Effective Reducibility for Smooth and Analytic Equivalence Relations on a Cone

Takayuki Kihara
University of California, Berkeley, USA

Joint Work with
Antonio Montalbán (UC Berkeley)

Computability Theory and Foundation of Mathematics 2015, Sep 2015
1 Invariant descriptive set theory:

2 Computable structure theory:
Invariant descriptive set theory: classification of classification problems of mathematical structures such as:

- Isomorphism relation on countable Boolean algebras.
- Isomorphism relation on countable p-groups.
- Isometry relation on Polish metric spaces.
- Linear isometry relation on separable Banach spaces.
- Isomorphism relation on separable C^*-algebras.

Key notion: Borel reducibility among equivalence relations on Borel spaces.

Computable structure theory:
1 Invariant descriptive set theory: classification of classification problems of mathematical structures such as:
 - Isomorphism relation on countable Boolean algebras.
 - Isomorphism relation on countable p-groups.
 - Isometry relation on Polish metric spaces.
 - Linear isometry relation on separable Banach spaces.
 - Isomorphism relation on separable C^*-algebras.

Key notion: Borel reducibility among equivalence relations on Borel spaces.

2 Computable structure theory: classification of classification problems of *computable structures* such as:
 - Isomorphism relation of computable trees.
 - Isomorphism relation of computable torsion-free abelian grps
 - Bi-embeddability relation of computable linear orders.

Key notion: *computable reducibility* among equivalence relations on *represented spaces*.
- \((X, \delta)\) is a **represented space** if \(\delta : \subseteq \mathbb{N}^\mathbb{N} \rightarrow X\) is a partial surjection.
- A point \(x \in X\) is **computable** if it has a computable name, that is, there is a computable \(p \in \delta^{-1}\{x\}\).
• \((X, \delta)\) is a **represented space** if \(\delta : \subseteq \mathbb{N}^\mathbb{N} \to X\) is a partial surjection.

• A point \(x \in X\) is **computable** if it has a computable name, that is, there is a computable \(p \in \delta^{-1}\{x\}\).

Example

1. The **space of countable \(L\)-structures** is represented:
 For a countable relational language \(L = (R_i)_{i \in \mathbb{N}}\), each countable \(L\)-structure \(K\) with domain \(\subseteq \omega\) is identified with its atomic diagram \(D(K) = \bigoplus_{i \in \mathbb{N}} R^K_i \in 2^\omega\).
 For a class \(\mathbb{K}\) of countable \(L\)-structures with \(\delta : D(K) \hookrightarrow K\), \((\mathbb{K}, \delta)\) forms a represented space.

2. Polish spaces, second-countable \(T_0\) space are represented.

3. Much more generally, every \(T_0\) space with a countable cs-network has a “universal” representation \(\delta\), i.e., for any representation \(\delta'\), there is a continuous map \(g\) such that \(\delta' = \delta \circ g\).
(X, δ) is a **represented space** if δ :⊆ N^N → X is a partial surjection.

A point x ∈ X is **computable** if it has a computable name, that is, there is a computable p ∈ δ^{-1}{x}.

The e-th computable point of X = (X, δ) is denoted by Φ^X_e.

Let E and F be equivalence relations on represented spaces X and Y, respectively. We say that E ≤_{eff} F if there is a partial computable function f :⊆ N → N such that for all i, j ∈ N with Φ^X_i, Φ^X_j ∈ dom(δ_X),

$$\Phi^X_i E \Phi^X_j \iff \Phi^Y_{f(i)} F \Phi^Y_{f(j)}.$$

Let E and F be equivalence relations on Borel spaces X and Y, respectively. We say that E ≤_{B} F if there is a Borel function f : X → Y such that for all x, y ∈ X,

$$x E y \iff f(x) F f(y).$$
Today’s Theme

“Effective reducibility on a cone”
i.e., the oracle-relativized version of effective reducibility.
Today’s Theme

“Effective reducibility on a cone”
i.e., the oracle-relativized version of effective reducibility.

- The oracle relativization of a computability-theoretic concept sometimes has applications in other areas of mathematics which does NOT involve any notion concerning computability:
Today’s Theme

“Effective reducibility on a cone”
i.e., the **oracle-relativized version** of effective reducibility.

- The **oracle relativization** of a computability-theoretic concept sometimes has applications in other areas of mathematics which does **NOT** involve any notion concerning computability:
 - (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The Louveau separation theorem $\xrightarrow{\sim}$ a decomposition theorem for Borel measurable functions in descriptive set theory.
Today’s Theme

“Effective reducibility on a cone”
i.e., the oracle-relativized version of effective reducibility.

- The oracle relativization of a computability-theoretic concept sometimes has applications in other areas of mathematics which does *NOT* involve any notion concerning computability:
 - (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The Louveau separation theorem \(\iff\) a decomposition theorem for Borel measurable functions in descriptive set theory.
 - (K.-Pauly) Turing degree spectrum / Scott ideals (\(\omega\)-models of \(WKL\)) \(\iff\) a refinement of R. Pol’s solution to Alexandrov’s problem in infinite dimensional topology.
Today’s Theme

“Effective reducibility on a cone”
i.e., the oracle-relativized version of effective reducibility.

- The oracle relativization of a computability-theoretic concept sometimes has applications in other areas of mathematics which does NOT involve any notion concerning computability:
 - (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The Louveau separation theorem \rightsquigarrow a decomposition theorem for Borel measurable functions in descriptive set theory.
 - (K.-Pauly) Turing degree spectrum / Scott ideals (ω-models of WKL) \rightsquigarrow a refinement of R. Pol’s solution to Alexandrov’s problem in infinite dimensional topology.
 - (K.-Pauly) Turing degree spectrum / Scott ideals \rightsquigarrow a construction of linearly non-isometric (ring non-isomorphic, etc.) examples of Banach algebras of real-valued Baire n functions on Polish spaces.
Let E and F be equivalence relations on represented spaces X and Y, respectively. We say that $E \leq^{\text{cone eff}} F$ if there is a partial computable function $f : \subseteq \mathbb{N} \to \mathbb{N}$ such that $(\exists r \in 2^\omega)(\forall z \geq_T r)$ for all $i, j \in \mathbb{N}$ with $\Phi^z_{X,i}, \Phi^z_{X,j} \in \text{dom}(\delta_X)$,

$$\Phi^z_{X,i} E \Phi^z_{X,j} \iff \Phi^{z,Y}_{f(i)} F \Phi^{z,Y}_{f(j)}.$$

$$E \leq_c F \implies E \leq_B F$$

\downarrow

$$E \leq^{\text{cone eff}} F \implies E \leq^{\text{cone hyp}} F$$

- E is said to be **analytic $\leq^{\text{cone eff}}$-complete** if $F \leq^{\text{cone eff}} E$ for any analytic equivalence relation F.

