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© Invariant descriptive set theory:

© Computable structure theory:
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@ |Invariant descriptive set theory: classification of classification
problems of mathematical structures such as:
e Isomorphism relation on countable Boolean algebras.
e Isomorphism relation on countable p-groups.
@ Isometry relation on Polish metric spaces.
e Linear isometry relation on separable Banach spaces.
@ Isomorphism relation on separable C*-algebras.

Key notion: Borel reducibility among equivalence relations on
Borel spaces.
© Computable structure theory:
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© Invariant descriptive set theory: classification of classification
problems of mathematical structures such as:
e Isomorphism relation on countable Boolean algebras.
e Isomorphism relation on countable p-groups.
e Isometry relation on Polish metric spaces.
e Linear isometry relation on separable Banach spaces.
e Isomorphism relation on separable C*-algebras.

Key notion: Borel reducibility among equivalence relations on
Borel spaces.
© Computable structure theory: classification of classification
problems of computable structures such as:
e Isomorphism relation of computable trees.
e Isomorphism relation of computable torsion-free abelian grps
e Bi-embeddability relation of computable linear orders.
Key notion: computable reducibility among equivalence
relations on represented spaces.
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@ (X,0) is a represented space if § :C€ NN — X is a partial surjection.

@ A point x € X is computable if it has a computable name,
that is, there is a computable p € 6~*{x}.
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@ (X,0) is a represented space if § :C€ NN — X is a partial surjection.

@ A point x € X is computable if it has a computable name,
that is, there is a computable p € 6~*{x}.

v

© The space of countable £L-structures is represented:
For a countable relational language £ = (R))ien,
each countable £-structure K with domain € w
is identified with its atomic diagram D(K) = GBieNRiK € 2,
For a class K of countable £-structures with § : D(K) — K,
(K, 8) forms a represented space.

Polish spaces, second-countable Ty space are represented.

© 0

Much more generally, every To space with a countable
cs-network has a “universal” representation ¢, i.e.,

for any representation ¢’, there is a continuous map g
such that ¢’ = é o g.
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@ (X,6) is arepresented space if § :C NV — X is a partial surjection.

@ A point x € X is computable if it has a computable name,
that is, there is a computable p € 6~2{x}.

@ The e-th computable point of X = (X, 6) is denoted by ¢§_

Let E and F be equivalence relations on represented spaces X
and Y, respectively. We say that E < F if there is a partial
computable function f :€ N — N such that

for alli,j € N with &, <ij € dom(dx),

oXEdY = oY FoY .
i j fi) ()

Let E and F be equivalence relations on Borel spaces X and Y, respectively.
We say that E <g F if there is a Borel function f : X — Y such that
forall x,y € X,

XEy & f(x)Ff(y).
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Today’s Theme

“Effective reducibility on a cone”
i.e., the oracle-relativized version of effective reducibility.
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@ The oracle relativization of a computability-theoretic concept
sometimes has applications in other areas of mathematics
which does NOT involve any notion concerning computability:
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@ The oracle relativization of a computability-theoretic concept
sometimes has applications in other areas of mathematics
which does NOT involve any notion concerning computability:

o (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The
Louveau separation theorem ~» a decomposition theorem for
Borel measurable functions in descriptive set theory.
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@ The oracle relativization of a computability-theoretic concept
sometimes has applications in other areas of mathematics
which does NOT involve any notion concerning computability:

o (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The
Louveau separation theorem ~» a decomposition theorem for
Borel measurable functions in descriptive set theory.

o (K.-Pauly) Turing degree spectrum / Scott ideals (w-models of
WKL) ~» a refinement of R. Pol’s solution to Alexandrov’s
problem in infinite dimensional topology.
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Today’s Theme

“Effective reducibility on a cone”
i.e., the oracle-relativized version of effective reducibility.

