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This talk

Weak König’s Lemma (WKL)

Every infinite 0–1 tree has an infinite branch.

models
of WKL

≈ coded subsets in
end extensions

Plan

1. Motivation

2. Self-embeddings

3. Set-extensions

4. Conclusion



First-order arithmetic

I LI = {0, 1,+,×, <}.
I A quantifier is bounded if it is of the form ∀v<t or ∃v<t.

I An LI-formula is ∆0 if all its quantifiers are bounded.

I Σn = {∃v̄1 ∀v̄2 · · · Qv̄n θ(v̄ , x̄) : θ ∈ ∆0}.

n ∈ N

I The dual is called Πn.

I A formula is ∆n if it is both Σn and Πn.

I IΣn consists of some basic axioms (PA−) and for every θ ∈ Σn,

θ(0) ∧ ∀x
(
θ(x)→ θ(x + 1)

)
→ ∀x θ(x).

I BΣn+1 consists of the axioms of IΣ0 and for every θ ∈ Σn+1,

∀a
(
∀x<a ∃y θ(x , y)→ ∃b ∀x<a ∃y<b θ(x , y)

)
.

I exp asserts the totality of x 7→ 2x .

Theorem (Paris–Kirby 1978; Parsons 1970; Parikh 1971)

IΣn+1 ` BΣn+1 ` IΣn for all n ∈ N; and IΣ1 ` exp but BΣ1 0 exp.

IΣ0 =| M
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Cuts and end extensions

Definition

I IΣn consists of some basic axioms (PA−) and for every θ ∈ Σn,

θ(0) ∧ ∀x
(
θ(x)→ θ(x + 1)

)
→ ∀x θ(x).
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Σn-Def(M) 63 N

IΣn =| M

⇓
n ∈ N

Let I ,M |= IΣ0. Say I is a cut of M, or
M is an end extension of I , if I ⊆ M and

∀i ∈ I ∀m ∈ M \ I i 6 m.

In this case, write I ⊆e M.

Proposition (folklore)

(1) N is a cut of every model of IΣ0, called the standard cut.

(2) If M 6∼= N and M |= IΣn, then N is not Σn-definable in M︸ ︷︷ ︸
saturation condition

.

M is nonstandard



Second-order arithmetic

I LII = {0, 1,+,×, <,∈} has a number sort and a set sort.

I A quantifier is bounded if it is of the form ∀v<t or ∃v<t.

I ∆0
0,Σ

0
n,Π

0
n,∆

0
n are defined as in LI.

I Formulas in
⋃

n∈N Σ0
n are called arithmetical.

I ∆0
1-CA stands for the ∆0

1-comprehension axiom.

I RCA0 = IΣ0
1 + ∆0

1-CA. RCA∗0 = BΣ0
1 + exp + ∆0

1-CA.

I WKL0 = RCA0 + WKL. WKL∗0 = RCA∗0 + WKL.

I If M |= IΣ1, then (M,∆1-Def(M)) |= RCA0 + ¬WKL.

I If M |= BΣ1 + exp, then (M,∆1-Def(M)) |= RCA∗0 + ¬WKL.

I If M |= PA =
⋃

n∈N IΣn, then (M,Def(M)) |= WKL0.

Theorem (Harrington 1977)

If σ = ∀X ϕ(X ) where ϕ is arithmetical, then

WKL0 ` σ ⇒ RCA0 ` σ.



Coded sets

Let M ⊆e K |= IΣ0.

I Say c ∈ K codes S ⊆ M if

S = {x ∈ M : the xth prime divides c}.
I Denote by Cod(K/M) the set of all S ⊆ M coded in K .

Theorem (Scott 1962)

If M (e K |= IΣ0 and M |= exp, then (M,Cod(K/M)) |= WKL∗0.

Theorem (Enayat–W)

The following are equivalent for a countable (M,X ) |= IΣ0
0 + exp.

(a) (M,X ) |= WKL∗0.

