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Definition of continuous games

Definition 1 (RCA0). A continuous game (with n players) is a

2n-tuple ⟨A1 . . . , An; f1 . . . , fn⟩ where

1. each Ai is a nonempty compact metric space,

2. each fi is a continuous function form
∏

Ai → R with a modulus

of uniform continuity.

From now, we’d like to consider an extension of Nash’s theorem by

Glicksberg on continuous games.

1



Fix a continuous game G = ⟨A1 . . . , An; f1 . . . , fn⟩.

We call a probability measure µ over Ai, a mixed strategy of player i.

Recall that in Reverse Mathematics, a probability measure µ over a

compact metric space X is defined as a positive linear functional on

C(X) with µ(1) where 1 is a constant function whose output is 1.

Of course, we define a mixed profile by a finite sequence of mixed

strategies for all players. But to define an expected value of a pay-off

function, we have to think of it as the product of measures.
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Recall again that C(X) is defined as a complete separable metric space

given from a countable set of ”polynomials” on X with sup-norm. In

fact, to have the same space, we can use diverse notions of

”polynomial”. So, to define a product measure, we use the following

version of S-W theorem.

Lemma 1 (RCA0). Let X be a compact metric space with an

evidence ⟨⟨xij : i ≤ nj⟩ : j ∈ N⟩ for compactness. Assume that a

sequence ⟨pn : n ∈ N⟩ of C(X) satisfies the following: (1) p0 = 1,

(2) {pn : n ∈ N} is cloesd under +, · and r· for any r ∈ Q.

(3) there exists a function h : N2 → N such that for each i and j,

ph(i,j) satisfies 0 ≤ ph(i,j) ≤ 1, ph(i,j) = 1 on B(xij , 2−j) and

ph(i,j) = 0 on B(xij , 2
−j+1)c.

Then, there exists an effective correspondence between Â = ⟨N, dA⟩
and C(X) where dA(n,m) = ||pn − pm||∞

3



Let Pi be the“polynomials” over Q from basic functions on Ai. Then

P = {
∑

j<m p1j · · · pnj : each pij ∈ Pi} can be regarded as satisfying

the conditions of Lemma 1 for C(A). (A =
∏

Ai)

So we may assume that C(A) = ⟨P, || · ||∞⟩. Then, given a sequence

⟨µ1, . . . µn⟩ such that each µi is a probability measure on Ai, we can

define the product measure µ on A by

µ(p1 · · · pn) =
∏
i

µi(pi),

for any pi ∈ Pi with the canonical extension.

We identify a mixed profile as a product measure given from it.
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Let µ be a mixed profile of G. Then we define the expected value of the

payoff functions fi by

fi(µ) =

∫
fidµ (i.e., = µ(fi))

.

Note that µ−i = ⟨µj : j ̸= i⟩ is a vector of mixed strategies for all

players except i. We sometimes write (µi, µ−i) instead of µ.

Definition 2 (RCA0). A mixed Nash equilibrium of a continuous

game ⟨A1, . . . , An; f1 . . . , fn⟩ is a mixed profile µ∗ such that for all i,

1 ≤ i ≤ n, fi(µ
∗) ≥ fi(µi, µ

∗
−i) for any mixed strategy µi of player i.
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Glicksberg’s theorem

Glicksberg’s theorem is proved in ACA0.

Theorem 2 (ACA0). Every continuous game has a mixed Nash

equilibrium.

Our proof is essentially based on Ozdaglar’s proof on Glicksberg’s

theorem in his lecture notes. In the proof, the following fact is the most

important.

Theorem 3. The following assertions are pairwise equivalent over

RCA0.

(1) ACA0.

(2) Any sequence ⟨µn : n ∈ N⟩ of probability measures on a compact

metric space X has a weak convergent subsequence ⟨µnk
: k ∈ N⟩,

that is, there exists a probability measure µ such that

µ(f) = limk→∞ µnk
(f) for all f ∈ C(X).
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proof. (1) → (2). Let X be a compact metric space and C(X) coded

by (P, || · ||∞). Let ⟨pi : i ∈ N⟩ be an enumeration of the elements of P .

For each n ∈ N and σ ∈ 2<N, we define a closed interval Iiσ by

Iiσ = [ (
∑

j<lh(σ)

σ(j)

2j
− 1)||pi||∞, (

∑
j<lh(σ)

σ(j)

2j
− 1 +

1

2Ih(σ)−1
)||pi||∞ ].

