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...1 Invariant descriptive set theory:

Isomorphism relation on countable Boolean algebras.
Isomorphism relation on countable p -groups.
Isometry relation on Polish metric spaces.
Linear isometry relation on separable Banach spaces.
Isomorphism relation on separable C∗-algebras.

...2 Computable structure theory:

Isomorphism relation of computable trees.
Isomorphism relation of computable torsion-free abelian grps
Bi-embeddability relation of computable linear orders.
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(X , δ) is a represented space if δ :⊆ NN → X is a partial surjection.

A point x ∈ X is computable if it has a computable name,
that is, there is a computable p ∈ δ−1{x }.

.
Example
..

......

...1 The space of countable L-structures is represented:
For a countable relational language L = (Ri)i∈N,
each countable L-structure K with domain ⊆ ω
is identified with its atomic diagram D(K ) = ⊕i∈NRK

i
∈ 2ω.

For a class K of countable L-structures with δ : D(K ) 7→ K ,
(K, δ) forms a represented space.

...2 Polish spaces, second-countable T0 space are represented.

...3 Much more generally, every T0 space with a countable
cs-network has a “universal” representation δ, i.e.,
for any representation δ′, there is a continuous map g
such that δ′ = δ ◦ g .
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(X , δ) is a represented space if δ :⊆ NN → X is a partial surjection.

A point x ∈ X is computable if it has a computable name,
that is, there is a computable p ∈ δ−1{x }.
The e-th computable point of X = (X , δ) is denoted by ΦXe .

.

......

Let E and F be equivalence relations on represented spaces X
and Y , respectively. We say that E ≤eff F if there is a partial
computable function f :⊆ N → N such that
for all i , j ∈ N with ΦX

i
,ΦX

j
∈ dom(δX),

ΦX
i

EΦX
j
⇐⇒ ΦY

f (i)
FΦY

f (j)
.

.

......

Let E and F be equivalence relations on Borel spaces X and Y , respectively.
We say that E ≤B F if there is a Borel function f : X → Y such that
for all x , y ∈ X,

xEy ⇐⇒ f (x)Ff (y).
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Today’s Theme
..

......

“Effective reducibility on a cone”

i.e., the oracle-relativized version of effective reducibility.

.

......

The oracle relativization of a computability-theoretic concept
sometimes has applications in other areas of mathematics
which does NOT involve any notion concerning computability:

(Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The
Louveau separation theorem⇝ a decomposition theorem for
Borel measurable functions in descriptive set theory.
(K.-Pauly) Turing degree spectrum / Scott ideals (ω-models of
WKL )⇝ a refinement of R. Pol’s solution to Alexandrov’s
problem in infinite dimensional topology.
(K.-Pauly) Turing degree spectrum / Scott ideals⇝
a construction of linearly non-isometric (ring non-isomorphic,
etc.) examples of Banach algebras of real-valued Baire n
functions on Polish spaces.
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Let E and F be equivalence relations on represented spaces X
and Y , respectively. We say that E ≤cone

eff
F if there is a partial

computable function f :⊆ N → N such that (∃r ∈ 2ω)(∀z ≥T r)
for all i , j ∈ N with Φz,X

i
,Φz,X

j
∈ dom(δX),

Φz,X
i

EΦz,X
j

⇐⇒ Φz,Y
f (i)

FΦz,Y
f (j)
.

E ≤c F =⇒ E ≤B F
⇓ ⇓

E ≤cone
eff

F =⇒ E ≤cone
hyp

F

.

......

E is said to be analytic ≤cone
eff

-complete if F ≤cone
eff

E for any
analytic equivalence relation F .
E is said to be ≤cone

eff
-intermediate if

E is not analytic ≤cone
eff

-complete,
and there is no Borel eq. relation F such that E ≤cone

eff
F .
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The Vaught Conjecture (1961)
..

......
The number of countable models of a first-order theory is
at most countable or 2ℵ0 .

.

......

(The Lω1ω-Vaught conjecture) The number of countable models of
an Lω1ω-theory is at most countable or 2ℵ0 .

(Topological Vaught conjecture) The number of orbits of a
continuous action of a Polish group on a standard Borel space is at
most countable or 2ℵ0 .

.
Fact (Becker 2013; Knight and Montalbán)
..

......

Suppose that there is no Lω1ω-axiomatizable class of countable
structures whose isomorphism relation is ≤cone

eff
-intermediate

then, the Lω1ω-Vaught conjecture is true.