(b) X = Cod(K/M) for some K )e M satisfying IΣ0.



Self-embeddings (pointwise fixing an initial segment)

Theorem (H. Friedman 1973; Dimitracopoulos–Paris 1988)

For every countable nonstandard M |= IΣ1, there exist I (e M and
an isomorphism M → I .

Theorem (Ressayre 1987)

The following are equivalent for all countable M |= IΣ0.

(a) M 6∼= N and M |= IΣ1.

(b) For every a ∈ M, there exist I (e M and an isomorphism
M → I which fixes all x < a.

Theorem (Tanaka 1997)

The following are equivalent for all countable (M,X ) |= IΣ0
0.

(a) M 6∼= N and (M,X ) |= WKL0.

(b) For every a ∈ M, there exist I (e M and an isomorphism
(M,X )→ (I ,Cod(M/I )) which fixes all x < a.



Self-embeddings

Proposition (folklore)

If M 6∼= N and M |= IΣ1, then N is not ∆0(Σ1)-definable in M.

closure of Σ1 under Boolean operations
and bounded quantification

Theorem (Dimitracopoulos–Paris 1988)

The following are equivalent for a countable M |= IΣ0 + exp.

(a) M ∼= I for some I (e M.

(b) M |= BΣ1 and N is not parameter-free ∆0(Σ1)-definable in M.

Theorem (Enayat–W)

The following are equivalent for a countable (M,X ) |= IΣ0
0 + exp.

(a) (M,X ) ∼= (I ,Cod(M/I )) for some I (e M.

(b) (M,X ) |= WKL∗0 and N is not parameter-free
∆0(Σ1)-definable in M.

not related to X



Tanaka’s Conjecture

Theorem (Harrington 1977)

If σ = ∀X ϕ(X ) where ϕ is arithmetical, then

WKL0 ` σ ⇒ RCA0 ` σ.

not true for
σ = ∃X ϕ(X )
in general
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Tanaka’s Conjecture (1995)

If σ = ∀X ∃!Y ϕ(X ,Y ) where ϕ is arithmetical, then

WKL0 ` σ ⇒ RCA0 ` σ.



The model theory behind Tanaka’s Conjecture

Theorem (Simpson–Tanaka–Yamazaki 2002)

If σ = ∀X ∃!Y ϕ(X ,Y ) where ϕ is arithmetical, then

Harrington:
σ = ∀X ϕ(X )

WKL0 ` σ ⇒ RCA0 ` σ.

Lemma (Harrington 1977)

Every countable (M,X ) |= RCA0 can be extended to
(M,Y ) |= WKL0.

Lemma (Simpson–Tanaka–Yamazaki 2002)

Every countable (M,X ) |= RCA0 can be extended to
(M,Y1), (M,Y2) |= WKL0 such that

(a) Y1 ∩ Y2 = X ; and

(b) (M,Y1) and (M,Y2) satisfy the same formulas with
parameters from (M,X ).



Models of WKL ≈ coded subsets in end extensions

I Ressayre, Tanaka: Having an isomorphism onto a proper cut
fixing any given initial segment characterizes IΣ1 and WKL0.

I Dimitracopoulos–Paris, Enayat–W: Having an isomorphism
onto a proper cut is a sign of saturation.

I Simpson–Tanaka–Yamazaki: Any countable (M,X ) |= RCA0

can be extended to (M,Y1), (M,Y2) |= WKL0 with minimal
intersection such that the same formulas with parameters
from (M,X ) are satisfied in them.

Questions

(1) Can every (M,X ) |= RCA∗0 be extended to (M,Y ) |= WKL∗0?

(2) Scott 1962: Given (M,X ) |= WKL0, can one always find
K )e M satisfying IΣ0 such that Cod(K/M) = X ?

(3) Can every countable (M,X ) |= RCA∗0 be extended to
(M,∆0

1-Def(M,A)) |= RCA∗0 for some A ⊆ M?
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