- E is said to be **$\leq^{\text{cone eff}}$-intermediate** if
 - E is not analytic $\leq^{\text{cone eff}}$-complete,
 - and there is no Borel eq. relation F such that $E \leq^{\text{cone eff}} F$.

Takayuki Kihara (UC Berkeley)
Effective Reducibility on a Cone
The Vaught Conjecture (1961)

The number of countable models of a first-order theory is at most countable or 2^{\aleph_0}.

- (The $L_{\omega_1 \omega}$-Vaught conjecture) The number of countable models of an $L_{\omega_1 \omega}$-theory is at most countable or 2^{\aleph_0}.

- (Topological Vaught conjecture) The number of orbits of a continuous action of a Polish group on a standard Borel space is at most countable or 2^{\aleph_0}.
The Vaught Conjecture (1961)

The number of countable models of a first-order theory is at most countable or 2^{\aleph_0}.

- (The $\mathcal{L}_{\omega_1 \omega}$-Vaught conjecture) The number of countable models of an $\mathcal{L}_{\omega_1 \omega}$-theory is at most countable or 2^{\aleph_0}.
- (Topological Vaught conjecture) The number of orbits of a continuous action of a Polish group on a standard Borel space is at most countable or 2^{\aleph_0}.

Fact (Becker 2013; Knight and Montalbán)

Suppose that there is no $\mathcal{L}_{\omega_1 \omega}$-axiomatizable class of countable structures whose isomorphism relation is $\leq^{\text{cone}}_{\text{eff}}$-intermediate then, the $\mathcal{L}_{\omega_1 \omega}$-Vaught conjecture is true.

Indeed, if there is no $\leq^{\text{cone}}_{\text{eff}}$-intermediate orbit equivalence relation then, the topological Vaught conjecture is true.
The differences of \leq_B and $\leq_{\text{cone}}^{\text{eff}}$ among non-Borel orbit eq. relations:

For Borel reducibility (H. Friedman and Stenley 1989):

- The isomorphism relation on an $L_{\omega_1 \omega}$-axiomatizable class of countable structure \textit{CANNOT} be analytic \leq_B-complete.
- Moreover, the isomorphism relation on countable torsion abelian groups is \textit{NOT} \leq_B-complete even among isomorphism relations on classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

- The isomorphism relations on computable graphs, torsion-free abelian groups, fields (of a fixed characteristic), etc. are \leq_{eff}-complete analytic equivalence relations.
- The isomorphism relation on computable torsion abelian groups is also a \leq_{eff}-complete analytic equivalence relation.
The differences of \leq_B and $\leq_{\text{cone eff}}$ among non-Borel orbit eq. relations:

For Borel reducibility (H. Friedman and Stenley 1989):

- The isomorphism relation on an $L_{\omega_1\omega}$-axiomatizable class of countable structure \textit{CANNOT} be analytic \leq_B-complete.
- Moreover, the isomorphism relation on countable torsion abelian groups is \textit{NOT \leq_B-complete} even among isomorphism relations on classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

- The isomorphism relations on countable graphs, torsion-free abelian groups, fields (of a fixed characteristic), etc. are $\leq_{\text{cone eff}}$-complete analytic equivalence relations.
- The isomorphism relation on countable torsion abelian groups is also a $\leq_{\text{cone eff}}$-complete analytic equivalence relation.
The differences of \leq_B and $\leq_{\text{cone eff}}$ among non-Borel orbit eq. relations:

For Borel reducibility (H. Friedman and Stenley 1989):

- The isomorphism relation on an $L_{\omega_1\omega}$-axiomatizable class of countable structure CANNOT be analytic \leq_B-complete.

- Moreover, the isomorphism relation on countable torsion abelian groups is NOT \leq_B-complete even among isomorphism relations on classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

- The isomorphism relations on countable graphs, torsion-free abelian groups, fields (of a fixed characteristic), etc. are $\leq_{\text{cone eff}}$-complete analytic equivalence relations.

- The isomorphism relation on countable torsion abelian groups is also a $\leq_{\text{cone eff}}$-complete analytic equivalence relation.

In this talk, we focus on the differences of \leq_B and $\leq_{\text{cone eff}}$ among

- non-Borel non-orbit analytic equivalence relations,

- and smooth equivalence relations.
Non-orbit analytic equivalence relations:

\[xE_{\text{wo}}y : \iff \text{either } x, y \notin \text{WO or } x \text{ and } y \text{ are isomorphic as w.o.} \]

\[xE_{\text{ck}}y : \iff \omega_1^x = \omega_1^y \text{ holds.} \]

Fact

- (Gao) \(E_{\text{wo}} \) and \(E_{\text{ck}} \) are \(\leq_B \)-incomparable.
- (Coskey-Hamkins 2011) \(E_{\text{wo}} \) and \(E_{\text{ck}} \) are \(\leq_{\text{ITTM}} \)-bireducible.
Non-orbit analytic equivalence relations:

\[x \mathrel{E_{wo}} y : \iff \text{either } x, y \not\in \text{WO or } x \text{ and } y \text{ are isomorphic as w.o.} \]

\[x \mathrel{E_{ck}} y : \iff \omega_1^x = \omega_1^y \text{ holds.} \]

Fact

- (Gao) \(E_{wo} \) and \(E_{ck} \) are \(\leq_B \)-incomparable.
- (Coskey-Hamkins 2011) \(E_{wo} \) and \(E_{ck} \) are \(\leq_{ITTM} \)-bireducible.

Theorem

- \(E_{ck} \leq_{\text{eff}} \text{cone} E_{wo} \).
- If \(V = L \), then \(E_{ck} <_{\text{eff}} \text{cone} E_{wo} \).
Non-orbit analytic equivalence relations:

$$xE_\text{wo}y : \iff \text{either } x, y \not\in \text{WO} \text{ or } x \text{ and } y \text{ are isomorphic as w.o.}$$

$$xE_\text{ck}y : \iff \omega_1^x = \omega_1^y \text{ holds.}$$

Fact

- (Gao) E_wo and E_ck are \leq_B-incomparable.
- (Coskey-Hamkins 2011) E_wo and E_ck are \leq_{ITTM}-bireducible.

Theorem

- $E_\text{ck} \leq_{\text{eff}}^{\text{cone}} E_\text{wo}$.
- If $V = L$, then $E_\text{ck} \prec_{\text{eff}}^{\text{cone}} E_\text{wo}$.