Indeed, if there is no ≤cone
eff

-intermediate orbit equivalence relation
then, the topological Vaught conjecture is true.
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The differences of ≤B and ≤cone
eff

among non-Borel orbit eq. relations:
For Borel reducibility (H. Friedman and Stenley 1989):

The isomorphism relation on an Lω1ω-axiomatizable class of
countable structure CANNOT be analytic ≤B-complete.

Moreover, the isomorphism relation on countable torsion abelian
groups is NOT ≤B-complete even among isomorphism relations on
classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

The isomorphism relations on computable graphs, torsion-free
abelian groups, fields (of a fixed characteristic), etc. are
≤eff-complete analytic equivalence relations.

The isomorphism relation on computable torsion abelian groups is
also a ≤eff-complete analytic equivalence relation.

.

......

In this talk, we focus on the differences of ≤B and ≤cone
eff

among

non-Borel non-orbit analytic equivalence relations,

and smooth equivalence relations.
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Non-orbit analytic equivalence relations:
..

......

xEwo y :⇐⇒ either x , y < WO or x and y are isomorphic as w.o.
xEck y :⇐⇒ ωx

1
= ω

y
1

holds.

.
Fact
..

......

(Gao) Ewo and Eck are ≤B-incomparable.

(Coskey-Hamkins 2011) Ewo and Eck are ≤ITTM-bireducible.

.
Theorem
..

......

Eck ≤cone
eff

Ewo .

If V = L , then Eck <
cone
eff

Ewo .

.
Conjecture
..

......
If x ♯ exists for any real x , then Eck ≡cone

eff
Ewo .
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T(A,B): the tree of partial isomorphisms betweenA and B.

A B

0 0

1

2

1

2

T (A;B)

0 1 2

0 2

1

1

.

......

For partial ordersA = (A ,≤A ) and B = (B ,≤B ) with A , B ⊆ ω
σ ⊕ τ ∈ T(A,B) iff

...1 (i , j ∈ A , i , j < |σ|) i ≤A j iff σ(i) ≤B σ(j),

...2 (i , j ∈ B , i , j < |τ|) i ≤B j iff τ(i) ≤A τ(j),

...3 (i ∈ A , i < |σ|, j ∈ B , j < |τ|) σ(i) = j iff τ(j) = i .
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Lemma (Upper Bound)
..

......

α < β < ω1: ordinals.
A ∈ LO s.t. otype(A) = α+ λ, where λ has no least element.
B ∈ LO s.t. otype(B) = β+ θ for a linear order θ.
Then, rank(T(A,B)) ≤ ωα+2.

β is α-closed if (∀γ < α)(∀δ < β) δ+ γ < β.
.
Lemma (Lower Bound)
..

......

α, β < ω1: ordinals, β is ωα-closed, c ∈ ω
A ∈ WO s.t. otype(A) = ωα · c .
B ∈ WO s.t. otype(B) = β.
Then, rank(T(A,B)) ≥ ω · α.
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A: a well order s.t. otype(A) = α.
B: a linear order s.t. otype(B) = β+ θ for β > α and linear θ.
Then, rank(T(A,B)) ≤ ωα+1.

� �

�

A B T (A;B)

.

......rank(T(A,B)) ≤ sup k rankT(A ↾ k ,B ↾ n) + 2n + 1.
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rank(T(A,B)) ≤ sup k (sup m rankT(A ↾ lk ,B ↾ m)+lk )+2n+1.

rank(A ↾ lk ,B ↾ m) ≤ ωαm+1, where αm := otype(B ↾ m) < α.
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A ∈ WO s.t. otype(A) = ωα.
B ∈ WO s.t. otype(B) = β s.t. (∀γ < ωα)(∀δ < β) δ+ γ < β.
Then, rank(T(A,B)) ≥ ω · α.

A B

!

�

� 


�

(i is the least s.t. �

i

< �)




0

:=

P

i�1

k=0

!

�

k

� 


k

.

......

If α is limit, choose an increasing seq. α0 < α1 < · · · → α.
If α is successor, we use ω(α−1) · j instead of ωαj .
A0 ≃ B0 ≃ ωα · (c − 1) andA2 ≃ B2 ≃ γ1.

