A reflection principle as a reverse mathematical fixed point

Sakaé Fuchino (渕野 昌)

Graduate School of System Informatics
Kobe University

(神戸大学大学院 システム情報学研究科)

http://kurt.scitec.kobe-u.ac.jp/~fuchino/

CTFM 2015

in honor of Professor Kazuyuki Tanaka's 60th birthday

(16. September 2015 (12:33 JST) version)

11. September 2015, 於 ディジタル多目的ホール (東京工業大学)

This presentation is typeset by pLTEX with beamer class.

The printer version of these slides is going to be downloadable as http://kurt.scitec.kobe-u.ac.jp/~fuchino/slides/tanakak2015-pf.pdf

<ロ > < 個 > < 国 > < 重 > へき > へき > っくで

▶ 60 歳以上のアクティヴなロジシャンのクラブへようこそ!! (Welcome to the club of active logicians over 60!!)

- ► The Axiom of Choice (AC) is equivalent to many mathematical assertions over ZF e.g.:
- \triangleright For any family $\mathcal F$ of (not necessarily Hausdorff) compact spaces, the product space $\prod \mathcal F$ is also compact (J.L. Kelley, 1950).
- ▷ Every commutative ring with the unit has a maximal ideal (W. Hodges, 1979).
- \triangleright For any field F and any linear algebra A over F, there is a linear basis B of A over F (A. Blass, 1984).
- ▶ These equivalence results can be interpreted as the facts suggesting the (mathematical) significance of AC (over ZF).

- ► The Continuum Hypothesis (CH) is also known to be equivalent to many mathematical statements over ZFC such as:
- ightharpoonup There is an uncountable collection $\mathcal F$ of analytic (complex) functions s.t. the set $\{f(z):f\in\mathcal F\}$ is countable for every $z\in\mathbb C$ (Erdős, 1964)
- $ightharpoonup \mathbb{R}$ can be decomposed into countably many sets X_n , $n \in \omega$ s.t. each X_n is linearly independent over \mathbb{Q} (Erdős and Kakutani, 1943).
- ▶ CH also implies many mathematical theorems like:
- ightharpoonup There are functions $f:[0,1]^2 o [0,1]$ s.t. both $\int_0^1 \int_0^1 f(x,y) dx dy$ and $\int_0^1 \int_0^1 f(x,y) dy dx$ exist but they are different.

Theorem 1. (Alan Dow, 1988) If an uncountable compact space X is non-metrizable then there is a non-metrizable subspace of X of cardinality \aleph_1 .

Very rough sketch of the proof: Take sufficiently closed (more precisely: internally unbounded) elementary submodel $M \prec \mathcal{H}(\chi)$ of cardinality \aleph_1 with $X \in M$. Then $X \cap M$ is non metrizable.

Theorem 2. For any regular cardinal κ there is a topological space X which is not metrizable but all subspaces of X of cardinality $< \kappa$ are metrizable.

Proof: Let $X = \kappa + 1$ where κ is discrete and $\{\kappa + 1 \setminus \alpha : \alpha \in \kappa\}$ forms the nbhd base of κ .

Reflection of non-metrizability (2/4)

Does the reflection of non-metrizability hold for locally compact spaces?

- ► The answer is independent:
- $\triangleright V = L$ produces a counter example (folklore).
- Axiom R (a consequence of Martin's Maximum) implies the reflection of non-metrizability for locally compact spaces (Z. Balogh, 2002).

Reflection of non-metrizability (3/4)

▶ The reflection (down to size \aleph_1) of non-metrizability for locally compact spaces can be characterized by a set-theoretic principle called FRP (Fodor-type reflection principle):

FRP: For any regular uncountable κ , for any stationary $S \subseteq \kappa$ consisting of ordinals of cofinality ω and for any $g: S \to [\kappa]^{\leq \aleph_0}$, there is $I \in [\kappa]^{\aleph_1}$ s.t.

- (1) $cf(\sup I) = \omega_1$
- (2) $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$
- (3) for any regressive $f: S \cap I \to \kappa$ with $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}{}''\{\xi^*\}$ is stationary in $\sup(I)$.

FRP: For any regular uncountable κ , for any stationary $S \subseteq \kappa$ consisting of ordinals of cofinality ω and for any $g: S \to [\kappa]^{\leq \aleph_0}$, there is $I \in [\kappa]^{\aleph_1}$ s.t.

- (1) $cf(\sup I) = \omega_1$
- (2) $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$
- (3) for any regressive $f: S \cap I \to \kappa$ with $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}{}''\{\xi^*\}$ is stationary in $\sup(I)$.

Theorem 3. (S.F., I. Juhász, L. Soukup, Z. Szenttmiklóssy and T. Usuba, 2010)

FRP implies the reflection of non-metrizability of a locally compact space down to a subspace of cardinality $\leq \aleph_1$.

Theorem 4. (S.F., H. Sakai, L. Soukup and T.Usuba) The leflection in Theorem 3 implies FRP.

- ▶ FRP is equivalent to the following assertions over ZFC:
- \triangleright For every uncountable locally compact space X, if X is non-metrizable then there is a non-metrizable subspace of X of carinality \aleph_1 .
- \triangleright If an uncountable T_1 -space X is not left separated then there is a subspace of X of cardinality \aleph_1 which is not left separated.
- \triangleright For any graph G if the coloring number of G is uncountable then there is a subgraph of G of cardinality \aleph_1 with uncountable coloring number.
- \triangleright If an uncountable Boolean algebra B is not openly generated then there are stationarily many subalgebras of B of cardinality \aleph_1 which are not openley generated (SF+A.Rinot, 2011).

- ▶ FRP implies the total failure of square principle.
- ► FRP implies the Singular Cardinal Hypothesis (actually it even implies Shelah's Strong Hypothesis, (S.F.+A.Rinot, T.Usuba)).
- ▶ Rado's Conjecture (If a tree is not special then there is an uncountable subtree which is not special) implies FRP.
- ▶ Martin's Maximum also implies FRP.
- ► FRP is preserved by c.c.c. extension. Hence FRP is consistent with large continuum.
- → All of these statements are of course true for the mathematical statements equivalent to FRP.

A base theory

- ▶ Let ZFC_{ω} be the theory obtained by replacing the Axiom of Replacing by the statement:
- \triangleright For a class function \mathcal{F} , $\mathcal{F}''x$ is a set for any countable x.
- ▶ Many of the known equivalence over ZFC are still valid over ZFC_{ω} .
- ightharpoonup ZFC $_{\omega}$ may be regarded as the theory of the superuniverse of the set generic multiverses. I shall discuss more about this in RIMS set theory meeting in the next week.

御静聴ありがとうございました.

終