Reverse Mathematics and Equilibria of Continuous Games a joint work with NingNing Peng and Weiguang Peng

> Takeshi Yamazaki Mathematical Institute, Tohoku University, 8th September 2015

Definition of continuous games

Definition 1 (RCA₀). A continuous game (with n players) is a 2n-tuple $\langle A_1 \ldots, A_n; f_1 \ldots, f_n \rangle$ where

- 1. each A_i is a nonempty compact metric space,
- 2. each f_i is a continuous function form $\prod A_i \to \mathbb{R}$ with a modulus of uniform continuity.

From now, we'd like to consider an extension of Nash's theorem by Glicksberg on continuous games.

Fix a continuous game $G = \langle A_1 \dots, A_n; f_1 \dots, f_n \rangle$.

We call a probability measure μ over A_i , a mixed strategy of player *i*. Recall that in Reverse Mathematics, a probability measure μ over a compact metric space X is defined as a positive linear functional on C(X) with $\mu(1)$ where 1 is a constant function whose output is 1.

Of course, we define a mixed profile by a finite sequence of mixed strategies for all players. But to define an expected value of a pay-off function, we have to think of it as the product of measures. Recall again that C(X) is defined as a complete separable metric space given from a countable set of "polynomials" on X with sup-norm. In fact, to have the same space, we can use diverse notions of "polynomial". So, to define a product measure, we use the following version of S-W theorem.

Lemma 1 (RCA₀). Let X be a compact metric space with an evidence $\langle \langle x_{ij} : i \leq n_j \rangle : j \in \mathbb{N} \rangle$ for compactness. Assume that a sequence $\langle p_n : n \in \mathbb{N} \rangle$ of C(X) satisfies the following: (1) $p_0 = 1$,

(2) $\{p_n : n \in \mathbb{N}\}$ is closed under $+, \cdot$ and $r \cdot$ for any $r \in \mathbb{Q}$.

(3) there exists a function $h : \mathbb{N}^2 \to \mathbb{N}$ such that for each i and j, $p_{h(i,j)}$ satisfies $0 \le p_{h(i,j)} \le 1$, $p_{h(i,j)} = 1$ on $\overline{B(x_{ij}, 2^{-j})}$ and $p_{h(i,j)} = 0$ on $B(x_{ij}, 2^{-j+1})^c$.

Then, there exists an effective correspondence between $\hat{A} = \langle \mathbb{N}, d_A \rangle$ and C(X) where $d_A(n,m) = ||p_n - p_m||_{\infty}$ Let P_i be the "polynomials" over \mathbb{Q} from basic functions on A_i . Then $P = \{\sum_{j < m} p_{1j} \cdots p_{nj} : \text{each } p_{ij} \in P_i\}$ can be regarded as satisfying the conditions of Lemma 1 for C(A). $(A = \prod A_i)$

So we may assume that $C(A) = \langle P, || \cdot ||_{\infty} \rangle$. Then, given a sequence $\langle \mu_1, \ldots \mu_n \rangle$ such that each μ_i is a probability measure on A_i , we can define the product measure μ on A by

$$\mu(p_1\cdots p_n)=\prod_i\mu_i(p_i),$$

for any $p_i \in P_i$ with the canonical extension.

We identify a mixed profile as a product measure given from it.

Let μ be a mixed profile of G. Then we define the expected value of the payoff functions f_i by

$$f_i(\mu) = \int f_i d\mu \ (\text{i.e.,} = \mu(f_i))$$

.

Note that $\mu_{-i} = \langle \mu_j : j \neq i \rangle$ is a vector of mixed strategies for all players except *i*. We sometimes write (μ_i, μ_{-i}) instead of μ . **Definition 2** (RCA₀). A mixed Nash equilibrium of a continuous game $\langle A_1, \ldots, A_n; f_1 \ldots, f_n \rangle$ is a mixed profile μ^* such that for all *i*, $1 \leq i \leq n, f_i(\mu^*) \geq f_i(\mu_i, \mu^*_{-i})$ for any mixed strategy μ_i of player *i*.

Glicksberg's theorem

Glicksberg's theorem is proved in ACA_0 .

Theorem 2 (ACA₀). Every continuous game has a mixed Nash equilibrium.

Our proof is essentially based on Ozdaglar's proof on Glicksberg's theorem in his lecture notes. In the proof, the following fact is the most important.

Theorem 3. The following assertions are pairwise equivalent over RCA_0 .

(1) ACA_0 .

(2) Any sequence $\langle \mu_n : n \in \mathbb{N} \rangle$ of probability measures on a compact metric space X has a weak convergent subsequence $\langle \mu_{n_k} : k \in \mathbb{N} \rangle$, that is, there exists a probability measure μ such that $\mu(f) = \lim_{k \to \infty} \mu_{n_k}(f)$ for all $f \in C(X)$. **proof.** (1) \rightarrow (2). Let X be a compact metric space and C(X) coded by $(P, || \cdot ||_{\infty})$. Let $\langle p_i : i \in \mathbb{N} \rangle$ be an enumeration of the elements of P. For each $n \in \mathbb{N}$ and $\sigma \in 2^{<\mathbb{N}}$, we define a closed interval I_{σ}^i by

$$I_{\sigma}^{i} = \left[\left(\sum_{j < lh(\sigma)} \frac{\sigma(j)}{2^{j}} - 1 \right) ||p_{i}||_{\infty}, \left(\sum_{j < lh(\sigma)} \frac{\sigma(j)}{2^{j}} - 1 + \frac{1}{2^{Ih(\sigma)-1}} \right) ||p_{i}||_{\infty} \right].$$

Take any sequence $\langle \mu_n : n \in \mathbb{N} \rangle$ of probability measures on X. Then we have sequences $\langle n_k : k \in \mathbb{N} \rangle$ and $\langle \sigma_k^i : i, k \in \mathbb{N}, i \leq k \rangle$ such that

$$\ln(\sigma_k^i) = k, \, \sigma_{k+1}^i \succeq \sigma_k^i$$

and $\mu_{n_k}(p_i) \in I^i_{\sigma^i_k}$ for all $i \leq k$.