Conjecture

If $x^\#$ exists for any real x, then $E_\text{ck} \equiv_{\text{eff}}^{\text{cone}} E_\text{wo}$.
\(T(A, B) \): the tree of partial isomorphisms between \(A \) and \(B \).

For partial orders \(A = (A, \leq_A) \) and \(B = (B, \leq_B) \) with \(A, B \subseteq \omega \) \(\sigma \oplus \tau \in T(A,B) \) iff

1. \((i, j \in A, i, j < |\sigma|) \) \(i \leq_A j \) iff \(\sigma(i) \leq_B \sigma(j) \),
2. \((i, j \in B, i, j < |\tau|) \) \(i \leq_B j \) iff \(\tau(i) \leq_A \tau(j) \),
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \) \(\sigma(i) = j \) iff \(\tau(j) = i \).
\(T(\mathcal{A}, \mathcal{B}) \): the tree of partial isomorphisms between \(\mathcal{A} \) and \(\mathcal{B} \).

For partial orders \(\mathcal{A} = (A, \leq_A) \) and \(\mathcal{B} = (B, \leq_B) \) with \(A, B \subseteq \omega \)
\(\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \) iff

1. \((i, j \in A, i, j < |\sigma|) \ i \leq_A j \iff \sigma(i) \leq_B \sigma(j), \)
2. \((i, j \in B, i, j < |\tau|) \ i \leq_B j \iff \tau(i) \leq_A \tau(j), \)
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \iff \tau(j) = i. \)
$T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B}.

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$

$\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

1. $(i, j \in A, i, j < |\sigma|) \ i \leq_A j \iff \sigma(i) \leq_B \sigma(j)$,
2. $(i, j \in B, i, j < |\tau|) \ i \leq_B j \iff \tau(i) \leq_A \tau(j)$,
3. $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \iff \tau(j) = i$.
$T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B}.

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$

$\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

1. \((i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),\)

2. \((i, j \in B, i, j < |\tau|) i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),\)

3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.\)
\(T(\mathcal{A}, \mathcal{B}) \): the tree of partial isomorphisms between \(\mathcal{A} \) and \(\mathcal{B} \).

For partial orders \(\mathcal{A} = (A, \leq_A) \) and \(\mathcal{B} = (B, \leq_B) \) with \(A, B \subseteq \omega \) \(\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \) iff

1. \((i, j \in A, i, j < |\sigma|) \ i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j) \),
2. \((i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j) \),
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \text{ iff } \tau(j) = i \).
\(T(\mathcal{A}, \mathcal{B}) \): the tree of partial isomorphisms between \(\mathcal{A} \) and \(\mathcal{B} \).

For partial orders \(\mathcal{A} = (A, \leq_A) \) and \(\mathcal{B} = (B, \leq_B) \) with \(A, B \subseteq \omega \)
\(\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \) iff

1. \((i, j \in A, i, j < |\sigma|) \) \(i \leq_A j \) iff \(\sigma(i) \leq_B \sigma(j) \),
2. \((i, j \in B, i, j < |\tau|) \) \(i \leq_B j \) iff \(\tau(i) \leq_A \tau(j) \),
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \) \(\sigma(i) = j \) iff \(\tau(j) = i \).
\(T(\mathcal{A}, \mathcal{B}) \): the tree of partial isomorphisms between \(\mathcal{A} \) and \(\mathcal{B} \).

For partial orders \(\mathcal{A} = (A, \leq_A) \) and \(\mathcal{B} = (B, \leq_B) \) with \(A, B \subseteq \omega \)
\(\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \) iff

1. \((i, j \in A, i, j < |\sigma|)\ i \leq_A j \) iff \(\sigma(i) \leq_B \sigma(j) \),

2. \((i, j \in B, i, j < |\tau|)\ i \leq_B j \) iff \(\tau(i) \leq_A \tau(j) \),

3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|)\ \sigma(i) = j \) iff \(\tau(j) = i \).
$T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B}.

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$

$\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

1. $(i, j \in A, i, j < |\sigma|) \ i \leq_A j$ iff $\sigma(i) \leq_B \sigma(j)$,

2. $(i, j \in B, i, j < |\tau|) \ i \leq_B j$ iff $\tau(i) \leq_A \tau(j)$,

3. $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j$ iff $\tau(j) = i$.

Takayuki Kihara (UC Berkeley)
Effective Reducibility on a Cone
$T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B}.

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$

\[\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \text{ iff} \]

1. $(i, j \in A, i, j < |\sigma|) \ i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j)$,

2. $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j)$,

3. $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \text{ iff } \tau(j) = i$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
$T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B}.

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$

$\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

1. $(i, j \in A, i, j < |\sigma|) \ i \leq_A j$ iff $\sigma(i) \leq_B \sigma(j)$,
2. $(i, j \in B, i, j < |\tau|) \ i \leq_B j$ iff $\tau(i) \leq_A \tau(j)$,
3. $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j$ iff $\tau(j) = i$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
\(T(\mathcal{A}, \mathcal{B}) \): the tree of partial isomorphisms between \(\mathcal{A} \) and \(\mathcal{B} \).

For partial orders \(\mathcal{A} = (A, \leq_A) \) and \(\mathcal{B} = (B, \leq_B) \) with \(A, B \subseteq \omega \)
\(\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \) iff

1. \((i, j \in A, i, j < |\sigma|) \ i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j), \)
2. \((i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j), \)
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \text{ iff } \tau(j) = i. \)
\(T(\mathcal{A}, \mathcal{B}) \): the tree of partial isomorphisms between \(\mathcal{A} \) and \(\mathcal{B} \).

For partial orders \(\mathcal{A} = (A, \leq_A) \) and \(\mathcal{B} = (B, \leq_B) \) with \(A, B \subseteq \omega \)
\(\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \) iff

1. \((i, j \in A, i, j < |\sigma|) \ i \leq_A j \ \text{iff} \ \sigma(i) \leq_B \sigma(j) \),
2. \((i, j \in B, i, j < |\tau|) \ i \leq_B j \ \text{iff} \ \tau(i) \leq_A \tau(j) \),
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \ \text{iff} \ \tau(j) = i \).
\(T(A, B) \): the tree of partial isomorphisms between \(A \) and \(B \).