@ The oracle relativization of a computability-theoretic concept
sometimes has applications in other areas of mathematics
which does NOT involve any notion concerning computability:

o (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The
Louveau separation theorem ~» a decomposition theorem for
Borel measurable functions in descriptive set theory.

o (K.-Pauly) Turing degree spectrum / Scott ideals (w-models of
WKL) ~» a refinement of R. Pol’s solution to Alexandrov’s
problem in infinite dimensional topology.

o (K.-Pauly) Turing degree spectrum / Scott ideals ~»

a construction of linearly non-isometric (ring non-isomorphic,
etc.) examples of Banach algebras of real-valued Baire n
functions on Polish spaces.
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Let E and F be equivalence relations on represented spaces X
and Y, respectively. We say that E sgne F if there is a partial
computable function f :€ N — N such that (dr € 2°)(Vz >7 r)
for alli,j € N with ¢f’x, ¢jz”‘ e dom(x),

¢Z,XE¢Z,X — q)Z,yF q)zay
i i fQ) ()

E<F = E<pF

4 4
cone cone
E Sdf F = E Shyp F

@ E is said to be analytic sgne-complete if F s‘;‘;”e E for any
analytic equivalence relation F.
@ E is said to be s;‘;”e-intermediate if

e E is not analytic sggne-complete,
e and there is no Borel eq. relation F such that E 5;‘;”9 F.
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The Vaught Conjecture (1961)

The number of countable models of a first-order theory is
at most countable or 2%,

@ (The L,,»-Vaught conjecture) The number of countable models of
an L, ,-theory is at most countable or 2%,

@ (Topological Vaught conjecture) The number of orbits of a
continuous action of a Polish group on a standard Borel space is at
most countable or 280,
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The Vaught Conjecture (1961)

The number of countable models of a first-order theory is
at most countable or 2%,

@ (The L,,»-Vaught conjecture) The number of countable models of
an L, »-theory is at most countable or 2%,

@ (Topological Vaught conjecture) The number of orbits of a
continuous action of a Polish group on a standard Borel space is at
most countable or 2%,

Fact (Becker 2013; Knight and Montalban)

Suppose that there is no L,,, ,-axiomatizable class of countable
structures whose isomorphism relation is sg‘e—intermediate
then, the L,,, ,-Vaught conjecture is true.

Indeed, if there is no <°®"“-intermediate orbit equivalence relation
then, the topological Vaught conjecture is true.
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The differences of <g and <" among non-Borel orbit eq. relations:
For Borel reducibility (H. Friedman and Stenley 1989):

@ The isomorphism relation on an L, ,-axiomatizable class of
countable structure CANNOT be analytic <g-complete.

@ Moreover, the isomorphism relation on countable torsion abelian
groups is NOT <g-complete even among isomorphism relations on
classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

@ The isomorphism relations on computable graphs, torsion-free
abelian groups, fields (of a fixed characteristic), etc. are
<«f-complete analytic equivalence relations.

@ The isomorphism relation on computable torsion abelian groups is
also a <g-complete analytic equivalence relation.
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The differences of <g and <" among non-Borel orbit eq. relations:
For Borel reducibility (H. Friedman and Stenley 1989):

@ The isomorphism relation on an L, ,-axiomatizable class of
countable structure CANNOT be analytic <g-complete.

@ Moreover, the isomorphism relation on countable torsion abelian
groups is NOT <g-complete even among isomorphism relations on
classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

@ The isomorphism relations on countable graphs, torsion-free
abelian groups, fields (of a fixed characteristic), etc. are
sf;f”e—complete analytic equivalence relations.

@ The isomorphism relation on countable torsion abelian groups is
also a s;‘i’,”e-complete analytic equivalence relation.

In this talk, we focus on the differences of <g and s:ff”e among
@ non-Borel non-orbit analytic equivalence relations,

@ and smooth equivalence relations.
Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone




Non-orbit analytic equivalence relations:
XEwoy : & either x,y ¢ WO or x and y are isomorphic as w.o.
XEey 162> o) = wi holds.

Fact
@ (Gao) Ey and E¢k are <g-incomparable.
@ (Coskey-Hamkins 2011) E,\, and E are <itm-bireducible.

y
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Non-orbit analytic equivalence relations:
XEwoy : & either x,y ¢ WO or x and y are isomorphic as w.o.
XEey 162> o) = wi holds.

Fact
@ (Gao) Ey and E¢k are <g-incomparable.
@ (Coskey-Hamkins 2011) E,\, and E are <itm-bireducible.

Theorem

@ Ec« S(;(;ne Ewo -
(] If V = L, then Eck <(;c;_ne Ewo.
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Non-orbit analytic equivalence relations:

XEwoy : & either x,y ¢ WO or x and y are isomorphic as w.o.
XEey 162> o) = wi holds.

Fact
@ (Gao) Ey and E¢k are <g-incomparable.
@ (Coskey-Hamkins 2011) E,\, and E are <itm-bireducible.

| A\

Theorem
@ E s(;c})‘ne Ewo -

o If V=L 0 then Eck <(;c;_ne Ewo.

Conjecture

If x# exists for any real x, then Eg E;‘;”e Ewo-
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T (A, B): the tree of partial isomorphisms between A and B.

B T(A,B)

For partial orders A = (A,<a) and 8 = (B,<g) withA,B C w
o @1 € T(A,B) iff

Q (,jeA,i,j<lol)i<ajiffo(i) < o(j),

Q (i,jeB,i,j<Itl)i <g jiffr(i) <a 7(j),

Q (ieA i<loljeB,j<lIt)o(i)=jiffr(j)) =1.
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T (A, B): the tree of partial isomorphisms between A and B.

A B T(A, B)
1 1
0 0 /\z 0,10 \2
P ——
0

For partial orders A = (A,<a) and 8 = (B,<g) withA,B C w
o @1 € T(A,B) iff
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T (A, B): the tree of partial isomorphisms between A and B.

A B T(A, B)
1 1
-
0 0 /\z 0,10 \2
P ——
2 0

For partial orders A = (A,<a) and 8 = (B,<g) withA,B C w
o @1 € T(A,B) iff
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T (A, B): the tree of partial isomorphisms between A and B.

A B T(A,B)

1 1
0%7\2 0.1 2
2/ 0l 2
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T (A, B): the tree of partial isomorphisms between A and B.

A B T(A, B)
1 1
0 0/\2 0,10 N\2
2 0} 2

1

1

For partial orders A = (A,<a) and 8 = (B,<g) withA,B C w
o @1 € T(A,B) iff

Q (,jeA,i,j<lol)i<gajiffo(i) < o(j).
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T (A, B): the tree of partial isomorphisms between A and B.

Lemma (Upper Bound)

@ < 8 < w;: ordinals.

A € LO s.t. otype(A) = a + 4, where A has no least element.
B € LO s.t. otype(B) = B + 6 for a linear order 6.

Then, rank (T (A, B)) < w**+2.

Bis a-closed if (Vy < a)(V6 <B) 6 +y <B.

Lemma (Lower Bound)

a, B < w;: ordinals, Bis w*-closed, ¢ € w
A € WO s.t. otype(A) = w? - C.

B € WO s.t. otype(B) = B.

Then, rank(T(A,B)) > w - a.

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone



A: awell order s.t. otype(A) = a.
B: alinear order s.t. otype(8) = B + 6 for B > « and linear 6.
Then, rank (T (A, B)) < w1
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A: awell order s.t. otype(A) = a.
B: alinear order s.t. otype(8B) = B + 6 for B > « and linear 6.
Then, rank (T (A, B)) < w1

W+l




A: awell order s.t. otype(A) = a.
B: a linear order s.t. otype(8) = B + 6 for B > a and linear 6.
Then, rank (T (A, B)) < w1

W+l

C T(Alk, Bln)



Lemma

A: a well order s.t. otype(A) = a.

B: a linear order s.t. otype(8B) = B + 6 for B > « and linear 6.
Then, rank (T (A, B)) < w1

«@ 7%3 2n + 1

C T(Alk, Bln)

rank (T (A, B)) < sup, rankT(A I k,B I n) +2n + 1.
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Lemma (Upper Bound)
A € LO s.t. otype(A) = a + A, where A has no least element.

B € LO s.t. otype(B) = B + 6 for B > «a and linear 6.
Then, rank (T (A, B)) < w2
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Lemma (Upper Bound)
A € LO s.t. otype(A) = a + A, where A has no least element.

B € LO s.t. otype(B) = B + 6 for B > «a and linear 6.
Then, rank (T (A, B)) < w2

A B
A
0 241
I .
o 7{3 l]
m
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Lemma (Upper Bound)
A € LO s.t. otype(A) = a + A, where A has no least element.

B € LO s.t. otype(B) = B + 0 for B > a and linear 6.
Then, rank (T (A, B)) < w**+2.

A B s
A 0
2+ 1
Al '»k\ n+
b ] !
; @ o n B|m !
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Lemma (Upper Bound)
A € LO s.t. otype(A) = a + A, where A has no least element.

B € LO s.t. otype(B) = B + 6 for B > « and linear 6.
Then, rank (T (A, B)) < w*+2.

