀ $\vdash \Sigma_4^1$ -RFN¹) $\cdot \mathsf{M} \models \Delta_1^1 - \mathsf{Det} + \Delta_2^1 - \mathsf{CA}_0 (\mathsf{By} \ \Delta_1^1 - \mathsf{Det} \vdash \Delta_2^1 - \mathsf{CA}_0)$ $\cdot M \models \Delta_1^1 - \text{Det} + \Sigma_2^1 - \text{DC}_0 \text{ (by } \Sigma_2^1 - \text{DC}_0 \leftrightarrow \Sigma_\infty^1 - \Sigma_\infty^1 - \Sigma_\infty^1 + \Sigma_\infty^1 - \Sigma_$ $IND + \Delta_2^1 - CA_0$ \square More details, see M.T[2007], Simpson[2009], VII

 Σ_1^{\perp} -ID₀, a new axiom system of Z₂ It asserts the existence of inductively defined pre-well-ordering. (We will See next) Different with comprehension axioms as before. (How and why?) • Some Varieties of Σ_1^1 -ID₀? (Future studies)

 Σ_1^{\perp} -ID₀, a new axiom system of Z₂ It asserts the existence of inductively defined pre-well-ordering. (We will See next) Output the comprehension axioms as before. (How and why?) • Some Varieties of Σ_1^1 -ID₀? (Future studies)

Some Varieties of Σ_1^{\perp} -ID₀ • Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (1991) • Σ_1^1 -IDTR₀ $\leftrightarrow \Delta((\Sigma_2^0)_2)$ -Det (2012) • $[\Sigma_1^1]^2$ -ID₀ \leftrightarrow $(\Sigma_2^0)_2$ -Det (2008) • $[\Sigma_1^1]^k$ -ID₀ \leftrightarrow $(\Sigma_2^0)_k$ -Det (2008) • $[\Sigma_1^1]^k$ -IDTR₀ $\leftrightarrow \Delta((\Sigma_2^0)_{k+1})$ -Det (2012) (k > 3)ł

• $(\Pi_3^1 - \mathsf{TI}_0)[\Sigma_1^1]^{\mathsf{TR}} - \mathrm{ID}_0 \leftrightarrow \Delta_3^0 - \mathrm{Det} (2008)$

Some Varieties of
$$\Sigma_1^1$$
-ID₀
• Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (1991)
• Σ_1^1 -IDTR₀ $\leftrightarrow \Delta((\Sigma_2^0)_2)$ -Det (2012)
 φ is a $\Delta(\mathcal{C})$ formula if

$$\varphi \leftrightarrow \psi \wedge \neg \varphi \leftrightarrow \eta$$

,where $\psi, \eta \in C$. For any k > 1, $(\Sigma_n^0)_k = \Sigma_n^0 \wedge (\Pi_n^0)_{k-1}$. e.g. $(\Sigma_2^0)_2 = \Sigma_2^0 \wedge \Pi_2^0$

Some Varieties of
$$\Sigma_1^1$$
-ID₀
• Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (1991)
• Σ_1^1 -IDTR₀ $\leftrightarrow \Delta((\Sigma_2^0)_2)$ -Det (2012)
 φ is a $\Delta(\mathcal{C})$ formula if

$$\varphi \leftrightarrow \psi \wedge \neg \varphi \leftrightarrow \eta$$

,where $\psi, \eta \in C$. For any k > 1, $(\Sigma_n^0)_k = \Sigma_n^0 \wedge (\Pi_n^0)_{k-1}$. e.g. $(\Sigma_2^0)_2 = \Sigma_2^0 \wedge \Pi_2^0$

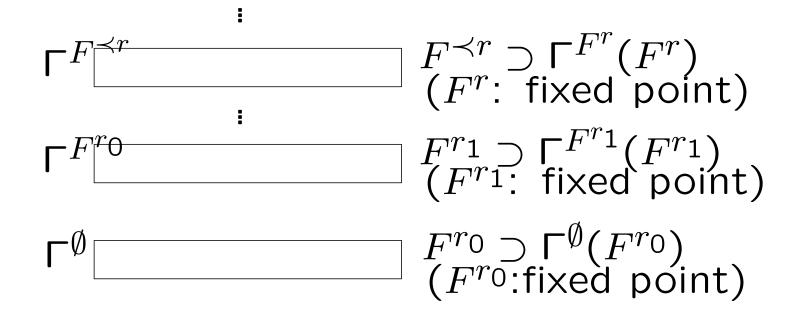
Some Varieties of Σ_1^{\perp} -ID₀ • Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (1991) • Σ_1^1 -IDTR₀ $\leftrightarrow \Delta((\Sigma_2^0)_2)$ -Det (2012) • $[\Sigma_1^1]^2$ -ID₀ \leftrightarrow $(\Sigma_2^0)_2$ -Det (2008) • $[\Sigma_1^1]^k$ -ID₀ \leftrightarrow $(\Sigma_2^0)_k$ -Det (2008) • $[\Sigma_1^1]^k$ -IDTR₀ $\leftrightarrow \Delta((\Sigma_2^0)_{k+1})$ -Det (2012) (k > 3)ł