For partial orders \(A = (A, \leq_A) \) and \(B = (B, \leq_B) \) with \(A, B \subseteq \omega \)
\(\sigma \oplus \tau \in T(A, B) \) iff

1. \((i, j \in A, i, j < |\sigma|) \) \(i \leq_A j \) iff \(\sigma(i) \leq_B \sigma(j) \),
2. \((i, j \in B, i, j < |\tau|) \) \(i \leq_B j \) iff \(\tau(i) \leq_A \tau(j) \),
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \) \(\sigma(i) = j \) iff \(\tau(j) = i \).
$T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B}.

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$:

1. $(i, j \in A, i, j < |\sigma|) \ i \leq_A j$ iff $\sigma(i) \leq_B \sigma(j)$,
2. $(i, j \in B, i, j < |\tau|) \ i \leq_B j$ iff $\tau(i) \leq_A \tau(j)$,
3. $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j$ iff $\tau(j) = i$.
\(T(\mathcal{A}, \mathcal{B}) \): the tree of partial isomorphisms between \(\mathcal{A} \) and \(\mathcal{B} \).

For partial orders \(\mathcal{A} = (A, \leq_A) \) and \(\mathcal{B} = (B, \leq_B) \) with \(A, B \subseteq \omega \),

\[\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B}) \text{ iff } \]

1. \((i, j \in A, i, j < |\sigma|) \ i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),\]
2. \((i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),\]
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \text{ iff } \tau(j) = i.\]
\(T(A, B) \): the tree of partial isomorphisms between \(A \) and \(B \).

For partial orders \(A = (A, \leq_A) \) and \(B = (B, \leq_B) \) with \(A, B \subseteq \omega \)
\(\sigma \oplus \tau \in T(A, B) \) iff

1. \((i, j \in A, i, j < |\sigma|) \ i \leq_A j \) iff \(\sigma(i) \leq_B \sigma(j) \),
2. \((i, j \in B, i, j < |\tau|) \ i \leq_B j \) iff \(\tau(i) \leq_A \tau(j) \),
3. \((i \in A, i < |\sigma|, j \in B, j < |\tau|) \ \sigma(i) = j \) iff \(\tau(j) = i \).
$T(A, B)$: the tree of partial isomorphisms between A and B.

Lemma (Upper Bound)

$\alpha < \beta < \omega_1$: ordinals.

$A \in \text{LO}$ s.t. $\text{otype}(A) = \alpha + \lambda$, where λ has no least element.

$B \in \text{LO}$ s.t. $\text{otype}(B) = \beta + \theta$ for a linear order θ.

Then, $\text{rank}(T(A, B)) \leq \omega^{\alpha+2}$.

β is α-closed if $(\forall \gamma < \alpha)(\forall \delta < \beta) \delta + \gamma < \beta$.

Lemma (Lower Bound)

$\alpha, \beta < \omega_1$: ordinals, β is ω^α-closed, $c \in \omega$

$A \in \text{WO}$ s.t. $\text{otype}(A) = \omega^\alpha \cdot c$.

$B \in \text{WO}$ s.t. $\text{otype}(B) = \beta$.

Then, $\text{rank}(T(A, B)) \geq \omega \cdot \alpha$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
Lemma

\(\mathcal{A} \): a well order s.t. \(\text{otype}(\mathcal{A}) = \alpha \).

\(\mathcal{B} \): a linear order s.t. \(\text{otype}(\mathcal{B}) = \beta + \theta \) for \(\beta > \alpha \) and linear \(\theta \).

Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+1} \).
Lemma

\(\mathcal{A} \): a well order s.t. \(\text{otype}(\mathcal{A}) = \alpha \).

\(\mathcal{B} \): a linear order s.t. \(\text{otype}(\mathcal{B}) = \beta + \theta \) for \(\beta > \alpha \) and linear \(\theta \).

Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+1} \).
Lemma

\(\mathcal{A}\): a well order s.t. \(\text{otype}(\mathcal{A}) = \alpha\).
\(\mathcal{B}\): a linear order s.t. \(\text{otype}(\mathcal{B}) = \beta + \theta\) for \(\beta > \alpha\) and linear \(\theta\).
Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+1}\).
Lemma

\(\mathcal{A} \): a well order s.t. \(\text{otype}(\mathcal{A}) = \alpha \).
\(\mathcal{B} \): a linear order s.t. \(\text{otype}(\mathcal{B}) = \beta + \theta \) for \(\beta > \alpha \) and linear \(\theta \).
Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+1} \).
Lemma

\mathcal{A}: a well order s.t. $\text{otype}(\mathcal{A}) = \alpha$.
\mathcal{B}: a linear order s.t. $\text{otype}(\mathcal{B}) = \beta + \theta$ for $\beta > \alpha$ and linear θ.
Then, $\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+1}$.
Lemma

\mathcal{A}: a well order s.t. $\text{otype}(\mathcal{A}) = \alpha$.
\mathcal{B}: a linear order s.t. $\text{otype}(\mathcal{B}) = \beta + \theta$ for $\beta > \alpha$ and linear θ.
Then, $\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+1}$.

$$\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \sup_k \text{rank}T(\mathcal{A} \upharpoonright k, \mathcal{B} \upharpoonright n) + 2n + 1.$$
Lemma (Upper Bound)

$A \in \text{LO}$ s.t. $\text{otype}(A) = \alpha + \lambda$, where λ has no least element.

$B \in \text{LO}$ s.t. $\text{otype}(B) = \beta + \theta$ for $\beta > \alpha$ and linear θ.

Then, $\text{rank}(T(A, B)) \leq \omega^{\alpha+2}$.

\[\begin{array}{ccc}
A & B & T(A, B) \\
\uparrow \lambda & \uparrow \theta & \\
\alpha \times & \beta &
\end{array}\]
Lemma (Upper Bound)

$\mathcal{A} \in \text{LO}$ s.t. $\text{otype}(\mathcal{A}) = \alpha + \lambda$, where λ has no least element.

$\mathcal{B} \in \text{LO}$ s.t. $\text{otype}(\mathcal{B}) = \beta + \theta$ for $\beta > \alpha$ and linear θ.

Then, $\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+2}$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
Lemma (Upper Bound)

\[A \in \mathcal{LO} \text{ s.t. } \text{otype}(A) = \alpha + \lambda, \text{ where } \lambda \text{ has no least element}. \]

\[B \in \mathcal{LO} \text{ s.t. } \text{otype}(B) = \beta + \theta \text{ for } \beta > \alpha \text{ and linear } \theta. \]

Then, \(\text{rank}(T(A, B)) \leq \omega^{\alpha + 2}. \)
Lemma (Upper Bound)

\(\mathcal{A} \in \text{LO} \) s.t. \(\text{otype}(\mathcal{A}) = \alpha + \lambda \), where \(\lambda \) has no least element.
\(\mathcal{B} \in \text{LO} \) s.t. \(\text{otype}(\mathcal{B}) = \beta + \theta \) for \(\beta > \alpha \) and linear \(\theta \).
Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+2} \).
Lemma (Upper Bound)

\(\mathcal{A} \in \text{LO} \) s.t. \(\text{otype}(\mathcal{A}) = \alpha + \lambda \), where \(\lambda \) has no least element.

