
The Complexity of IsomorphismAn important equivalen
e relation a
ross all of mathemati
s is therelation of isomorphism.As logi
ians it is natural to pose the question: How 
omplex is theisomorphism relation in 
omparison with other equivalen
erelations?The answer to this question is sensitive to the 
lass of stru
turesunder 
onsideration; we 
onsider �ve 
ases:Countable stru
turesComputable stru
turesHyp (Hyperarithmeti
 = ∆11) stru
turesUn
ountable stru
turesFinite stru
tures



The Complexity of IsomorphismIn all �ve 
ases, isomorphism is Σ11; more pre
isely:
A, B are isomorphi
 i�
∃F : A → B(F is a stru
ture-preserving bije
tion)Countable stru
tures 
an be 
oded by reals; then isomorphismbe
omes a Σ11 relation on realsComputable stru
tures 
an be 
oded by natural numbers; thenisomorphism be
omes a Σ11 relation on ωHyp stru
tures 
an be 
oded by Hyp reals; then isomorphismbe
omes the restri
tion of a Σ11 relation to the Hyp realsStru
tures of size κ 
an be 
oded by subsets of κ; thenisomorphism be
omes a Σ11 relation on generalised Cantorspa
e 2κFinite stru
tures 
an be 
oded by �nite strings; thenisomorphism be
omes a Σ11 or NP relation on �nite strings



The Complexity of IsomorphismThe Basi
 Question. Is isomorphism Σ11 
omplete?This translates into �ve questions:Suppose that R(x , y) is a Σ11 equivalen
e relation on reals. Isthere a Borel fun
tion f from reals to 
ountable stru
turessu
h that R(x , y) i� f (x), f (y) are isomorphi
?Suppose that R(m, n) is a Σ11 equivalen
e relation on ω. Isthere a Hyp fun
tion f from ω to 
omputable stru
tures su
hthat R(m, n) i� f (m), f (n) are isomorphi
?Suppose that R(x , y) is a Σ11 equivalen
e relation on reals. Isthere a Hyp fun
tion f from reals to 
ountable stru
tures su
hthat for Hyp x , y , R(x , y) i� f (x), f (y) are isomorphi
?



The Complexity of IsomorphismSuppose that R(x , y) is a Σ11 equivalen
e relation on subsets of
κ. Is there a κ-Borel fun
tion f from subsets of κ to stru
tureson κ su
h that R(x , y) i� f (x), f (y) are isomorphi
?Suppose that R(s, t) is an NP equivalen
e relation on �nitestrings. Is there a Polytime fun
tion f from �nite strings to�nite stru
tures su
h that R(s, t) i� f (s), f (t) are isomorphi
?These are questions of des
riptive set theory (
ountable 
ase),
omputable stru
ture theory (
omputable 
ase), Hyp theory (Hyp
ase), generalised des
riptive set theory (un
ountable 
ase) and
omplexity theory (�nite 
ase). And they have interesting answers.



The Complexity of Isomorphism for Countable Stru
turesAgain, in the 
ountable 
ase, we are asking:Suppose that R(x , y) is a Σ11 equivalen
e relation on reals. Isthere a Borel fun
tion f from reals to 
ountable stru
turessu
h that R(x , y) i� f (x), f (y) are isomorphi
?In the above we say that R is Borel-redu
ible to isomorphism and fis a Borel redu
tion witnessing this.Dana S
ott answered this negatively long ago:



The Complexity of Isomorphism for Countable Stru
turesTheoremThere are Σ11 equivalen
e relations on reals whi
h are notBorel-redu
ible to Isomorphism ≃.Proof. Let X be a set of reals whi
h is Σ11 but not Borel.De�ne: x EX y i� x , y ∈ X or x = yThen EX is Σ11 and X is a non-Borel equivalen
e 
lass of EX .But:Theorem(S
ott) The equivalen
e 
lasses of ≃ are Borel, i.e., if A is a
ountable stru
ture then the set [A]≃ of 
odes for stru
tures Bwhi
h are isomorphi
 to A forms a Borel set.It follows that EX 
annot Borel-redu
e to ≃ �



The Complexity of Isomorphism for Countable Stru
tures
I should mention that this is far from the end of the story in the
ountable 
ase: Hjorth developed a deep theory of turbulen
e whi
hexplains when equivalen
e relations indu
ed by group a
tions areBorel-redu
ible to isomorphism and this is still an a
tive area ofresear
h. Moreover, isomorphism on spe
i�
 Borel 
lasses ofstru
tures yields equivalen
e relations of di�erent 
omplexities andthis 
ontinues to be heavily investigated.