Then,
$$|I^i_{\sigma^i_k}| = 2^{-k+1} ||p_i||_{\infty}$$
 and $I^i_{\sigma^i_{k+1}} \subset I^i_{\sigma^i_k}$ for all $i \leq k$.

So, we can get a probability measure μ by

$$\mu(p) = \lim_{k \to \infty} \mu_{n_k}(p), \text{ for all } p \in P.$$

Thus, we have a sequence $\langle \mu_{n_k} : k \in \mathbb{N} \rangle$ which converges to μ .

The converse direction $(2) \rightarrow (1)$ is easy.

Let $\langle c_n : n \in \mathbb{N} \rangle$ be a sequence on [0, 1]. We may only show that it has a convergent subsequence.

Define a probability measure μ_n on [0,1] by $\mu_n(f) = f(c_n)$.

From our assumption (2), it has a subsequence

$$\mu_{n_k} \to \mu$$

for some probability measure μ . Take $f \in C([0,1])$ with f(x) = x.

Then, $\langle \mu_{n_k}(f) : k \in \mathbb{N} \rangle$ is a subsequence of $\langle c_n : n \in \mathbb{N} \rangle$ which converges to $\mu(f)$. \Box .

The rest of the proof of Theorem 2 is like this: Take any continuous game $G = \langle A_1 \dots, A_n; f_1 \dots, f_n \rangle$.

- 1. By compactness of $A = \prod_i A_i$, we can find a sequence of "essentially finite games" $\langle G_m : m \in \mathbb{N} \rangle$ such that $|f_i^m(\sigma) - f_i(\sigma)| \leq 2^{-m}$, where $G_m = \langle A_1 \dots, A_n; f_1^m \dots, f_n^m \rangle$
- 2. By the sequence version of Nash's theorem, there exists a sequence $\langle \mu_m : m \in \mathbb{N} \rangle$ of mixed strategies such that each μ_m is Nash equilibrium of G_m .
- 3. Using Theorem 3, pick up a subsequence $\langle \mu_{m_k} : k \in \mathbb{N} \rangle$ converging to μ .
- 4. By 1, $f_i(a_i, (\mu_{m_k})_{-i}) \leq f_i(\mu_{m_k}) + 2^{-m_k+1}$ for all $a_i \in A_i$. As $k \to \infty$, $f_i(a_i, (\mu)_{-i}) \leq f_i(\mu)$, that is, μ is a Nash equilibrium.

Remark.

- 1. An "essentially finite game" may not be continuous. Indeed, it is coded by using simple functions with arithmetical sets in ACA_0 .
- The sequence version of Nash's theorem can be proved in WKL₀.
 But, when we apply it to "essentially finite" games, so far, we require ACA₀ because we have to construct a probability measure on A from a mixed strategies of finite games on the way of the proof.
- 3. I don't know if Glicksberg's theorem implies ACA_0 or not.

Recall our version of Browder Fixed point theorem:

Theorem 4. The following assertion is equivalent to WKL_0 over RCA₀. Let \hat{A} be a nonempty compact convex "subspace" of \mathbb{R}^n . Let an open subset T of $\hat{A} \times \hat{A}$ satisfy the following conditions:

(i) for any $x \in \hat{A}$, there exists $y \in \hat{A}$ such that $(x, y) \in T$,

(ii) for any $x, y_1, y_2 \in \hat{A}$ and any positive reals r_1 and r_2 , if $(x, y_1), (x, y_2) \in T$ and $r_1 + r_2 = 1$, then $(x, r_1y_1 + r_2y_2) \in T$. Then there exists $x \in \hat{A}$ such that $(x, x) \in T$. **Definition 3** (RCA₀). A pure Nash equilibrium of a continuous game $\langle A_1, \ldots, A_n; f_1 \ldots, f_n \rangle$ is a profile $a^* \in A$ such that for all i, $1 \leq i \leq n, f_i(a^*) \geq f_i(a_i, a^*_{-i})$ for all $a_i \in A_i$.

A continuous function $f: [0,1] \to \mathbb{R}$ is concave if for any $x, y \in [0,1]$ $tf(x) + (1-t)f(y) \le f(tx + (1-t)y).$

Then, we have the following result.

Theorem 5. The following is provable in WKL₀. Let $G = \langle [0,1] \dots, [0,1]; f_1 \dots, f_n \rangle$ be a continuous game. Assume that any $f_i(\cdot, x_{-i})$ is concave. Then there exists a pure Nash equilibrium.

References

- 1 I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points. Proceedings of the National Academy of Sciences 38: 170-174, 1952.
- 2 N. Shioji and K. Tanaka. Fixed point theory in weak second order arithmetic. Annals of Pure and Applied Logic, 47:167-188, 1990.
- 3 S. G. Simpson. Subsystems of Second Order Arithmetic. 2nd Edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, 2009, XVI+ 444 pages

Thank you so much!!