Take any sequence ⟨µn : n ∈ N⟩ of probability measures on X. Then we

have sequences ⟨nk : k ∈ N⟩ and ⟨σi
k : i, k ∈ N, i ≤ k⟩ such that

lh(σi
k) = k, σi

k+1 ⪰ σi
k

and µnk
(pi) ∈ Ii

σi
k
for all i ≤ k.
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Then, |Ii
σi
k
| = 2−k+1||pi||∞ and Ii

σi
k+1

⊂ Ii
σi
k
for all i ≤ k.

So, we can get a probability measure µ by

µ(p) = lim
k→∞

µnk
(p), for all p ∈ P.

Thus, we have a sequence ⟨µnk
: k ∈ N⟩ which converges to µ.

The converse direction (2)→(1) is easy.

Let ⟨cn : n ∈ N⟩ be a sequence on [0, 1]. We may only show that it has

a convergent subsequence.

Define a probability measure µn on [0, 1] by µn(f) = f(cn).

From our assumption (2), it has a subsequence

µnk
→ µ

for some probability measure µ. Take f ∈ C([0, 1]) with f(x) = x.
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Then, ⟨µnk
(f) : k ∈ N⟩ is a subsequence of ⟨cn : n ∈ N⟩ which

converges to µ(f). 2.

The rest of the proof of Theorem 2 is like this: Take any continuous

game G = ⟨A1 . . . , An; f1 . . . , fn⟩.

1. By compactness of A =
∏

i Ai, we can find a sequence of

“essentially finite games” ⟨Gm : m ∈ N⟩ such that

|fm
i (σ)− fi(σ)| ≤ 2−m, where Gm = ⟨A1 . . . , An; f

m
1 . . . , fm

n ⟩

2. By the sequence version of Nash’s theorem, there exists a sequence

⟨µm : m ∈ N⟩ of mixed strategies such that each µm is Nash

equilibrium of Gm.

3. Using Theorem 3, pick up a subsequence ⟨µmk
: k ∈ N⟩ converging

to µ.

4. By 1, fi(ai, (µmk
)−i) ≤ fi(µmk

) + 2−mk+1 for all ai ∈ Ai. As

k → ∞, fi(ai, (µ)−i) ≤ fi(µ), that is, µ is a Nash equilibrium.
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Remark.

1. An “essentially finite game” may not be continuous. Indeed, it is

coded by using simple functions with arithmetical sets in ACA0.

2. The sequence version of Nash’s theorem can be proved in WKL0.

But, when we apply it to “essentially finite” games, so far, we

require ACA0 because we have to construct a probability measure on

A from a mixed strategies of finite games on the way of the proof.

3. I don’t know if Glicksberg’s theorem implies ACA0 or not.
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Recall our version of Browder Fixed point theorem:

Theorem 4. The following assertion is equivalent to WKL0 over

RCA0. Let Â be a nonempty compact convex “subspace” of Rn. Let

an open subset T of Â× Â satisfy the following conditions:

(i) for any x ∈ Â, there exists y ∈ Â such that (x, y) ∈ T ,

(ii) for any x, y1, y2 ∈ Â and any positve reals r1 and r2, if

(x, y1), (x, y2) ∈ T and r1 + r2 = 1, then (x, r1y1 + r2y2) ∈ T .

Then there exists x ∈ Â such that (x, x) ∈ T .
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Definition 3 (RCA0). A pure Nash equilibrium of a continuous

game ⟨A1, . . . , An; f1 . . . , fn⟩ is a profile a∗ ∈ A such that for all i,

1 ≤ i ≤ n, fi(a
∗) ≥ fi(ai, a

∗
−i) for all ai ∈ Ai.

A continuous function f : [0, 1] → R is concave if for any x, y ∈ [0, 1]

tf(x) + (1− t)f(y) ≤ f(tx+ (1− t)y).

Then, we have the following result.

Theorem 5. The following is provable in WKL0. Let

G = ⟨[0, 1] . . . , [0, 1]; f1 . . . , fn⟩ be a continuous game. Assume that

any fi(·, x−i) is concave. Then there exists a pure Nash equilibrium.
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Thank you so much!!
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