Aj

1
≃ ωαj , B1 ≃ γ0;A3 ≃ ωα, B3 is ωα-closed.
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(L , <L ): a linear order
Define the linear order ωL = (CNF(L ),≤ωL ) as follows:

...1 CNF(L ) = {(λi , c i)i<n ∈ (L × ω)<ω : (∀i) λi+1 <L λi },

...2 (λi , c i)i<n ≤ωL (λ′
j
, c ′

j
)j<m ⇐⇒ (∃k < m , n) s.t.

(∀i < k ) λi = λ
′
i

and
λk <L λ

′
k

or (λk = λ′
k

and c i ≤ c ∗
i
).

.

......

If L is not well-ordered, then so is ωL .

L ∈ WO, (λi , c i)i<n ≈
∑

i<n ω
λi · c i .

L ∈ WO, otype(L ) = α⇒ otype(ωL ) = ωα.

.

......

Inductively define exp0(L ) = L and expn+1(L ) = ωexpn(L ).

Define ε(L ) by
∑

n∈ω expn(L ).
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Proof of Eck ≤cone

eff
Ewo

..

......

...1 Hx : Harrison’s pseudo well order relative to x
whose order type is ωx

1
· (1 + η).

...2 Given z and x ≤T z, define f (x) := ε(KB(T(Hx ,Hz))).

...3 If ωx
1
= ωz

1
, thenHx is isomorphic toHz .

⇒ the KB ordering on T(Hx ,Hz) is not well-ordered;
therefore, f (x) < WO.

...4 If ωx
1
< ωz

1
, ω · ωx

1
≤ rank(T(Hx ,Hz)) ≤ ωω

x
1
+2.

ε(ω · ωx
1
) is isomorphic to ε(ωω

ωx
1
+2

).
Hence, otype(ε(KB(T(Hx ,Hz)))) = ε(ωx

1
).

Thus, ωx
1
= ωy

1
< ωz

1
implies f (x) ≈ f (y) ≈ ε(ωx

1
) = ε(ωy

1
).

...5 Thus, ωx
1
= ω

y
1
⇐⇒ f (x), f (y) < WO or f (x) ≈ f (y).

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone



.
Proof of Eck ≤cone

eff
Ewo

..

......

...1 Hx : Harrison’s pseudo well order relative to x
whose order type is ωx

1
· (1 + η).

...2 Given z and x ≤T z, define f (x) := ε(KB(T(Hx ,Hz))).

...3 If ωx
1
= ωz

1
, thenHx is isomorphic toHz .

⇒ the KB ordering on T(Hx ,Hz) is not well-ordered;
therefore, f (x) < WO.

...4 If ωx
1
< ωz

1
, ω · ωx

1
≤ rank(T(Hx ,Hz)) ≤ ωω

x
1
+2.

ε(ω · ωx
1
) is isomorphic to ε(ωω

ωx
1
+2

).
Hence, otype(ε(KB(T(Hx ,Hz)))) = ε(ωx

1
).

Thus, ωx
1
= ωy

1
< ωz

1
implies f (x) ≈ f (y) ≈ ε(ωx

1
) = ε(ωy

1
).

...5 Thus, ωx
1
= ω

y
1
⇐⇒ f (x), f (y) < WO or f (x) ≈ f (y).

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone



.
Proof of Eck ≤cone

eff
Ewo

..

......

...1 Hx : Harrison’s pseudo well order relative to x
whose order type is ωx

1
· (1 + η).

...2 Given z and x ≤T z, define f (x) := ε(KB(T(Hx ,Hz))).

...3 If ωx
1
= ωz

1
, thenHx is isomorphic toHz .

⇒ the KB ordering on T(Hx ,Hz) is not well-ordered;
therefore, f (x) < WO.

...4 If ωx
1
< ωz

1
, ω · ωx

1
≤ rank(T(Hx ,Hz)) ≤ ωω

x
1
+2.

ε(ω · ωx
1
) is isomorphic to ε(ωω

ωx
1
+2

).
Hence, otype(ε(KB(T(Hx ,Hz)))) = ε(ωx

1
).

Thus, ωx
1
= ωy

1
< ωz

1
implies f (x) ≈ f (y) ≈ ε(ωx

1
) = ε(ωy

1
).

...5 Thus, ωx
1
= ω

y
1
⇐⇒ f (x), f (y) < WO or f (x) ≈ f (y).

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone



.
Proof of Eck ≤cone

eff
Ewo

..

......

...1 Hx : Harrison’s pseudo well order relative to x
whose order type is ωx

1
· (1 + η).

...2 Given z and x ≤T z, define f (x) := ε(KB(T(Hx ,Hz))).

...3 If ωx
1
= ωz

1
, thenHx is isomorphic toHz .

⇒ the KB ordering on T(Hx ,Hz) is not well-ordered;
therefore, f (x) < WO.

...4 If ωx
1
< ωz

1
, ω · ωx

1
≤ rank(T(Hx ,Hz)) ≤ ωω

x
1
+2.

ε(ω · ωx
1
) is isomorphic to ε(ωω

ωx
1
+2

).
Hence, otype(ε(KB(T(Hx ,Hz)))) = ε(ωx

1
).

Thus, ωx
1
= ωy

1
< ωz

1
implies f (x) ≈ f (y) ≈ ε(ωx

1
) = ε(ωy

1
).

...5 Thus, ωx
1
= ω

y
1
⇐⇒ f (x), f (y) < WO or f (x) ≈ f (y).

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone



.
Proof of “V = L implies Eck <

cone
eff

Ewo ”
..

......

Weitkamp (1982): If V is a generic extension of L ,
then the following set contains no Turing cone:

{x ∈ 2ω : ωx
1

is a recursively inaccessible ordinal}.

Given r , choose z ≥T r s.t. ωz
1

is NOT rec. inaccessible.

Then, for any admissible ordinal α ≤ ωz
1
,

there is a Π1
1
(z) set Pα ⊆ 2ω such that

{x ≤T z : ωx
1
= α} = Pα ∩ {x ∈ 2ω : x ≤T z}.

Thus, there is no z-effective reduction from Ewo to Eck

since {x ≤ z : x < WO} is Σ1
1
(z)-complete.
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Non-orbit analytic equivalence relations:
..

......

xEwo y :⇐⇒ either x , y < WO or x and y are isomorphic as w.o.
xEck y :⇐⇒ ωx

1
= ω

y
1

holds.

.
Fact
..

......

(Gao) Ewo and Eck are ≤B-incomparable.

(Coskey-Hamkins 2011) Ewo and Eck are ≤ITTM-bireducible.

.
Theorem
..

......

Eck ≤cone
eff

Ewo .

If V = L , then Eck <
cone
eff

Ewo .

.
Conjecture
..

......
If x ♯ exists for any real x , then Eck ≡cone

eff
Ewo .
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.
Smooth Equivalence Relations
..

......

∆X : the equality (X ,=) on a topological space X .
≤B (≤c , resp.): Borel (continuous, resp.) reducibility.

...1 ∆X ≡B ∆Y whenever X and Y are uncountable standard
Borel spaces. In particular, ∆2ω ≡B ∆In ≡B ∆Iω

...2 ∆2ω <c ∆I <c ∆I2 <c · · · <c · · · <c ∆In <c ∆In+1 < ∆Iω .

.
Theorem
..

......

...1 ∆2ω <
cone
eff

∆I <
cone
eff

∆I2 .

...2 ∆I3 ≡cone
eff

∆I4 ≡cone
eff
· · · ≡cone

eff
∆In ≡cone

eff
∆In+1 ≡cone

eff
∆Iω .
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.
Remark
..

......

∆X ≤eff ∆Y iff ∃ a Markov computable injection
f : Xcpt → Ycpt.

(Kreisel-Lacombe-Shoenfield) f : (ωω)cpt → (ωω)cpt is
Markov computable iff it is computable in the sense of TTE.

(de Brecht) X has a total admissible representation iff X is
quasi-Polish.

Hence, whenever X and Y are quasi-Polish, ∆X ≤eff ∆Y iff
there is a TTE-computable injection f : Xcpt → Ycpt.
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.
Proof Idea of ∆In ≤cone

eff
∆I3

..

......

...1 The n-dimensional sphere Sn is not an absolute extensor for In+1.

(⋆) It is computably FALSE!:
The 1-sphere S1 is a computable absolute extensor for In+1

cpt
.

...2 Sn is an absolute extensor for a normal space X
⇐⇒ the covering dimension of X is at most n.

(⋆) It is computably TRUE:
Sn is a cpt. absolute extensor for a cpt. normal space Xcpt

⇐⇒ the cpt. covering dimension of Xcpt is at most n.

...3 If the covering dimension of a separable metric space X is ≤ n, then
it is embedded into the n-dimensional Nöbeling space Nn ⊆ I2n+1.

(⋆) It is computably TRUE:
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cpt
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