The Complexity of Isomorphism for Computable Stru
turesThe pi
ture is very di�erent in the 
omputable setting. Re
all thatwe are now asking:Suppose that R(m, n) is a Σ11 equivalen
e relation on ω. Isthere a Hyp fun
tion f from ω to 
omputable stru
tures su
hthat R(m, n) i� f (m), f (n) are isomorphi
?In the above we say that R is Hyp-redu
ible to isomorphism and fis a Hyp redu
tion witnessing this.(By a �Hyp fun
tion� I mean a fun
tion whose graph is ∆11 orequivalently Hyperarithmeti
.)



The Complexity of Isomorphism for Computable Stru
tures
Theorem(Fokina-Harizanov-Knight-M
Coy-Montalban-me) Every Σ11equivalen
e relation on ω is Hyp-redu
ible to ≃ on the 
omputablestru
tures. (i.e., ≃ for 
omputable stru
tures is Σ11-
omplete).Proof Sket
h: Let E be a Σ11 equivalen
e relation on ω and �x a
omputable f : ω2 → Computable Trees su
h that ∼ mEn i�f (m, n) is wellfounded. This is possible as ∼ E is Π11 and any Π11 setis e�e
tively redu
ible to the set of wellfounded 
omputable trees.



The Complexity of Isomorphism for Computable Stru
turesNow asso
iate to pairs m, n better 
omputable trees T (m, n) sothat:1. T (m, n) is isomorphi
 to T (n,m)2. mEn implies that T (m, n) is isomorphi
 to the �
anoni
al�illfounded 
omputable tree3. ∼ mEn implies that T (m, n) is isomorphi
 to the �
anoni
al�
omputable tree of rank α, where α is independent of the 
hoi
e ofm, n in [m]E , [n]E , respe
tively.In 3 we �rst get a tree T ′(m, n) of rank α by 
onsidering all �nitesequen
es (a0, . . . , al ) beginning with m and ending with n,interla
ing the trees f (ai , ai+1) for i < l and �nally putting togetherthe resulting trees for all su
h �nite sequen
es (a0, . . . , al ) into onetree. To get the �
anoni
al� 
omputable tree T (m, n) of rank α weinterla
e T ′(m, n) with the �
anoni
al� illfounded 
omputable tree.



The Complexity of Isomorphism for Computable Stru
turesNow to ea
h n asso
iate the tree Tn gotten by gluing together theT (n, i), i ∈ ω.If mEn then Tm is isomorphi
 to Tn as they are obtained by gluingtogether isomorphi
 trees. This is be
ause the isomorphism-types ofthe trees T (m, n) are independent of the 
hoi
e of m, n in
[m]E , [n]E , respe
tively.And if ∼ mEn then Tm, Tn are not isomorphi
 as they are obtainedby gluing together trees whi
h on some 
omponent arenon-isomorphi
.So we have mEn i� Tm, Tn are isomorphi
, giving the desired Hyp(indeed 
omputable) redu
tion. �



The Complexity of Isomorphism for Computable Stru
turesSo isomorphism of 
omputable trees is Σ11 
omplete.It 
an be shown that this relation Hyp-redu
es to isomorphism onea
h of the following Hyp 
lasses:1. Computable graphs2. Computable torsion-free Abelian groups3. Computable Abelian p-groups for a �xed prime p4. Computable Boolean Algebras5. Computable linear orders6. Computable �eldsand therefore these are also Σ11 
omplete. 2 and 3 are a bitsurprising, as for 
ountable stru
tures, the Σ11 
ompleteness ofisomorphism for torsion-free Abelian groups is a major openproblem and for Abelian p-groups is provably false!



The Complexity of Isomorphism for Computable Stru
turesIn fa
t it is still not known if there is any isomorphism relation on aHyp 
lass of 
omputable stru
tures whi
h is neither Hyp nor Σ11
omplete! Montalban has shown that this question is 
onne
tedwith Vaught's Conje
ture.However we do have:Theorem(Fokina-me) Every Σ11 equivalen
e relation on ω is Hyp bi-redu
iblewith bi-embeddability on a Hyp 
lass of 
omputable stru
tures.This is a Hyp analogue of my result with Motto Ros that any Σ11equivalen
e relation on reals is Borel bi-redu
ible withbi-embeddability on a Borel 
lass of 
ountable stru
tures.



The Complexity of IsomorphismNow is isomorphism Σ11 
omplete on 
lasses of stru
tures whi
h liestri
tly between Computable and Countable?Let's use the L-hierar
hy to de�ne su
h 
lasses of stru
tures. For αa 
ountable ordinal in L and n < ω de�ne:
C(α, n) = all 
ountable stru
tures 
oded by reals whi
h are ∆nde�nable over Lα with parametersSo Computable = C(ω, 1) and Countable = the union of all of the
C(α, n)'s. It turns out that using S
ott's work and a bit of �nestru
ture theory one 
an redu
e the analysis of all of these 
ases tojust two 
ases:
C(ω, 1) = Computable
C(ω
k1 , 1) = Hyperarithmeti
.



The Complexity of Isomorphism for Hyp Stru
turesThe Computable 
ase has already been handled, so we are nowasking:Suppose that R(x , y) is a Σ11 equivalen
e relation on reals. Isthere a Hyp fun
tion f from reals to 
ountable stru
tures su
hthat for Hyp x , y , R(x , y) i� f (x), f (y) are isomorphi
?The method used in the Computable 
ase does not seem to workfor the Hyp 
ase: There is a Hyp enumeration of the 
omputablereals but no Hyp enumeration of all Hyp reals.The S
ott method does not seem to work either: If A has a Hyp
ode there need not be a Borel set B with Hyp 
ode su
h that
[A]≃ ∩ Hyp = B ∩ Hyp.The solution 
omes from a deeper look at des
riptive set theoryand in�nitary logi
.



The Complexity of Isomorphism for Hyp Stru
turesFor x ⊆ ω and n ∈ ω de�ne (x)n = {m | 〈m, n〉 ∈ x}, where 〈., .〉 isa 
omputable pairing fun
tion on ω.The equivalen
e relation E1 is de�ned by:x E1y i� (x)n = (y)n for large enough n.E1 is a Hyp equivalen
e relation. A 
lassi
 result ofKe
hris-Louveau is the following:TheoremE1 is not Borel-redu
ible to isomorphism on 
ountable stru
tures.The essential di�
ulty in applying the proof of this to the Hyp 
aseis that two Hyp stru
tures 
an be isomorphi
 without being Hypisomorphi
. However this does not happen for Hyp stru
tures of low(
omputable) S
ott rank and we at least have:



The Complexity of Isomorphism for Hyp Stru
turesTheoremThere is no Hyp f su
h that for Hyp reals x , y , xE1y i� f (x) isisomorphi
 to f (y), and for ea
h Hyp x, f (x) is a stru
ture of lowS
ott rank.So to 
omplete the argument that isomorphism is not Σ11 
ompleteon Hyp, we need a method for 
onverting arbitrary stru
tures tostru
tures of low S
ott rank.Let ≡α denote elementary equivalen
e for senten
es of Lω1ω ofrank less than α.TheoremFor ea
h 
omputable limit ordinal α there is a Hyp redu
tion of theequivalen
e relation ≡α on 
ountable stru
tures to isomorphism on
ountable stru
tures of S
ott rank at most α.



The Complexity of Isomorphism for Hyp Stru
turesPutting the above together we get:TheoremThere is no Hyp fun
tion f su
h that for Hyp reals x , y , xE1y i�f (x) is isomorphi
 to f (y). In parti
ular, isomorphism is notHyp-
omplete (and hen
e not Σ11 
omplete) on Hyp.Question. Suppose that E is a Σ11 equivalen
e relation and E1 isnot Hyp-redu
ible to E on Hyp. Then is E Hyp-redu
ible toisomorphism on Hyp?The answer to this question is likely to be �No�, as probably thereare �e�e
tive orbit equivalen
e relations� more 
omplex thanisomorphism on Hyp to whi
h E1 
annot be Hyp-redu
ed.