\(\mathcal{B} \in \text{LO} \) s.t. \(\text{otype}(\mathcal{B}) = \beta + \theta \) for \(\beta > \alpha \) and linear \(\theta \).

Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+2} \).
Lemma (Upper Bound)

$\mathcal{A} \in \text{LO}$ s.t. $\text{otype}(\mathcal{A}) = \alpha + \lambda$, where λ has no least element. $\mathcal{B} \in \text{LO}$ s.t. $\text{otype}(\mathcal{B}) = \beta + \theta$ for $\beta > \alpha$ and linear θ. Then, $\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+2}$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
Lemma (Upper Bound)

$\mathcal{A} \in \text{LO}$ s.t. $\text{otype}(\mathcal{A}) = \alpha + \lambda$, where λ has no least element.

$\mathcal{B} \in \text{LO}$ s.t. $\text{otype}(\mathcal{B}) = \beta + \theta$ for $\beta > \alpha$ and linear θ.

Then, $\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+2}$.
Lemma (Upper Bound)

 Gathering, $A \in \mathcal{A}$ s.t. $\text{otype}(A) = \alpha + \lambda$, where λ has no least element. $B \in \mathcal{B}$ s.t. $\text{otype}(B) = \beta + \theta$ for $\beta > \alpha$ and linear θ.

Then, $\text{rank}(T(A, B)) \leq \omega^{\alpha+2}$.
Lemma (Upper Bound)

\(A \in \mathcal{LO} \text{ s.t. } \text{otype}(A) = \alpha + \lambda, \) where \(\lambda \) has no least element.

\(B \in \mathcal{LO} \text{ s.t. } \text{otype}(B) = \beta + \theta \) for \(\beta > \alpha \) and linear \(\theta \).

Then, \(\text{rank}(T(A, B)) \leq \omega^{\alpha+2} \).
Lemma (Upper Bound)

\[\mathcal{A} \in \text{LO} \text{ s.t. } \text{otype}(\mathcal{A}) = \alpha + \lambda, \text{ where } \lambda \text{ has no least element. } \]

\[\mathcal{B} \in \text{LO} \text{ s.t. } \text{otype}(\mathcal{B}) = \beta + \theta \text{ for } \beta > \alpha \text{ and linear } \theta. \]

Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+2}. \)

- \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \leq \sup_k (\sup_m \text{rank} T(\mathcal{A} \upharpoonright l_k, \mathcal{B} \upharpoonright m) + l_k) + 2n + 1. \)
- \(\text{rank}(\mathcal{A} \upharpoonright l_k, \mathcal{B} \upharpoonright m) \leq \omega^{\alpha_m + 1}, \text{ where } \alpha_m := \text{otype}(\mathcal{B} \upharpoonright m) < \alpha. \)
\(\mathcal{A} \in \text{WO s.t. otype}(\mathcal{A}) = \omega^\alpha. \)
\(\mathcal{B} \in \text{WO s.t. otype}(\mathcal{B}) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta. \)
Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \)
\[A \in \text{WO s.t. } \text{otype}(A) = \omega^\alpha. \]
\[B \in \text{WO s.t. } \text{otype}(B) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta. \]
Then, \(\text{rank}(T(A, B)) \geq \omega \cdot \alpha. \)
\[A \in \text{WO s.t. } \text{otype}(A) = \omega^\alpha. \]

\[B \in \text{WO s.t. } \text{otype}(B) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta. \]

Then, \(\text{rank}(T(A, B)) \geq \omega \cdot \alpha. \)
$\mathcal{A} \in \text{WO}$ s.t. $\text{otype}(\mathcal{A}) = \omega^\alpha$.
$\mathcal{B} \in \text{WO}$ s.t. $\text{otype}(\mathcal{B}) = \beta$ s.t. $(\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta$.
Then, $\text{rank}(T(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha$.
$\mathcal{A} \in \text{WO s.t. } \text{otype}(\mathcal{A}) = \omega^\alpha$.

$\mathcal{B} \in \text{WO s.t. } \text{otype}(\mathcal{B}) = \beta$ s.t. $(\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta$.

Then, $\text{rank}(T(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
\(A \in \text{WO s.t. } \text{otype}(A) = \omega^\alpha. \)
\(B \in \text{WO s.t. } \text{otype}(B) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \ \delta + \gamma < \beta. \)
Then, \(\text{rank}(T(A, B)) \geq \omega \cdot \alpha. \)
\(\mathcal{A} \in \text{WO} \text{ s.t. } \text{otype}(\mathcal{A}) = \omega^\alpha. \)

\(\mathcal{B} \in \text{WO} \text{ s.t. } \text{otype}(\mathcal{B}) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta. \)

Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \)
$\mathcal{A} \in \text{WO s.t. otype}(\mathcal{A}) = \omega^\alpha$.
$\mathcal{B} \in \text{WO s.t. otype}(\mathcal{B}) = \beta$ s.t. $(\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \, \delta + \gamma < \beta$.
Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha \).
$A \in \text{WO s.t. otype}(A) = \omega^\alpha$.
$B \in \text{WO s.t. otype}(B) = \beta$ s.t. $(\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \, \delta + \gamma < \beta$.
Then, $\text{rank}(T(A, B)) \geq \omega \cdot \alpha$.