A B ,
A 0
2 1
Al '»é\ n+
b B 1
; @ o n B|m !

C T Aty Blm)

@ rank(T (A, B)) < sup,(supy, rankT (A I Ik, B T M) 4y, )+2n+1-

@ rank(A | I, B } m) < w*™*1, where ap, := otype(8 | m) < a.
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A € WO s.t. otype(A) = w.
B € WO s.t. otype(B) = Bs.t. (Vy < w?)(V6<B) 6+ 7y <.
Then, rank(T (A, B)) =2 w - e.
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A € WO s.t. otype(A) = w.
B € WO s.t. otype(B) = Bs.t. (Vy < w?)(V6<B) 6+ 7y <.
Then, rank(T (A, B)) =2 w - e.
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A € WO s.t. otype(A) = w.
B € WO s.t. otype(B) = Bs.t. (Vy < w?)(V6<B) 6+ 7y <.
Then, rank(T (A, B)) =2 w - e.

A B

o= Zg:iwﬁk o
(¢ is the least s.t. 3 < @)

xi—1l By
Yo = T W™ - cp
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A € WO s.t. otype(A) = w.
B € WO s.t. otype(B) = Bs.t. (Vy < w?)(V6<B) 6+ 7y <.
Then, rank(T (A, B)) =2 w - e.

A B
o
W . c M= wh e,
o (¢ is the least s.t. 3 < @)
B e ]
. 0 = Tisow™ - ¢
w7
w*(c—=1)

@ If @ is limit, choose an increasing seq. @p < @1 < -+ = «.
@ If @ is successor, we use w(®Y . j instead of w®.
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Then, rank(T (A, B)) =2 w - e.

A B
o
W . c M= W ey
o (¢ is the least s.t. 3 < @)
RGN R e ]
. Yo =i W e
w7
w*(c—=1)
.Ao BO
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A € WO s.t. otype(A) = w.
B € WO s.t. otype(B) = Bs.t. (Vy < w?)(V6<B) 6+ 7y <.
Then, rank(T (A, B)) =2 w - e.

i B
1B
W . c "= Wl
(i is the least s.t. f; < @)
. Bi Yo 1= Tizh Wl g
W% A{ 7
UJﬂ . (C B 1)
Ay )

@ If @ is limit, choose an increasing seq. @p < @1 < -+ = «.
@ If @ is successor, we use w(®Y . j instead of w®.
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Then, rank(T (A, B)) =2 w - e.

= i w
(i is the least s.t. f; < @)

71

 yi=l B
70 = T w™ ek
@

@ If ais limit, choose an increasing seq. @p < @; < -+ — «.
@ If @ is successor, we use w(®Y . j instead of w®.
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A € WO s.t. otype(A) = w.
B € WO s.t. otype(B) = Bs.t. (Vy < w?)(V6<B) 6+ 7y <.
Then, rank(T (A, B)) =2 w - e.

A B
W . =i
At (¢ is the least s.t. 3 < @)
3
Mo A o
=N w’™ ¢y,
Wi .AJ1 o Zk70 ’
w*(c—=1)
.Ao BO

@ If ais limit, choose an increasing seq. @p < @; < -+ — «.
@ If @ is successor, we use w(®Y . j instead of w®.

@ Ay =By=w(c—1)and A; = B, =~ y;.

) ﬂjl ~ %, By = yo; Az = 0, Biis w*-closed.
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(L, <L): alinear order
Define the linear order - = (CNF(L), <) as follows:
© CNF(L) = {(4,¢i)i<n € (L X ©)<® : (Vi) 441 <L 4},
Q (A,ci)icn <yt (/lj,,Cj,)j<m < (Ik <m,n)st.
o (Vi<k) A =4 and
o A < /li’< or (& = /li’< andc¢; < ci*).

@ Inductively define exp®(L) = L and exp"t1(L) = w®®" ().
@ Define (L) by Yhew exp™(L).
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(L, <L): alinear order
Define the linear order - = (CNF(L), <) as follows:
© CNF(L) = {(4,¢i)i<n € (L X ©)<® : (Vi) 441 <L 4},
Q (A,ci)icn <yt (/lj,,Cj,)j<m < (Ik <m,n)st.
o (Vi<k) A =4 and
o A < /l:( or (& = /l:( andc¢; < ci*).

If L is not well-ordered, then so is w".
L € WO, (/li9Ci)i<n & Siian Wt - Cj.
L € WO, otype(L) = a = otype(w') = .