The Complexity of Isomorphism for Un
ountable Stru
turesNow we turn to un
ountable stru
tures. For simpli
ity let's fo
us onstru
tures of size κ where κ is the su

essor of a regular 
ardinal.Then we get a situation whi
h bears 
osiderable resemblan
e to the
omputable 
ase.Theorem(Hyttinen-Kulikov-me) Assume V = L and let κ be the su

essor ofa regular 
ardinal. Then all Σ11 equivalen
e relations are κ-Borelredu
ible to isomorphism.I give a hint of the proof. Write κ = λ+ where λ is regular, let Qbe a λ-saturated dense linear order without endpoints and let Q0be Q together with a least point. For any subset S of κ let L(S) beobtained from the natural order on κ by repla
ing α by Q0 if α is alimit ordinal in S and by Q otherwise.Fa
t. L(S) is isomorphi
 to L(T ) i� S△T is nonstationary in κ.



The Complexity of Isomorphism for Un
ountable Stru
turesNow the key Lemma is that in L, any Σ11 set X is κ-Borel redu
ibleto the 
olle
tion (ideal) of nonstationary sets in the sense thatthere is a κ-Borel fun
tion f su
h that x ∈ X i� f (x) isnonstationary. One strengthens this to show that in fa
t any Σ11equivalen
e relation is κ-Borel redu
ible to equality modulo anonstationary set and therefore by the above Fa
t to isomorphismof dense linear orders.Question. Is it 
onsistent that isomorphism on stru
tures of size ω1is not Σ11-
omplete (and CH holds)?Isomorphism on stru
tures of size ω1 is Σ11 
omplete as a set, sothe real question is whether it is Σ11 
omplete as an equivalen
erelation (under unary ω1-Borel redu
tions).



The Complexity of Isomorphism for Un
ountable Stru
tures
Fokina-Knight-R.Miller and I show that one also gets the Σ11
ompleteness of isomorphism on the stru
tures of size ω1 whi
h are
ω1-
omputable (assuming V = L). The proof 
ombines the Σ11
ompleteness arguments for the Computable and Un
ountable
ases.



The Complexity of Isomorphism for Finite Stru
tures
For �nite stru
tures our basi
 question be
omes:Suppose that R(s, t) is an NP equivalen
e relation on �nitestrings. Is there a Polytime fun
tion f from �nite strings to�nite stru
tures su
h that R(s, t) i� f (s), f (t) are isomorphi
?This is linked with open questions in 
omputational 
omplexitytheory:



The Complexity of Isomorphism for Finite Stru
turesProposition(Buss-Chen-Flum-Müller-me) Assume that the Polytime Hierar
hydoes not 
ollapse. Then not every NP equivalen
e relationPolytime-redu
es to isomorphism.Proof. SAT 
an be turned into an NP equivalen
e relation:xEy i� x = y or x , y ∈ SAT.Then a Polytime-redu
tion of E to graph isomorphism (whi
h isPolytime-maximal among isomorphism relations) would imply thatgraph isomorphism is NP-
omplete.It is known that the latter implies that the Polytime hierar
hy
ollapses. �



The Complexity of Isomorphism for Finite Stru
tures
In all of the 
ases of in�nite stru
tures we 
an at least produ
e Σ11equivalen
e relations whi
h are 
omplete; this is not known in the�nite 
ase:Question. Is there an NP equivalen
e relation whi
h is 
omplete forNP equivalen
e relations under Polytime redu
tions?



The Complexity of Isomorphism: SummaryTo summarise: Isomorphism is Σ11 
omplete for 
omputablestru
tures and, if V = L, for stru
tures of size ω1. It is not for
ountable stru
tures or for Hyp stru
tures. It is 
urrently not knownif it 
an fail to be Σ11 
omplete for �nite stru
tures or for stru
turesof size ω1 if V 6= L.Interesting work in the 
ase of un
ountable stru
tures remains tobe done and of 
ourse it will be interesting to look deeper at thedi�erent possible 
omplexities of isomorphism restri
ted to spe
ial
lasses of stru
tures in ea
h of these �ve 
ases.Thanks for listening, and I would like to wish Professor Tanaka avery Happy 60th Birthday!


