The Complexity of Isomorphism

An important equivalence relation across all of mathematics is the
relation of isomorphism.

As logicians it is natural to pose the question: How complex is the
isomorphism relation in comparison with other equivalence
relations?

The answer to this question is sensitive to the class of structures
under consideration; we consider five cases:

Countable structures
Computable structures

|
|
m Hyp (Hyperarithmetic = Al) structures
m Uncountable structures

]

Finite structures
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In all five cases, isomorphism is ¥}; more precisely:

A, B are isomorphic iff

JF :

A — B(F is a structure-preserving bijection)

Countable structures can be coded by reals; then isomorphism
becomes a ¥} relation on reals

Computable structures can be coded by natural numbers; then
isomorphism becomes a X1 relation on w

Hyp structures can be coded by Hyp reals; then isomorphism
becomes the restriction of a X} relation to the Hyp reals
Structures of size x can be coded by subsets of x; then
isomorphism becomes a X1 relation on generalised Cantor
space 2"

Finite structures can be coded by finite strings; then
isomorphism becomes a X1 or NP relation on finite strings
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The Basic Question. Is isomorphism ¥} complete?

This translates into five questions:

m Suppose that R(x,y) is a £} equivalence relation on reals. Is
there a Borel function f from reals to countable structures
such that R(x, y) iff f(x),f(y) are isomorphic?

m Suppose that R(m, n) is a £} equivalence relation on w. Is
there a Hyp function f from w to computable structures such
that R(m, n) iff f(m), f(n) are isomorphic?

m Suppose that R(x,y) is a 1 equivalence relation on reals. Is
there a Hyp function f from reals to countable structures such
that for Hyp x,y, R(x,y) iff f(x), f(y) are isomorphic?
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m Suppose that R(x,y) is a X1 equivalence relation on subsets of
k. Is there a k-Borel function f from subsets of x to structures
on k such that R(x,y) iff f(x), f(y) are isomorphic?

m Suppose that R(s, t) is an NP equivalence relation on finite
strings. Is there a Polytime function f from finite strings to
finite structures such that R(s, t) iff f(s), f(t) are isomorphic?

These are questions of descriptive set theory (countable case),
computable structure theory (computable case), Hyp theory (Hyp
case), generalised descriptive set theory (uncountable case) and
complexity theory (finite case). And they have interesting answers.
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Again, in the countable case, we are asking:

m Suppose that R(x,y) is a £} equivalence relation on reals. Is
there a Borel function f from reals to countable structures
such that R(x, y) iff f(x),f(y) are isomorphic?

In the above we say that R is Borel-reducible to isomorphism and f
is a Borel reduction witnessing this.

Dana Scott answered this negatively long ago:
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Theorem

There are ¥} equivalence relations on reals which are not
Borel-reducible to Isomorphism ~.

Proof. Let X be a set of reals which is £} but not Borel.
Define: x Ex y iff x,y e X or x =y

Then Ex is £} and X is a non-Borel equivalence class of Ex.
But:

Theorem

(Scott) The equivalence classes of ~ are Borel, i.e., if A is a
countable structure then the set [A]~ of codes for structures B
which are isomorphic to A forms a Borel set.

It follows that Ex cannot Borel-reduce to ~ [
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| should mention that this is far from the end of the story in the
countable case: Hjorth developed a deep theory of turbulence which
explains when equivalence relations induced by group actions are
Borel-reducible to isomorphism and this is still an active area of
research. Moreover, isomorphism on specific Borel classes of
structures yields equivalence relations of different complexities and
this continues to be heavily investigated.
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The picture is very different in the computable setting. Recall that
we are now asking:

m Suppose that R(m, n) is a £} equivalence relation on w. Is
there a Hyp function f from w to computable structures such
that R(m, n) iff f(m), f(n) are isomorphic?

In the above we say that R is Hyp-reducible to isomorphism and f
is a Hyp reduction witnessing this.

(By a “Hyp function” | mean a function whose graph is Al or
equivalently Hyperarithmetic.)
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Theorem

(Fokina-Harizanov-Knight-McCoy-Montalban-me) Every ¥1
equivalence relation on w is Hyp-reducible to ~ on the computable
structures. (i.e., =~ for computable structures is ¥i-complete).

Proof Sketch: Let E be a Y1 equivalence relation on w and fix a
computable f : w? — Computable Trees such that ~ mEn iff

f(m, n) is wellfounded. This is possible as ~ E is M1 and any M} set
is effectively reducible to the set of wellfounded computable trees.
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Now associate to pairs m, n better computable trees T(m, n) so
that:

1. T(m, n) is isomorphic to T(n, m)

2. mEn implies that T(m, n) is isomorphic to the “canonical”
illfounded computable tree

3. ~ mEn implies that T(m, n) is isomorphic to the “canonical”
computable tree of rank «, where « is independent of the choice of
m, n in [m]g,[n]g, respectively.

In 3 we first get a tree T'(m, n) of rank a by considering all finite
sequences (ag, ..., a) beginning with m and ending with n,
interlacing the trees f(aj, aj+1) for i < I and finally putting together
the resulting trees for all such finite sequences (ap,...,a;) into one
tree. To get the “canonical” computable tree T(m, n) of rank o we
interlace T'(m, n) with the “canonical” illfounded computable tree.
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Now to each n associate the tree T, gotten by gluing together the
T(n,i), i € w.

If mEn then T, is isomorphic to T, as they are obtained by gluing
together isomorphic trees. This is because the isomorphism-types of
the trees T(m, n) are independent of the choice of m, n in

[m]Ee, [n]e, respectively.

And if ~ mEn then T,,, T, are not isomorphic as they are obtained
by gluing together trees which on some component are
non-isomorphic.

So we have mEn iff Tp,, T, are isomorphic, giving the desired Hyp
(indeed computable) reduction. O
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So isomorphism of computable trees is ¥1 complete.
It can be shown that this relation Hyp-reduces to isomorphism on
each of the following Hyp classes:

Computable graphs

Computable torsion-free Abelian groups
Computable Abelian p-groups for a fixed prime p
Computable Boolean Algebras

Computable linear orders

Computable fields

o=

and therefore these are also X} complete. 2 and 3 are a bit
surprising, as for countable structures, the Z% completeness of
isomorphism for torsion-free Abelian groups is a major open
problem and for Abelian p-groups is provably false!
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In fact it is still not known if there is any isomorphism relation on a
Hyp class of computable structures which is neither Hyp nor X1
complete! Montalban has shown that this question is connected
with Vaught's Conjecture.

However we do have:

Theorem

(Fokina-me) Every ¥} equivalence relation on w is Hyp bi-reducible
with bi-embeddability on a Hyp class of computable structures.

This is a Hyp analogue of my result with Motto Ros that any ¥1
equivalence relation on reals is Borel bi-reducible with
bi-embeddability on a Borel class of countable structures.
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Now is isomorphism Y1 complete on classes of structures which lie
strictly between Computable and Countable?

Let's use the L-hierarchy to define such classes of structures. For «
a countable ordinal in L and n < w define:

C(a, n) = all countable structures coded by reals which are A,
definable over L, with parameters

So Computable = C(w,1) and Countable = the union of all of the
C(a, n)'s. It turns out that using Scott’s work and a bit of fine
structure theory one can reduce the analysis of all of these cases to
just two cases:

C(w, 1) = Computable
C(wtk, 1) = Hyperarithmetic.
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The Computable case has already been handled, so we are now
asking:

m Suppose that R(x,y) is a £} equivalence relation on reals. Is
there a Hyp function f from reals to countable structures such
that for Hyp x,y, R(x,y) iff f(x), f(y) are isomorphic?

The method used in the Computable case does not seem to work
for the Hyp case: There is a Hyp enumeration of the computable
reals but no Hyp enumeration of all Hyp reals.

The Scott method does not seem to work either: If A has a Hyp
code there need not be a Borel set B with Hyp code such that
[Al~ N Hyp = B N Hyp.

The solution comes from a deeper look at descriptive set theory
and infinitary logic.
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For x C w and n € w define (x), = {m| (m,n) € x}, where {.,.) is
a computable pairing function on w.

The equivalence relation E; is defined by:

x Eyy iff (x), = (y)n for large enough n.

E; is a Hyp equivalence relation. A classic result of
Kechris-Louveau is the following:

Theorem

E; is not Borel-reducible to isomorphism on countable structures.

The essential difficulty in applying the proof of this to the Hyp case
is that two Hyp structures can be isomorphic without being Hyp
isomorphic. However this does not happen for Hyp structures of low
(computable) Scott rank and we at least have:
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Theorem

There is no Hyp f such that for Hyp reals x,y, xEyy iff f(x) is
isomorphic to f(y), and for each Hyp x, f(x) is a structure of low
Scott rank.

So to complete the argument that isomorphism is not ¥1 complete
on Hyp, we need a method for converting arbitrary structures to
structures of low Scott rank.

Let =, denote elementary equivalence for sentences of L, of
rank less than a.

Theorem

For each computable limit ordinal o there is a Hyp reduction of the
equivalence relation =, on countable structures to isomorphism on
countable structures of Scott rank at most .
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Putting the above together we get:

Theorem

There is no Hyp function f such that for Hyp reals x,y, xEyy iff
f(x) is isomorphic to f(y). In particular, isomorphism is not
Hyp-complete (and hence not ¥} complete) on Hyp.

Question. Suppose that E is a 1 equivalence relation and £ is
not Hyp-reducible to E on Hyp. Then is E Hyp-reducible to
isomorphism on Hyp?

The answer to this question is likely to be “No”, as probably there
are “effective orbit equivalence relations” more complex than
isomorphism on Hyp to which E; cannot be Hyp-reduced.
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Now we turn to uncountable structures. For simplicity let’s focus on
structures of size x where « is the successor of a regular cardinal.
Then we get a situation which bears cosiderable resemblance to the
computable case.

Theorem

(Hyttinen-Kulikov-me) Assume V = L and let r be the successor of
a regular cardinal. Then all ¥ equivalence relations are r-Borel
reducible to isomorphism.

| give a hint of the proof. Write x = AT where X is regular, let Q
be a A-saturated dense linear order without endpoints and let Qg
be Q together with a least point. For any subset S of  let £L(S) be
obtained from the natural order on k by replacing a by Qg if a is a
limit ordinal in S and by Q otherwise.

Fact. L(S) is isomorphic to £(T) iff SAT is nonstationary in .
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Now the key Lemma is that in L, any ¥1 set X is x-Borel reducible
to the collection (ideal) of nonstationary sets in the sense that
there is a x-Borel function f such that x € X iff f(x) is
nonstationary. One strengthens this to show that in fact any ¥}
equivalence relation is k-Borel reducible to equality modulo a
nonstationary set and therefore by the above Fact to isomorphism
of dense linear orders.

Question. Is it consistent that isomorphism on structures of size w;
is not ¥1-complete (and CH holds)?

Isomorphism on structures of size wy is £1 complete as a set, so
the real question is whether it is £} complete as an equivalence
relation (under unary wi-Borel reductions).
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Fokina-Knight-R.Miller and | show that one also gets the ¥}
completeness of isomorphism on the structures of size w; which are
w1-computable (assuming V = L). The proof combines the ¥}
completeness arguments for the Computable and Uncountable

cases.



The Complexity of Isomorphism for Finite Structures

For finite structures our basic question becomes:

m Suppose that R(s, t) is an NP equivalence relation on finite
strings. Is there a Polytime function f from finite strings to
finite structures such that R(s, t) iff f(s), f(t) are isomorphic?

This is linked with open questions in computational complexity
theory:
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Proposition

(Buss-Chen-Flum-Miiller-me) Assume that the Polytime Hierarchy
does not collapse. Then not every NP equivalence relation
Polytime-reduces to isomorphism.

Proof. SAT can be turned into an NP equivalence relation:
xEy iff x =y or x,y € SAT.

Then a Polytime-reduction of E to graph isomorphism (which is
Polytime-maximal among isomorphism relations) would imply that
graph isomorphism is NP-complete.

It is known that the latter implies that the Polytime hierarchy
collapses. O
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In all of the cases of infinite structures we can at least produce ¥}
equivalence relations which are complete; this is not known in the
finite case:

Question. Is there an NP equivalence relation which is complete for
NP equivalence relations under Polytime reductions?



The Complexity of Isomorphism: Summary

To summarise: Isomorphism is ! complete for computable
structures and, if V = L, for structures of size wy. It is not for
countable structures or for Hyp structures. It is currently not known
if it can fail to be =1 complete for finite structures or for structures
of size wy if V # L.

Interesting work in the case of uncountable structures remains to

be done and of course it will be interesting to look deeper at the

different possible complexities of isomorphism restricted to special
classes of structures in each of these five cases.

Thanks for listening, and | would like to wish Professor Tanaka a
very Happy 60th Birthday!