Inductively define exp®(L) = L and exp"*%(L) = o®®"(\),
Define &(L) by Y he, exp"(L).
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Proof of E s;‘;"e Ewo

@ 7{*: Harrison’s pseudo well order relative to x
whose order type is wi (1 +7p).

@ Given z and x <t z, define f(x) := &(KB (T (H*, H?))).
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Proof of E¢ 5;‘;"3 Ewo

@ 7{*: Harrison’s pseudo well order relative to x

whose order type is wi (1 +7p).
@ Given z and x <t z, define f(x) := &(KB (T (H*, H?))).
Q If w’l‘ = wi, then H* is isomorphic to H=.

e = the KB ordering on T (H*, H?) is not well-ordered,;
therefore, f(x) ¢ WO.
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Proof of E¢ sg;"e Ewo

@ 7{*: Harrison’s pseudo well order relative to x

whose order type is wi (1 +7p).
@ Given z and x <t z, define f(x) := &(KB (T (H*, H?))).
QI w’l‘ = wi, then H* is isomorphic to H?=.

e = the KB ordering on T (H*, H?) is not well-ordered,;
therefore, f(x) ¢ WO.

Q Ifw] <! w-w] <rank(T(H*, H?)) < wit?,
° &(w - ) is isomorphic to s(w‘“ww).
e Hence, otype(&(KB (T (H*, H?)))) = &(w]).
N T ~ ~ — ()
o Thus, ] = w] < w7 implies f(x) = f(y) » &(w]) = &(w)).
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Proof of E¢ sg;"e Ewo

@ 7{*: Harrison’s pseudo well order relative to x

whose order type is wi (1 +7p).
@ Given z and x <t z, define f(x) := &(KB (T (H*, H?))).
QI w’l‘ = wi, then H* is isomorphic to H?=.

e = the KB ordering on T (H*, H?) is not well-ordered,;
therefore, f(x) ¢ WO.

Q Ifw] <! w-w] <rank(T(H*, H?)) < wit?,
° &(w - ) is isomorphic to s(w‘“ww).
e Hence, otype(&(KB (T (H*, H?)))) = &(w]).
N o ~ ~ — ()
o Thus, ] = w] < w7 implies f(x) = f(y) » &(w]) = &(w)).

© Thus, ) = w] <= f(x),f(y) ¢ WO orf(x) = f(y).
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Proof of “V = L implies Eg <;‘;"e ETE

@ Weitkamp (1982): If V is a generic extension of L,
then the following set contains no Turing cone:

{x € 29 : w’l‘ is a recursively inaccessible ordinal}.

@ Givenr, choose z >7 r s.t. wi is NOT rec. inaccessible.
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Proof of “V = L implies Eg <;‘;"e ETE
@ Weitkamp (1982): If V is a generic extension of L,
then the following set contains no Turing cone:

{x € 29 : w’l‘ is a recursively inaccessible ordinal}.

@ Givenr, choose z >7 r s.t. wi is NOT rec. inaccessible.
@ Then, for any admissible ordinal @ < wi,

there is a M7(z) set P, € 2 such that
{x <tz :w’l‘ =a} =P,N{x €2 :x <1 z}.
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Proof of “V = L implies Eg <:§"e EveE

@ Weitkamp (1982): If V is a generic extension of L,
then the following set contains no Turing cone:

{x € 29 : ‘”i is a recursively inaccessible ordinal}.

@ Givenr, choose z >7 r s.t. a)i is NOT rec. inaccessible.

@ Then, for any admissible ordinal @ < wi,
there is a M7(z) set P, € 2 such that
{x <tz :w’l‘ =a} =P,N{x €2 :x <1 z}.

@ Thus, there is no z-effective reduction from E,o t0 Eck
since {x <z : x ¢ WO} is X (z)-complete.
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Non-orbit analytic equivalence relations:

XEwoy : & either x,y ¢ WO or x and y are isomorphic as w.o.
XEey 162> o) = wi holds.

Fact
@ (Gao) Ey and E¢k are <g-incomparable.
@ (Coskey-Hamkins 2011) E,\, and E are <itm-bireducible.

| A\

Theorem
@ E s(;c})‘ne Ewo -

o If V=L 0 then Eck <(;c;_ne Ewo.

Conjecture

If x# exists for any real x, then Eg E;‘;”e Ewo-
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Smooth Equivalence Relations
Ax: the equality (X, =) on a topological space X.
<p (<L, resp.): Borel (continuous, resp.) reducibility.

@ Ay = Ay whenever X and Y are uncountable standard
Borel spaces. In particular, Aze =g Apn =g Ajo

Q Ao <c A <c D2 <¢ +v+<g ore<c A <¢ DAt < Ajo.

Theorem
QO A <;‘;”e A <;’f”e Ap.

Q Ap =0 A SO0 S0 A SN A SO0 A,

| \
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Remark
@ Ayx <e Ay iff 4 a Markov computable injection
f: Xept = Yept
@ (Kreisel-Lacombe-Shoenfield) f : (w*)cpt = (@“)cpt is
Markov computable iff it is computable in the sense of TTE.

@ (de Brecht) X has a total admissible representation iff X is
guasi-Polish.

@ Hence, whenever X and Y are quasi-Polish, Ay < Ay iff
there is a TTE-computable injection f : Xcpt = Yept.
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Proof Idea of A 5;‘;“9 A

@ The n-dimensional sphere S" is not an absolute extensor for 1"+1,

@ S" is an absolute extensor for a normal space X
& the covering dimension of X is at most n.

© If the covering dimension of a separable metric space X is £ n, then
it is embedded into the n-dimensional Nébeling space N" C 12"+1,
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@ The n-dimensional sphere S" is not an absolute extensor for 1"+1,
(%) Itis computably FALSE!:
The 1-sphere S? is a computable absolute extensor for Isgl.
(constructive counterexample to Brouwer’s fixed point thm.)

@ S" is an absolute extensor for a normal space X
& the covering dimension of X is at most n.

(%) Itis computably TRUE:
S" is a cpt. absolute extensor for a cpt. normal space Xcpt
<= the cpt. covering dimension of Xc is at most n.

© If the covering dimension of a separable metric space X is £ n, then
it is embedded into the n-dimensional Nébeling space N" C 12"+1,
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Proof Idea of A 5;‘;"‘* A

© The n-dimensional sphere S" is not an absolute extensor for "1,
(%) It is computably FALSE!:
The 1-sphere S! is a computable absolute extensor for
(constructive counterexample to Brouwer’s fixed point thm.)

|n+1
cpt

@ S" is an absolute extensor for a normal space X
& the covering dimension of X is at most n.

(%) Itis computably TRUE:

S" is a cpt. absolute extensor for a cpt. normal space Xcpt
< the cpt. covering dimension of Xc is at most n.

Hence, the computable covering dimension of Ié‘pt is at most 1!

© If the covering dimension of a separable metric space X is £ n, then
it is embedded into the n-dimensional Nébeling space N C 12"+1,
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© The n-dimensional sphere S" is not an absolute extensor for "1,
(%) It is computably FALSE!:
The 1-sphere S! is a computable absolute extensor for
(constructive counterexample to Brouwer’s fixed point thm.)

|n+1
cpt

@ S" is an absolute extensor for a normal space X
& the covering dimension of X is at most n.

(%) Itis computably TRUE:

S" is a cpt. absolute extensor for a cpt. normal space Xcpt
< the cpt. covering dimension of Xc is at most n.

Hence, the computable covering dimension of Ié‘pt is at most 1!

© If the covering dimension of a separable metric space X is £ n, then
it is embedded into the n-dimensional Nébeling space N C 12"+1,

(%) It is computably TRUE:

Takayuki Kihara (UC Berkeley) Effective Reducibility on a Cone



Proof Idea of A 5;‘;"‘* A

© The n-dimensional sphere S" is not an absolute extensor for "+,

(%) It is computably FALSE!:
The 1-sphere S? is a computable absolute extensor for Isp*t'l.

(constructive counterexample to Brouwer’s fixed point thm.)

@ S" is an absolute extensor for a normal space X
& the covering dimension of X is at most n.

(%) Itis computably TRUE:

S" is a cpt. absolute extensor for a cpt. normal space Xcpt
& the cpt. covering dimension of Xc is at most n.

Hence, the computable covering dimension of Ié‘pt is at most 1!

© If the covering dimension of a separable metric space X is £ n, then
it is embedded into the n-dimensional Nébeling space N C 12"+1,

(%) It is computably TRUE:
Hence, Igpt is computably embedded into N € I3,
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