- If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.
- If α is successor, we use $\omega^{(\alpha-1)} \cdot j$ instead of ω^α_j.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
\[A \in \text{WO s.t. } \text{otype}(A) = \omega^\alpha. \]
\[B \in \text{WO s.t. } \text{otype}(B) = \beta \quad \text{s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \ \delta + \gamma < \beta. \]
Then, \(\text{rank}(T(A, B)) \geq \omega \cdot \alpha. \)

- If \(\alpha \) is limit, choose an increasing seq. \(\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha. \)
- If \(\alpha \) is successor, we use \(\omega^{(\alpha-1)} \cdot j \) instead of \(\omega^\alpha \).
\(\mathcal{A} \in \text{WO} \text{ s.t. } \text{otype}(\mathcal{A}) = \omega^\alpha. \)

\(\mathcal{B} \in \text{WO} \text{ s.t. } \text{otype}(\mathcal{B}) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta. \)

Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \)

- If \(\alpha \) is limit, choose an increasing seq. \(\alpha_0 < \alpha_1 < \cdots \to \alpha. \)
- If \(\alpha \) is successor, we use \(\omega^{(\alpha-1)} \cdot j \) instead of \(\omega^{\alpha_j}. \)
\(\mathcal{A} \in \text{WO s.t. } \text{otype}(\mathcal{A}) = \omega^\alpha. \)

\(\mathcal{B} \in \text{WO s.t. } \text{otype}(\mathcal{B}) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta. \)

Then, \(\text{rank}(T(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \)

- If \(\alpha \) is limit, choose an increasing seq. \(\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha. \)
- If \(\alpha \) is successor, we use \(\omega^{(\alpha - 1)} \cdot j \) instead of \(\omega^{\alpha_j}. \)
\(A \in \text{WO} \) s.t. \(\text{otype}(A) = \omega^\alpha \).
\(B \in \text{WO} \) s.t. \(\text{otype}(B) = \beta \) s.t. \((\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta \).
Then, \(\text{rank}(T(A, B)) \geq \omega \cdot \alpha \).

- If \(\alpha \) is limit, choose an increasing seq. \(\alpha_0 < \alpha_1 < \cdots \to \alpha \).
- If \(\alpha \) is successor, we use \(\omega^{(\alpha - 1)} \cdot j \) instead of \(\omega^{\alpha_j} \).
$A \in \text{WO}$ s.t. $\text{otype}(A) = \omega^\alpha$.
$B \in \text{WO}$ s.t. $\text{otype}(B) = \beta$ s.t. $(\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta$.
Then, $\text{rank}(T(A, B)) \geq \omega \cdot \alpha$.

- If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.
- If α is successor, we use $\omega^{(\alpha-1)} \cdot j$ instead of ω^{α_j}.
\(A \in \text{WO} \) s.t. \(\text{otype}(A) = \omega^\alpha \).
\(B \in \text{WO} \) s.t. \(\text{otype}(B) = \beta \) s.t. \((\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta \).
Then, \(\text{rank}(T(A,B)) \geq \omega \cdot \alpha \).

- If \(\alpha \) is limit, choose an increasing seq. \(\alpha_0 < \alpha_1 < \cdots \to \alpha \).
- If \(\alpha \) is successor, we use \(\omega^{(\alpha-1)} \cdot j \) instead of \(\omega^\alpha \).
\[A \in \mathrm{WO} \text{ s.t. } \text{o-type}(A) = \omega^\alpha. \]
\[B \in \mathrm{WO} \text{ s.t. } \text{o-type}(B) = \beta \text{ s.t. } (\forall \gamma < \omega^\alpha)(\forall \delta < \beta) \delta + \gamma < \beta. \]
Then, \[\text{rank}(T(A, B)) \geq \omega \cdot \alpha. \]

- If \(\alpha \) is limit, choose an increasing seq. \(\alpha_0 < \alpha_1 < \cdots \to \alpha \).
- If \(\alpha \) is successor, we use \(\omega^{(\alpha-1)} \cdot j \) instead of \(\omega^{\alpha_j} \).
- \(A_0 \simeq B_0 \simeq \omega^\alpha \cdot (c - 1) \) and \(A_2 \simeq B_2 \simeq \gamma_1 \).
- \(A_1^j \simeq \omega^{\alpha_j}, B_1 \simeq \gamma_0; A_3 \simeq \omega^\alpha, B_3 \) is \(\omega^\alpha \)-closed.
(L, <L): a linear order
Define the linear order \(\omega^L = (\text{CNF}(L), \leq_{\omega^L})\) as follows:

1. \(\text{CNF}(L) = \{(\lambda_i, c_i)_{i<n} \in (L \times \omega)^{<\omega} : (\forall i) \lambda_{i+1} <_L \lambda_i\},\)
2. \((\lambda_i, c_i)_{i<n} \leq_{\omega^L} (\lambda'_j, c'_j)_{j<m} \iff (\exists k < m, n) \text{ s.t.}\)
 - \((\forall i < k) \lambda_i = \lambda'_i\) and
 - \(\lambda_k <_L \lambda'_k\) or \((\lambda_k = \lambda'_k\) and \(c_i \leq c^*_i\)).

Inductively define \(\exp^0(L) = L\) and \(\exp^{n+1}(L) = \omega^\exp^n(L)\).
Define \(\varepsilon(L)\) by \(\sum_{n \in \omega} \exp^n(L)\).
(\(L, <_L\)): a linear order
Define the linear order \(\omega^L = (\text{CNF}(L), \leq_{\omega^L})\) as follows:

1. \(\text{CNF}(L) = \{ (\lambda_i, c_i)_{i < n} \in (L \times \omega)^{<\omega} : (\forall i) \lambda_{i+1} <_L \lambda_i \}\),
2. \((\lambda_i, c_i)_{i < n} \leq_{\omega^L} (\lambda'_j, c'_j)_{j < m} \iff (\exists k < m, n) \text{ s.t.}
 \begin{align*}
 & (\forall i < k) \lambda_i = \lambda'_i \text{ and} \\
 & \lambda_k <_L \lambda'_k \text{ or } (\lambda_k = \lambda'_k \text{ and } c_i \leq c^*_i).\end{align*}\)

- If \(L\) is not well-ordered, then so is \(\omega^L\).
- \(L \in \text{WO}, (\lambda_i, c_i)_{i < n} \approx \sum_{i < n} \omega^{\lambda_i} \cdot c_i.\)
- \(L \in \text{WO}, \text{oype}(L) = \alpha \Rightarrow \text{oype}(\omega^L) = \omega^\alpha.\)

Inductively define \(\exp^0(L) = L\) and \(\exp^{n+1}(L) = \omega^{\exp^n(L)}.\)

Define \(\varepsilon(L)\) by \(\sum_{n \in \omega} \exp^n(L)\).
Proof of $E_{ck} \leq_{cone}^{eff} E_{wo}$

1. H^x: Harrison’s pseudo well order relative to x whose order type is $\omega^x_1 \cdot (1 + \eta)$.

2. Given z and $x \leq_T z$, define $f(x) := \varepsilon(KB(T(H^x, H^z)))$.
Proof of $E_{ck} \leq_{cone\ eff} E_{wo}$

1. H^x: Harrison’s pseudo well order relative to x whose order type is $\omega^x_1 \cdot (1 + \eta)$.
2. Given z and $x \leq_T z$, define $f(x) := \varepsilon(KB(T(H^x, H^z)))$.
3. If $\omega^x_1 = \omega^z_1$, then H^x is isomorphic to H^z.
 - \Rightarrow the KB ordering on $T(H^x, H^z)$ is not well-ordered; therefore, $f(x) \notin WO$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
Proof of $E_{ck} \leq_{cone_{\text{eff}}} E_{wo}$

1. H^x: Harrison's pseudo well order relative to x whose order type is $\omega_1^x \cdot (1 + \eta)$.

2. Given z and $x \leq_T z$, define $f(x) := \varepsilon(KB(T(H^x, H^z)))$.

3. If $\omega_1^x = \omega_1^z$, then H^x is isomorphic to H^z.
 - \Rightarrow the KB ordering on $T(H^x, H^z)$ is not well-ordered; therefore, $f(x) \notin WO$.