• $(\Pi_3^1 - \mathsf{TI}_0)[\Sigma_1^1]^{\mathsf{TR}} - \mathrm{ID}_0 \leftrightarrow \Delta_3^0 - \mathrm{Det} (2008)$

Some Varieties of Σ_1^1 -ID₀ • Σ_1^1 -ID $\leftrightarrow \Sigma_2^0$ -Det (1991) • Σ_1^1 -IDTR₀ $\leftrightarrow \Delta((\Sigma_2^0)_2)$ -Det (2012) • $[\Sigma_1^1]^2$ -ID₀ $\leftrightarrow (\Sigma_2^0)_2$ -Det (2008) :

• $[\Sigma_1^1]^k ext{-}ID_0 \leftrightarrow (\Sigma_2^0)_k ext{-}Det (2008)$ • $[\Sigma_1^1]^k ext{-}IDTR_0 \leftrightarrow \Delta((\Sigma_2^0)_{k+1}) ext{-}Det (2012)$: $(k \ge 3)$ • $(\Pi_3^1 ext{-}TI_0)[\Sigma_1^1]^{\mathsf{TR}} ext{-}ID_0 \leftrightarrow \Delta_3^0 ext{-}Det (2008)$

Image of Σ_1^1 -IDTR₀



where $F^{\prec r} = \cup \{F^{r'} : r' \prec r\}]$

• Compare the determinacy strength between Baire space and Cantor Space (Nemoto, Med-Salem, and Tanaka) such as:

 \triangleright

• Compare the determinacy strength between Baire space and Cantor Space (Nemoto, Med-

Salem, and Tanaka) such as:

- (Det*: determinacy on Cantor sapce).
- \triangleright WKL $\leftrightarrow \Sigma_1^0$ -Det*
- ▷ ATR $\leftrightarrow \Sigma_1^0$ -Det $\leftrightarrow \Sigma_2^0$ -Det* ▷ $[\Sigma_1^1]^k$ -ID $\leftrightarrow (\Sigma_2^0)_k \leftrightarrow (\Sigma_2^0)_{k-1}$ -Det* (for $k \ge 2$)

The limit of determinacy in second order arithmetic: (Montalbán, Shore, 2012)
 (i)
 (ii)

• The limit of determinacy in second order arithmetic: (Monralbán, Shore,2012) (i) Π^{1}_{m+2} -CA $\rightarrow (\Sigma^{0}_{3})_{m}$ -Det $(m \ge 1)$ (ii) Δ^{1}_{m+2} -CA $\not\rightarrow (\Sigma^{0}_{3})_{m}$ -Det $(m \ge 1)$

• The limit of determinacy in second order arithmetic: (Monralbán, Shore, 2012) (i) Π^1_{m+2} -CA $\rightarrow (\Sigma^0_3)_m$ -Det $(m \ge 1)$ (ii) Δ^1_{m+2} -CA $\not\rightarrow (\Sigma^0_3)_m$ -Det $(m \ge 1)$ > Note that the reversal of (i) does not hold since Δ^1_1 -Det $\not\rightarrow \Delta^1_2$ -CA

Set Theory

Open determinacy for class games for Con(ZFC), (Hamkins)

 \triangleright

 \triangleright

Set Theory

- Open determinacy for class games for Con(ZFC) (Hamkins)
- ▷ A Mathematician's Year in Japan, by Hamkins
- ▷ Characterization of Σ_4^0 -Det (S. Hatchman)

Set Theory

Open determinacy for class games for Con(ZFC) (Hamkins)

> A Mathematician's Year in Japan, by Hamkins

▷ Characterization of Σ_4^0 -Det (S. Hatchman)

Then, ...

Set Theory

Open determinacy for class games for Con(ZFC) (Hamkins)

▷ A Mathematician's Year in Japan, by Hamkins ▷ Characterization of Σ_4^0 -Det (S. Hatchman)

Then, thank very much Professor Tanaka and.