4. If $\omega_1^x < \omega_1^z$, $\omega \cdot \omega_1^x \leq \text{rank}(T(H^x, H^z)) \leq \omega_1^{\omega_1^x+2}$.
 - $\varepsilon(\omega_1 \cdot \omega_1^x)$ is isomorphic to $\varepsilon(\omega_1^{\omega_1^x+2})$.
 - Hence, $\text{otype}(\varepsilon(KB(T(H^x, H^z)))) = \varepsilon(\omega_1^x)$.
 - Thus, $\omega_1^x = \omega_1^y < \omega_1^z$ implies $f(x) \approx f(y) \approx \varepsilon(\omega_1^x) = \varepsilon(\omega_1^y)$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
Proof of $E_{ck} \leq_{\text{cone eff}} E_{wo}$

1. \mathcal{H}^x: Harrison's pseudo well order relative to x whose order type is $\omega_1^x \cdot (1 + \eta)$.

2. Given z and $x \leq_T z$, define $f(x) := \varepsilon(\text{KB}(T(\mathcal{H}^x, \mathcal{H}^z)))$.

3. If $\omega_1^x = \omega_1^z$, then \mathcal{H}^x is isomorphic to \mathcal{H}^z.
 - \Rightarrow the KB ordering on $T(\mathcal{H}^x, \mathcal{H}^z)$ is not well-ordered; therefore, $f(x) \notin \text{WO}$.

4. If $\omega_1^x < \omega_1^z$, $\omega \cdot \omega_1^x \leq \text{rank}(T(\mathcal{H}^x, \mathcal{H}^z)) \leq \omega_1^{\omega_1^x+2}$.
 - $\varepsilon(\omega \cdot \omega_1^x)$ is isomorphic to $\varepsilon(\omega_1^{\omega_1^x+2})$.
 - Hence, $\text{otype}(\varepsilon(\text{KB}(T(\mathcal{H}^x, \mathcal{H}^z)))) = \varepsilon(\omega_1^x)$.
 - Thus, $\omega_1^x = \omega_1^y < \omega_1^z$ implies $f(x) \approx f(y) \approx \varepsilon(\omega_1^x) = \varepsilon(\omega_1^y)$.

5. Thus, $\omega_1^x = \omega_1^y \iff f(x), f(y) \notin \text{WO}$ or $f(x) \approx f(y)$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
Proof of “$V = L$ implies $E_{ck} \lesscong^{\text{cone eff}} E_{wo}$”

- Weitkamp (1982): If V is a generic extension of L, then the following set contains no Turing cone:

 $$\{ x \in 2^\omega : \omega_1^x \text{ is a recursively inaccessible ordinal} \}.$$

- Given r, choose $z \geq_T r$ s.t. ω_1^z is NOT rec. inaccessible.
Proof of “$V = L$ implies $E_{ck} \leq_{\text{cone eff}} E_{wo}$”

- Weitkamp (1982): If V is a generic extension of L, then the following set contains no Turing cone:

 $$\{ x \in 2^\omega : \omega_1^x \text{ is a recursively inaccessible ordinal} \}.$$

- Given r, choose $z \geq_T r$ s.t. ω_1^z is NOT rec. inaccessible.

- Then, for any admissible ordinal $\alpha \leq \omega_1^z$, there is a $\Pi^1_1(z)$ set $P_\alpha \subseteq 2^\omega$ such that

 $$\{ x \leq_T z : \omega_1^x = \alpha \} = P_\alpha \cap \{ x \in 2^\omega : x \leq_T z \}.$$
Proof of “$V = L$ implies $E_{\text{ck}} \lesssim^\text{cone eff} E_{\text{wo}}$”

• Weitkamp (1982): If V is a generic extension of L, then the following set contains no Turing cone:

$$\{ x \in 2^\omega : \omega^x_1 \text{ is a recursively inaccessible ordinal} \}.$$

• Given r, choose $z \geq_T r$ s.t. ω^z_1 is NOT rec. inaccessible.

• Then, for any admissible ordinal $\alpha \leq \omega^z_1$, there is a $\Pi^1_1(z)$ set $P_\alpha \subseteq 2^\omega$ such that

$$\{ x \leq_T z : \omega^x_1 = \alpha \} = P_\alpha \cap \{ x \in 2^\omega : x \leq_T z \}.$$

• Thus, there is no z-effective reduction from E_{wo} to E_{ck} since $\{ x \leq z : x \notin \text{WO} \}$ is $\Sigma^1_1(z)$-complete.
Non-orbit analytic equivalence relations:

\[x E_{wo} y : \Longleftrightarrow \text{either } x, y \not\in \text{WO or } x \text{ and } y \text{ are isomorphic as w.o.} \]
\[x E_{ck} y : \Longleftrightarrow \omega^x_1 = \omega^y_1 \text{ holds.} \]

Fact

- (Gao) \(E_{wo} \) and \(E_{ck} \) are \(\leq_B \)-incomparable.
- (Coskey-Hamkins 2011) \(E_{wo} \) and \(E_{ck} \) are \(\leq_{ITTM} \)-bireducible.

Theorem

- \(E_{ck} \leq_{\text{cone eff}} E_{wo} \).
- If \(V = L \), then \(E_{ck} \prec_{\text{cone eff}} E_{wo} \).

Conjecture

If \(x^\# \) exists for any real \(x \), then \(E_{ck} \equiv_{\text{cone eff}} E_{wo} \).
Smooth Equivalence Relations

Δ_X: the equality $(X, =)$ on a topological space X.
\leq_B (\leq_c, resp.): Borel (continuous, resp.) reducibility.

1. $\Delta_X \equiv_B \Delta_Y$ whenever X and Y are uncountable standard Borel spaces. In particular, $\Delta_{2^\omega} \equiv_B \Delta_{I^n} \equiv_B \Delta_{I^\omega}$

2. $\Delta_{2^\omega} <_c \Delta_{I} <_c \Delta_{I^2} <_c \cdots <_c \cdots <_c \Delta_{I^n} <_c \Delta_{I^{n+1}} < \Delta_{I^\omega}$.

Theorem

1. $\Delta_{2^\omega} <_{\text{cone eff}} \Delta_{I} <_{\text{cone eff}} \Delta_{I^2}$.

2. $\Delta_{I^3} \equiv_{\text{cone eff}} \Delta_{I^4} \equiv_{\text{cone eff}} \cdots \equiv_{\text{cone eff}} \Delta_{I^n} \equiv_{\text{cone eff}} \Delta_{I^{n+1}} \equiv_{\text{cone eff}} \Delta_{I^\omega}$.
Remark

- $\Delta_X \leq_{\text{eff}} \Delta_Y$ iff \exists a Markov computable injection $f : X_{\text{cpt}} \rightarrow Y_{\text{cpt}}$.
- (Kreisel-Lacombe-Shoenfield) $f : (\omega^\omega)_{\text{cpt}} \rightarrow (\omega^\omega)_{\text{cpt}}$ is Markov computable iff it is computable in the sense of TTE.
- (de Brecht) X has a total admissible representation iff X is quasi-Polish.
- Hence, whenever X and Y are quasi-Polish, $\Delta_X \leq_{\text{eff}} \Delta_Y$ iff there is a TTE-computable injection $f : X_{\text{cpt}} \rightarrow Y_{\text{cpt}}$.
Proof Idea of $\Delta_I^n \leq^{\text{cone eff}} \Delta_{I^3}$

1. The n-dimensional sphere S^n is not an absolute extensor for I^{n+1}.

2. S^n is an absolute extensor for a normal space X if and only if the covering dimension of X is at most n.

3. If the covering dimension of a separable metric space X is $\leq n$, then it is embedded into the n-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.
Proof Idea of $\Delta_\mu^n \leq_{\text{cone eff}} \Delta_\beta$

1. The n-dimensional sphere S^n is \textit{not} an absolute extensor for I^{n+1}.

 \begin{itemize}
 \item[(★)] It is computably FALSE!:
 The 1-sphere S^1 is a computable absolute extensor for I^{n+1}_{cpt}.
 \end{itemize}

2. S^n is an absolute extensor for a normal space X
 \iff the covering dimension of X is at most n.

3. If the covering dimension of a separable metric space X is $\leq n$, then it is embedded into the n-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.
Proof Idea of $\Delta^n \leq^\text{cone}_{\text{eff}} \Delta^\beta$

1. The n-dimensional sphere S^n is not an absolute extensor for I^{n+1}.

 (\star) It is computably FALSE!:
The 1-sphere S^1 is a computable absolute extensor for I_{cpt}^{n+1}.
 (constructive counterexample to Brouwer’s fixed point thm.)

2. S^n is an absolute extensor for a normal space X
 \iff the covering dimension of X is at most n.

3. If the covering dimension of a separable metric space X is $\leq n$, then
 it is embedded into the n-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.
Proof Idea of $\Delta I^n \leq_{\text{cone eff}} \Delta I^3$

1. The n-dimensional sphere S^n is not an absolute extensor for I^{n+1}.

 (⋆) It is computably FALSE!
 The 1-sphere S^1 is a computable absolute extensor for I_c^{n+1}.
 (constructive counterexample to Brouwer's fixed point thm.)

2. S^n is an absolute extensor for a normal space X
 \iff the covering dimension of X is at most n.

 (⋆) It is computably TRUE:
 S^n is a cpt. absolute extensor for a cpt. normal space X_{cpt}
 \iff the cpt. covering dimension of X_{cpt} is at most n.

3. If the covering dimension of a separable metric space X is $\leq n$, then it is embedded into the n-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone
Proof Idea of $\Delta^m \leq^\text{cone eff} \Delta_\beta$

1. The n-dimensional sphere S^n is not an absolute extensor for I^{n+1}.

 (★) It is computably FALSE!:
 The 1-sphere S^1 is a computable absolute extensor for I^{n+1}_{cpt}.
 (constructive counterexample to Brouwer’s fixed point thm.)

2. S^n is an absolute extensor for a normal space X
 \iff the covering dimension of X is at most n.

 (★) It is computably TRUE:
 S^n is a cpt. absolute extensor for a cpt. normal space X_{cpt}
 \iff the cpt. covering dimension of X_{cpt} is at most n.
 Hence, the computable covering dimension of I^n_{cpt} is at most 1!

3. If the covering dimension of a separable metric space X is $\leq n$, then it is embedded into the n-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.
Proof Idea of $\Delta_1^m \leq_{\text{cone eff}} \Delta_1$

1. The n-dimensional sphere S^n is not an absolute extensor for I^{n+1}.

 (\star) It is computably FALSE!
 The 1-sphere S^1 is a computable absolute extensor for I_cpt^{n+1}.
 (constructive counterexample to Brouwer’s fixed point thm.)

2. S^n is an absolute extensor for a normal space X
 \iff the covering dimension of X is at most n.

 (\star) It is computably TRUE:
 S^n is a cpt. absolute extensor for a cpt. normal space X_{cpt}
 \iff the cpt. covering dimension of X_{cpt} is at most n.
 Hence, the computable covering dimension of I_cpt^n is at most 1!

3. If the covering dimension of a separable metric space X is $\leq n$, then
 it is embedded into the n-dimensional Nöbeling space $N^n \subseteq I_{\text{cpt}}^{2n+1}$.

 (\star) It is computably TRUE:
Proof Idea of $\Delta^n \leq^\text{cone eff} \Delta^3$

1. The n-dimensional sphere S^n is not an absolute extensor for I^{n+1}.

 (★) It is computably FALSE!:

 The 1-sphere S^1 is a computable absolute extensor for I^{n+1}.
 (constructive counterexample to Brouwer’s fixed point thm.)

2. S^n is an absolute extensor for a normal space X

 \iff the covering dimension of X is at most n.

 (★) It is computably TRUE:

 S^n is a cpt. absolute extensor for a cpt. normal space X_{cpt}

 \iff the cpt. covering dimension of X_{cpt} is at most n.

 Hence, the computable covering dimension of I^n_{cpt} is at most 1!

3. If the covering dimension of a separable metric space X is $\leq n$, then it is embedded into the n-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.

 (★) It is computably TRUE:

 Hence, I^n_{cpt} is computably embedded into $N^1 \subseteq I^3$.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone