The completeness theorem, WKL_0 and the origins of Reverse Mathematics

Computability Theory and Foundations of Mathematics Tokyo Institute of Technology 7-11 September 2015

> Walter Dean Department of Philosophy University of Warwick

http://go.warwick.ac.uk/whdean/

Preliminaries	Review	Set existence?	History	Philosophy
•0000	000	00000	00000	000000

Simpson (1999) on Reverse Mathematics

[W]e note the [five basic systems] turn out to correspond to various well known, philosophically motivated programs in foundations of mathematics, as indicated in Table 1.

RCA ₀	constructivism	Bishop
WKL ₀	finitistic reductionism	Hilbert
ACA ₀	predicativism	Weyl, Feferman
ATR_0	predicative reductionism	Friedman, Simpson
Π^1_1 -CA ₀	impredicativity	Feferman et al.

Table: Foundational programs and the five basic systems.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Simpson (1999) on Reverse Mathematics

[W]e note the [five basic systems] turn out to correspond to various well known, philosophically motivated programs in foundations of mathematics, as indicated in Table 1.

Table: Foundational programs and the five basic systems.

RCA ₀	constructivism	Bishop
WKL ₀	finitistic reductionism	Hilbert
ACA ₀	predicativism	Weyl, Feferman
ATR_0	predicative reductionism	Friedman, Simpson
Π_1^1 -CA ₀	impredicativity	Feferman et al.

Thus we can expect this book and other Reverse Mathematics studies to have a substantial impact on the philosophy of mathematics.

1999, p. 42

Preliminaries	Review	Set existence?	History	Philosophy
○●○○○	000		00000	000000
Simpson	(1999) on Rev	verse Mathemat	cics	

Main question: Which **set existence axioms** are needed to prove the theorems of ordinary, non-set-theoretic mathematics?

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000
.				

Simpson (1999) on Reverse Mathematics

Main question: Which **set existence axioms** are needed to prove the theorems of ordinary, non-set-theoretic mathematics?

We identify as **ordinary** or **non-set-theoretic** that body of mathematics which is prior to or independent of the introduction of abstract set-theoretic concepts. We have in mind such branches as geometry, number theory, calculus, differential equations, real and complex analysis, countable algebra, the topology of complete separable metric spaces, mathematical logic, and computability theory. 2009, p. 1-2

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Friedman (1974) on Reverse Mathematics

The questions underlying the work presented here on subsystems of second order arithmetic are the following. What are the proper axioms to use in carrying out proofs of particular theorems, or bodies of theorems, in mathematics? What are those formal systems which isolate the essential principles needed to prove them? \dots ¶...

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Friedman (1974) on Reverse Mathematics

The questions underlying the work presented here on subsystems of second order arithmetic are the following. What are the proper axioms to use in carrying out proofs of particular theorems, or bodies of theorems, in mathematics? What are those formal systems which isolate the essential principles needed to prove them? \dots ¶...

In our work, two principal themes emerge.

I) When the theorem is proved from the right axioms, the axioms can be proved from the theorem . . .

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Friedman (1974) on Reverse Mathematics

The questions underlying the work presented here on subsystems of second order arithmetic are the following. What are the proper axioms to use in carrying out proofs of particular theorems, or bodies of theorems, in mathematics? What are those formal systems which isolate the essential principles needed to prove them? \dots ¶...

In our work, two principal themes emerge.

- I) When the theorem is proved from the right axioms, the axioms can be proved from the theorem . . .
- II) Much more is needed to define explicitly hard-to-define [sets] of integers than merely to prove their existence. An example of this theme which we consider is that the natural axioms needed to define explicitly nonrecursive sets of natural numbers prove the consistency of the natural axioms needed to prove the existence of nonrecursive sets of natural numbers. 1974, p. 235

Preliminaries	Review	Set existence?	History	Philosophy
000●0	000	00000	00000	000000
Some historica	al / philos	ophical claims		

1) Friedman's Theme II) clearly describes WKL₀.

Preliminaries	Review	Set existence?	History	Philosophy
000●0	000	00000	00000	000000
Some historic	al / philos	ophical claims		

- 1) Friedman's Theme II) clearly describes WKL_0 .
- 2) WKL₀ is a *conditional* "set existence axiom".

Preliminaries 000●0	Review 000	Set existence?	History 00000	Philosophy
C 11	1 / 1 1			

- 1) Friedman's Theme II) clearly describes WKL_0 .
- 2) WKL₀ is a *conditional* "set existence axiom".
- 3) Philosophers (e.g. Feferman, Burgess, Sieg) have been interested in WKL_0 primarily because of the Friedman-Harrington conservation results e.g. WKL_0 is Π_2^0 -conservative over PRA.

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000
<u> </u>				

- 1) Friedman's Theme II) clearly describes WKL_0 .
- 2) WKL₀ is a *conditional* "set existence axiom".
- 3) Philosophers (e.g. Feferman, Burgess, Sieg) have been interested in WKL_0 primarily because of the Friedman-Harrington conservation results e.g. WKL_0 is Π_2^0 -conservative over PRA.
- 4) But WKL₀ has an independent pre-history illustrating its role as a *minimally nonconstructive* principle.

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000
-				

- 1) Friedman's Theme II) clearly describes WKL_0 .
- 2) WKL_0 is a *conditional* "set existence axiom".
- 3) Philosophers (e.g. Feferman, Burgess, Sieg) have been interested in WKL_0 primarily because of the Friedman-Harrington conservation results e.g. WKL_0 is Π_2^0 -conservative over PRA.
- 4) But WKL₀ has an independent pre-history illustrating its role as a *minimally nonconstructive* principle.
- 5) This aspect of WKL came to light during the metamathematical investigation of the Gödel (1929/1930) Completeness Theorem.

Preliminaries ○○○●○	Review 000	Set existence?	History 00000	Philosophy

- 1) Friedman's Theme II) clearly describes WKL_{0} .
- 2) WKL_0 is a *conditional* "set existence axiom".
- 3) Philosophers (e.g. Feferman, Burgess, Sieg) have been interested in WKL_0 primarily because of the Friedman-Harrington conservation results e.g. WKL_0 is Π_2^0 -conservative over PRA.
- 4) But WKL_0 has an independent pre-history illustrating its role as a *minimally nonconstructive* principle.
- 5) This aspect of WKL came to light during the metamathematical investigation of the Gödel (1929/1930) Completeness Theorem.
- 6) As such, WKL₀ bears both on the philosophical significance of the Completeness Theorem and more generally on the status of Hilbert's dictum "consistency implies existence".

Preliminaries	Review	Set existence?	History	Philosophy
○○○○●	000		00000	000000
Outline				

- I) Review
- II) What is a "set existence axiom"?
- III) History of WKL₀ and the completeness theorem (1899-1974):
 Frege, Hilbert, Löwenheim, Skolem, J. & D. König, Gödel,
 Hilbert & Bernays, Maltsev, Lindenbaum, Tarski, Hasenjaeger,
 Henkin, Kleene, Beth, Kreisel, Wang, Montague, Scott, Shoenfield,
 Jockusch & Soare, Friedman, Kriesel & Simpson & Mints
- IV) Some philosophical observations and guarded conclusions:
 - existence simpliciter vs conditional existence
 - consistency \Rightarrow existence ?
 - ontological commitment de dicto and de re

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000
Outline				

- I) Review
- II) What is a "set existence axiom"?

III) History of WKL_0 and the completeness theorem (1899-1974):

Frege, Hilbert, D. König, Gödel, Hilbert & Bernays, Kleene, Beth, Kreisel, Jockusch & Soare, Friedman

IV) Some philosophical observations and guarded conclusions:

- existence simpliciter vs conditional existence
- consistency \Rightarrow existence ?
- ontological commitment de dicto and de re

Preliminaries	Review	Set existence?	History	Philosophy
00000	•00	00000	00000	000000

The five basic subsystems subsystems

- Subsystems:
 - $\bullet \operatorname{RCA}_0 = \operatorname{PA}^- + \operatorname{Ind}(\Sigma_1^0) + \Delta_1^0 \operatorname{-CA}_0$
 - $WKL_0 = RCA_0 + WKL$
 - $\bullet \operatorname{ACA}_0 = \operatorname{RCA}_0 + \operatorname{Ind}(\mathcal{L}_2) + \mathcal{L}_1 \operatorname{-CA}$
 - $\bullet \text{ ATR}_0 = \text{ACA}_0 + \text{ATR}$
 - $\bullet \ \Pi_1^1 \text{-} CA_0 = RCA_0 + Ind(\mathcal{L}_2) + \Pi_1^1 \text{-} CA$
- $\bullet \ \mathrm{RCA}_0 \subsetneq \mathrm{WKL}_0 \subsetneq \mathrm{ACA}_0 \subsetneq \mathrm{ATR}_0 \subsetneq \Pi^1_1 \text{-} \mathrm{CA}_0$
- Each of the five systems is **finitely axiomatizable**.

Preliminaries	Review	Set existence?	History	Philosophy
00000	○●○		00000	000000

On the formulation of WKL in \mathcal{L}_2

The following definitions are made in RCA_0 :

- A *tree* is a set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ which is closed under initial segs.
- *T* is *finitely branching* if each $\sigma \in T$ has only *finitely many* immediate successors $\tau = \sigma^{\frown} \langle n \rangle$, *binary branching* if each $\sigma \in T$ has at most *two* successors, and *0-1* if $T \subseteq \{0,1\}^{<\mathbb{N}}$.
- A path through T is $g : \mathbb{N} \to \mathbb{N}$ such that $g[n] \in T$, $\forall n \in \mathbb{N}$.
- Three arithmetical forms of König's Infinity Lemma:
 (KL) ∀T(Finitely-Branching-Tree(T) & Infinite(T) ⇒ ∃g(g a path through T))
- $\begin{array}{l} \mbox{(BKL)} \ \forall T(\mbox{Binary-Branching-Tree}(T) \ \& \ \mbox{Infinite}(T) \Rightarrow \\ \exists g(g \ \mbox{a path through } T)) \end{array}$

(WKL)
$$\forall T(0\text{-}1\text{-}\mathrm{Tree}(T) \& \mathrm{Infinite}(T) \Rightarrow \exists g(g \text{ a path through } T))$$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Statements reversing to WKL over RCA_0

The Infinity Lemma [can be applied in] the most diverse mathematical disciplines, since it often furnishes a useful method of carrying over certain results from the finite to the infinite ... Some applications of the Infinity Lemma are analogous to applications of the Heine-Borel covering theorem. Because of this it seems interesting to remark that, from a certain standpoint, the Infinity Lemma can be thought of as the proper foundation of this covering theorem. König 1927/1936

	000000
······································	000000

Statements reversing to WKL over RCA_0

The Infinity Lemma [can be applied in] the most diverse mathematical disciplines, since it often furnishes a useful method of carrying over certain results from the finite to the infinite ... Some applications of the Infinity Lemma are analogous to applications of the Heine-Borel covering theorem. Because of this it seems interesting to remark that, from a certain standpoint, the Infinity Lemma can be thought of as the proper foundation of this covering theorem. König 1927/1936

Reversals to WKL_0 :

 Heine-Borel Covering Lemma, Peano existence lemma, Brouwer fixed point theorem.

	000000
······································	000000

Statements reversing to WKL over RCA₀

The Infinity Lemma [can be applied in] the most diverse mathematical disciplines, since it often furnishes a useful method of carrying over certain results from the finite to the infinite ... Some applications of the Infinity Lemma are analogous to applications of the Heine-Borel covering theorem. Because of this it seems interesting to remark that, from a certain standpoint, the Infinity Lemma can be thought of as the proper foundation of this covering theorem. König 1927/1936

Reversals to WKL_0 :

- Heine-Borel Covering Lemma, Peano existence lemma, Brouwer fixed point theorem.
- Every countable consistent set of first-order sentences has a countable model. (Gödel)

	000000
······································	000000

Statements reversing to WKL over RCA₀

The Infinity Lemma [can be applied in] the most diverse mathematical disciplines, since it often furnishes a useful method of carrying over certain results from the finite to the infinite ... Some applications of the Infinity Lemma are analogous to applications of the Heine-Borel covering theorem. Because of this it seems interesting to remark that, from a certain standpoint, the Infinity Lemma can be thought of as the proper foundation of this covering theorem. König 1927/1936

Reversals to WKL₀:

- Heine-Borel Covering Lemma, Peano existence lemma, Brouwer fixed point theorem.
- Every countable consistent set of first-order sentences has a countable model. (Gödel)
- If $\varphi(x)$ and $\psi(x)$ are Σ_1^0 s.t. $\neg \exists x(\varphi(x) \land \psi(x))$, then there is Xs.t. $\forall x(\varphi(x) \rightarrow x \in X \land \psi(x) \rightarrow x \notin X)$. (Σ_1^0 -Separation)

Preliminaries	Review 000	Set existence?	History 00000	Philosophy

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	●0000	00000	000000

► E.g.
$$I\Sigma_1^0 \vdash \exists x (Prime(x) \land 17 < x) \text{ or}$$

 $RCA_0 \vdash \exists X (x \in X \leftrightarrow Prime(x)).$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	●0000	00000	000000

• E.g.
$$I\Sigma_1^0 \vdash \exists x(Prime(x) \land 17 < x) \text{ or} \\ RCA_0 \vdash \exists X(x \in X \leftrightarrow Prime(x)).$$

- Conditional existence assertions:
 - If there exists a tree greater than 100m, then there exists the trunk of such a tree.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	●0000	00000	000000

• E.g.
$$I\Sigma_1^0 \vdash \exists x(Prime(x) \land 17 < x) \text{ or} \\ RCA_0 \vdash \exists X(x \in X \leftrightarrow Prime(x)).$$

- Conditional existence assertions:
 - If there exists a tree greater than 100m, then there exists the trunk of such a tree.
 - If there exists a greatest perfect number, then there exists the successor of such a number.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	•0000	00000	000000

• E.g.
$$I\Sigma_1^0 \vdash \exists x(Prime(x) \land 17 < x) \text{ or} \\ RCA_0 \vdash \exists X(x \in X \leftrightarrow Prime(x)).$$

- Conditional existence assertions:
 - If there exists a tree greater than 100m, then there exists the trunk of such a tree.
 - If there exists a greatest perfect number, then there exists the successor of such a number.
 - If god exists, then there exists a cure for cancer.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	•0000	00000	000000

• E.g.
$$I\Sigma_1^0 \vdash \exists x(Prime(x) \land 17 < x) \text{ or} \\ RCA_0 \vdash \exists X(x \in X \leftrightarrow Prime(x)).$$

- Conditional existence assertions:
 - If there exists a tree greater than 100m, then there exists the trunk of such a tree.
 - If there exists a greatest perfect number, then there exists the successor of such a number.
 - If god exists, then there exists a cure for cancer.
 - If S is consistent, then there exists $\mathcal{M} \models S$.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	○●○○○	00000	000000
C I ·	1	11		

- Two means of asserting the existence of sets:
 - 1) By comprehension for a class of formulas Γ : (Γ -AC) For all $\varphi(x) \in \Gamma$ not containing X free, $\exists X \forall x (x \in X \leftrightarrow \varphi(x)).$

Preliminaries	Review	Set existence? ○●○○○	History 00000	Philosophy 000000
				1

- Two means of asserting the existence of sets:
 - 1) By comprehension for a class of formulas Γ : (Γ -AC) For all $\varphi(x) \in \Gamma$ not containing X free, $\exists X \forall x (x \in X \leftrightarrow \varphi(x)).$
 - 2) By separation for a class of formulas Γ :

(Γ -SEP) For all $\varphi(x), \psi(x) \in \Gamma$ not containing X free,

 $\neg \exists x (\varphi(x) \ \land \ \psi(x)) \rightarrow \exists X \forall x (\varphi(x) \rightarrow x \in X \ \land \ \psi(x) \rightarrow x \notin X).$

Preliminaries	Review 000	Set existence? ○●○○○	History 00000	Philosophy 000000

- Two means of asserting the existence of sets:
 - 1) By comprehension for a class of formulas Γ : (Γ -AC) For all $\varphi(x) \in \Gamma$ not containing X free, $\exists X \forall x (x \in X \leftrightarrow \varphi(x)).$
 - 2) By separation for a class of formulas Γ : $(\Gamma$ -SEP) For all $\varphi(x), \psi(x) \in \Gamma$ not containing X free, $\neg \exists x(\varphi(x) \land \psi(x)) \rightarrow \exists X \forall x(\varphi(x) \rightarrow x \in X \land \psi(x) \rightarrow x \notin X).$
- ▶ Recall the logical form of WKL: $\forall T(0\text{-}1\text{-}\mathrm{Tree}(T) \& \mathrm{Infinite}(T) \rightarrow \exists g(g \text{ is a path through } T))$

Preliminaries	Review 000	Set existence? ○●○○○	History 00000	Philosophy 000000

- Two means of asserting the existence of sets:
 - 1) By comprehension for a class of formulas Γ : (Γ -AC) For all $\varphi(x) \in \Gamma$ not containing X free, $\exists X \forall x (x \in X \leftrightarrow \varphi(x)).$
 - 2) By separation for a class of formulas Γ : (Γ -SEP) For all $\varphi(x), \psi(x) \in \Gamma$ not containing X free, $\neg \exists x(\varphi(x) \land \psi(x)) \rightarrow \exists X \forall x(\varphi(x) \rightarrow x \in X \land \psi(x) \rightarrow x \notin X).$
- ▶ Recall the logical form of WKL: $\forall T(0\text{-}1\text{-}\mathrm{Tree}(T) \& \mathrm{Infinite}(T) \rightarrow \exists g(g \text{ is a path through } T))$
- WKL does not have the "surface grammar" of either 1) or 2).

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy 000000

Is there a Γ such that $RCA_0 \vdash WKL \leftrightarrow \Gamma\text{-}AC$?

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000

Is there a Γ such that $RCA_0 \vdash WKL \leftrightarrow \Gamma$ -AC?

• Note that since $ACA_0 \vdash WKL$, such a Γ would have to be a sub-schema of arithmetical comprehension.

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000

Is there a Γ such that $RCA_0 \vdash WKL \leftrightarrow \Gamma\text{-AC}$?

- Note that since ACA₀ ⊢ WKL, such a Γ would have to be a sub-schema of arithmetical comprehension.
- ▶ But if $RCA_0 \vdash WKL \leftrightarrow \Gamma$ -AC, then there is a single arithmetical formula $\varphi(x, X)$ s.t.

(1) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists Y \forall n (n \in Y \leftrightarrow \varphi(n, X)).$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	0000	00000	000000

Is there a Γ such that $RCA_0 \vdash WKL \leftrightarrow \Gamma\text{-AC}$?

- Note that since ACA₀ ⊢ WKL, such a Γ would have to be a sub-schema of arithmetical comprehension.
- But if $RCA_0 \vdash WKL \leftrightarrow \Gamma$ -AC, then there is a single arithmetical formula $\varphi(x, X)$ s.t.

(1) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists Y \forall n (n \in Y \leftrightarrow \varphi(n, X)).$

In this case by extensionality

(2) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists ! Y \forall n (n \in Y \leftrightarrow \varphi(n, X))$
00000 000 000	0000	00000	000000

WKL and comprehension

Is there a Γ such that $RCA_0 \vdash WKL \leftrightarrow \Gamma\text{-AC}$?

- Note that since ACA₀ ⊢ WKL, such a Γ would have to be a sub-schema of arithmetical comprehension.
- ▶ But if $RCA_0 \vdash WKL \leftrightarrow \Gamma$ -AC, then there is a single arithmetical formula $\varphi(x, X)$ s.t.

(1) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists Y \forall n (n \in Y \leftrightarrow \varphi(n, X)).$

In this case by extensionality

(2) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists ! Y \forall n (n \in Y \leftrightarrow \varphi(n, X))$

- Simpson, Tanaka, Yamazaki (2002): for all arith. $\psi(X,Y)$

(3) If WKL₀ $\vdash \forall X \exists ! Y \psi(X, Y)$, then $\operatorname{RCA}_0 \vdash \forall X \exists Y \psi(X, Y)$.

00000 000 000	0000	00000	000000

WKL and comprehension

Is there a Γ such that $RCA_0 \vdash WKL \leftrightarrow \Gamma\text{-AC}$?

- Note that since ACA₀ ⊢ WKL, such a Γ would have to be a sub-schema of arithmetical comprehension.
- ▶ But if $RCA_0 \vdash WKL \leftrightarrow \Gamma$ -AC, then there is a single arithmetical formula $\varphi(x, X)$ s.t.

(1) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists Y \forall n (n \in Y \leftrightarrow \varphi(n, X)).$

In this case by extensionality

(2) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists ! Y \forall n (n \in Y \leftrightarrow \varphi(n, X))$

- Simpson, Tanaka, Yamazaki (2002): for all arith. $\psi(X,Y)$

(3) If WKL₀ $\vdash \forall X \exists ! Y \psi(X, Y)$, then $\operatorname{RCA}_0 \vdash \forall X \exists Y \psi(X, Y)$.

• (2) implies $WKL_0 \vdash \forall X \exists ! Y \forall n (n \in Y \leftrightarrow \varphi(n, X))$ and hence by (3) $RCA_0 \vdash \forall X \exists Y \forall n (n \in Y \leftrightarrow \varphi(n, X)).$

00000 000 000	0000	00000	000000

WKL and comprehension

Is there a Γ such that $RCA_0 \vdash WKL \leftrightarrow \Gamma\text{-AC}$?

- Note that since $ACA_0 \vdash WKL$, such a Γ would have to be a sub-schema of arithmetical comprehension.
- But if $RCA_0 \vdash WKL \leftrightarrow \Gamma$ -AC, then there is a single arithmetical formula $\varphi(x, X)$ s.t.

(1) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists Y \forall n (n \in Y \leftrightarrow \varphi(n, X)).$

In this case by extensionality

(2) $\operatorname{RCA}_0 \vdash \operatorname{WKL} \leftrightarrow \forall X \exists ! Y \forall n (n \in Y \leftrightarrow \varphi(n, X))$

- Simpson, Tanaka, Yamazaki (2002): for all arith. $\psi(X,Y)$

(3) If $WKL_0 \vdash \forall X \exists ! Y \psi(X, Y)$, then $RCA_0 \vdash \forall X \exists Y \psi(X, Y)$.

- (2) implies $WKL_0 \vdash \forall X \exists ! Y \forall n (n \in Y \leftrightarrow \varphi(n, X))$ and hence by (3) $RCA_0 \vdash \forall X \exists Y \forall n (n \in Y \leftrightarrow \varphi(n, X)).$
- ▶ But then $RCA_0 \vdash WKL$ by (1). Contradiction.

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000

Over RCA_0 , WKL is equivalent to Σ_1^0 -SEP.

 ${\scriptstyle \blacktriangleright}$ Canonical example: Let ${\rm S}$ be a recursively axiomatized theory.

 $\varphi(x) = \exists y \operatorname{Proof}_{\mathrm{S}}(y, x), \quad \psi(x) = \exists y \operatorname{Proof}_{\mathrm{S}}(y, \dot{\neg} x).$

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000

Over RCA_0 , WKL is equivalent to Σ_1^0 -SEP.

 \blacktriangleright Canonical example: Let ${\rm S}$ be a recursively axiomatized theory.

 $\varphi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, x), \quad \psi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, \dot{\neg} x).$

• The Kleene tree T_S is defined as $t \in T$ iff

Preliminaries	Review	Set existence?	History	Philosophy
00000	000		00000	000000

Over RCA_0 , WKL is equivalent to Σ_1^0 -SEP.

 ${\scriptstyle \blacktriangleright}$ Canonical example: Let ${\rm S}$ be a recursively axiomatized theory.

 $\varphi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, x), \quad \psi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, \dot{\neg} x).$

• The Kleene tree T_S is defined as $t \in T$ iff

 $\forall x, y < lh(t)(\operatorname{Proof}_{\mathrm{S}}(y, x) \to t(x) = 1 \land \operatorname{Proof}_{\mathrm{S}}(y, \dot{\neg} x) \to t(x) = 0)$

• If S is consistent, then T_S is infinite.

Preliminaries	Review	Set existence?	History	Philosophy
	000	○○○●○	00000	000000

Over RCA_0 , WKL is equivalent to Σ_1^0 -SEP.

 ${\scriptstyle \blacktriangleright}$ Canonical example: Let ${\rm S}$ be a recursively axiomatized theory.

 $\varphi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, x), \quad \psi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, \dot{\neg} x).$

• The Kleene tree T_S is defined as $t \in T$ iff

- If S is consistent, then T_S is infinite.
- \blacktriangleright Kleene (1952a): If $\rm S$ is essentially undecidable, then $T_{\rm S}$ has no recursive path.

Preliminaries	Review 000	Set existence?	History 00000	Philosophy 000000
				1

Over RCA_0 , WKL is equivalent to Σ_1^0 -SEP.

 ${\scriptstyle \blacktriangleright}$ Canonical example: Let ${\rm S}$ be a recursively axiomatized theory.

 $\varphi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, x), \quad \psi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, \dot{\neg} x).$

• The Kleene tree T_S is defined as $t \in T$ iff

- If S is consistent, then T_S is infinite.
- \blacktriangleright Kleene (1952a): If $\rm S$ is essentially undecidable, then $T_{\rm S}$ has no recursive path.
- But Modulo RCA_0 , " T_S exists" is a *constructive* claim.

Preliminaries	Review	Set existence?	History	Philosophy
	000	○○○●○	00000	000000

Over RCA_0 , WKL is equivalent to Σ_1^0 -SEP.

 ${\scriptstyle \blacktriangleright}$ Canonical example: Let ${\rm S}$ be a recursively axiomatized theory.

 $\varphi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, x), \quad \psi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, \dot{\neg} x).$

• The Kleene tree T_S is defined as $t \in T$ iff

- If S is consistent, then T_S is infinite.
- \blacktriangleright Kleene (1952a): If $\rm S$ is essentially undecidable, then $T_{\rm S}$ has no recursive path.
- But Modulo RCA_0 , " T_S exists" is a *constructive* claim.
- So modulo, WKL and Σ^0_1 -SEP both have the form

Preliminaries	Review	Set existence?	History	Philosophy
	000	○○○●○	00000	000000

Over RCA_0 , WKL is equivalent to Σ_1^0 -SEP.

 \blacktriangleright Canonical example: Let ${\rm S}$ be a recursively axiomatized theory.

 $\varphi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, x), \quad \psi(x) = \exists y \operatorname{Proof}_{\mathcal{S}}(y, \dot{\neg} x).$

• The Kleene tree T_S is defined as $t \in T$ iff

 $\forall x, y < lh(t)(\operatorname{Proof}_{\mathrm{S}}(y, x) \to t(x) = 1 \land \operatorname{Proof}_{\mathrm{S}}(y, \dot{\neg} x) \to t(x) = 0)$

- If S is consistent, then T_S is infinite.
- \blacktriangleright Kleene (1952a): If $\rm S$ is essentially undecidable, then $T_{\rm S}$ has no recursive path.
- But Modulo RCA_0 , " T_S exists" is a *constructive* claim.
- So modulo, WKL and Σ^0_1 -SEP both have the form

If something X exists (constructive), then something Y exists (possibly non-constructive).

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	0000●	00000	000000
Is WKL a "set	existence a	xiom''? (3)		

Observations:

- 1) While WKL is not a set existence principle *simpliciter*, it is a *conditional* set existence principle.
- 2) RCA_0 proves the existence of all recursive trees.
- 3) So modulo RCA_0 , WKL *does* have "existential import".

Preliminaries	Review	Set existence?	History	Philosophy
	000	0000●	00000	000000

Is WKL a "set existence axiom"? (3)

Observations:

- 1) While WKL is not a set existence principle *simpliciter*, it is a *conditional* set existence principle.
- 2) ${\rm RCA}_0$ proves the existence of all recursive trees.
- 3) So modulo RCA_0 , WKL *does* have "existential import".
- Question: Is the import "innocent"?
 - Finitism: no, because there are no infinite trees (or paths).
 - Predicativism: yes, because $ACA_0 \vdash WKL$.
 - "Finitistic reductionism": yes, because of conservativity. (?)
 - Constructivism: complicated, because of the *minimal* non-constructivity of WKL.

Preliminaries	Review	Set existence?	History	Philosophy
	000	0000●	00000	000000

Is WKL a "set existence axiom"? (3)

Observations:

- 1) While WKL is not a set existence principle *simpliciter*, it is a *conditional* set existence principle.
- 2) ${\rm RCA}_0$ proves the existence of all recursive trees.
- 3) So modulo RCA_0 , WKL *does* have "existential import".
- Question: Is the import "innocent"?
 - Finitism: no, because there are no infinite trees (or paths).
 - Predicativism: yes, because $ACA_0 \vdash WKL$.
 - "Finitistic reductionism": yes, because of conservativity. (?)
 - Constructivism: complicated, because of the *minimal* non-constructivity of WKL.
- ▶ <u>Plan</u>: Use the equivalence of WKL and the Completeness Theorem over RCA₀ to illustrate what's at issue with respect to Hilbert's dictum "consistency implies existence".

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	0000	000000

Frege vs Hilbert (1899) on model existence

Frege's dictum: "Existence entails consistency."

[What] I call axioms [are] propositions that are true but are not proved because our knowledge of them flows from a source very different from the logical source, a source which might be called spatial intuition. From the truth of the axioms it follows that they do not contradict one another.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Frege vs Hilbert (1899) on model existence

Frege's dictum: "Existence entails consistency."

[What] I call axioms [are] propositions that are true but are not proved because our knowledge of them flows from a source very different from the logical source, a source which might be called spatial intuition. From the truth of the axioms it follows that they do not contradict one another.

Hilbert's dictum: "Consistency entails existence."

I found it very interesting to read this very sentence in your letter, for as long as I have been thinking, writing and lecturing on these things, I have been saying the exact reverse: if the arbitrarily given axioms do not contradict each other with all their consequences, then they are true and the things defined by the axioms exist. This is for me the criterion of truth and existence.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	○●○○○	000000
Gödel 1929				

L.E.J. Brouwer, in particular, has emphatically stressed that from the consistency of an axiom system we cannot conclude without further ado that a model can be constructed.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000		○●○○○	000000
Gödel 1929				

L.E.J. Brouwer, in particular, has emphatically stressed that from the consistency of an axiom system we cannot conclude without further ado that a model can be constructed. But one might perhaps think that the existence of the notions introduced through an axiom system is to be defined outright by the consistency of the axioms and that, therefore, a proof [of completeness] has to be rejected out of hand ...

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	○●○○○	000000
Gödel 1929				

L.E.J. Brouwer, in particular, has emphatically stressed that from the consistency of an axiom system we cannot conclude without further ado that a model can be constructed. But one might perhaps think that the existence of the notions introduced through an axiom system is to be defined outright by the consistency of the axioms and that, therefore, a proof [of completeness] has to be rejected out of hand ... This definition ... however, manifestly presupposes the axiom that every mathematical problem is solvable ... For, if the **unsolvability of some problem** ... were proved, then ... there would follow the existence of two non-isomorphic realizations of the axiom system ...

Preliminaries	Review	Set existence?	History	Philosophy
00000	000		0●000	000000
Gödel 1929				

L.E.J. Brouwer, in particular, has emphatically stressed that from the consistency of an axiom system we cannot conclude without further ado that a model can be constructed. But one might perhaps think that the existence of the notions introduced through an axiom system is to be defined outright by the consistency of the axioms and that, therefore, a proof [of completeness] has to be rejected out of hand ... This definition ... however, manifestly presupposes the axiom that every mathematical problem is solvable ... For, if the **unsolvability** of some problem ... were proved, then ... there would follow the existence of two non-isomorphic realizations of the axiom system ... These reflections ... are intended only to properly illuminated the difficulties that would be connected with such a definition of the notion of existence, without any definitive assertion being made about its possibility or impossibility.

1929, p. 63

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy 000000

• Suppose $\nvdash_{Fol} \neg \varphi$.

Preliminaries	Review	Set existence?	History	Philosophy

▶ Suppose $ee_{\text{Fol}} \neg \varphi$. Gödel (1929) constructed a sequence of Herbrand models for the Skolem normal form of φ .

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- ▶ Suppose $ee_{\text{Fol}} \neg \varphi$. Gödel (1929) constructed a sequence of Herbrand models for the Skolem normal form of φ .
- Hilbert & Bernays (1934) formalized Gödel's proof in \mathbb{Z}_2 and thus obtained arithmetical models $\mathcal{M} \models \varphi$ such that $M = \mathbb{N}$ and $P_i^M \subseteq \mathbb{N}^{a_i}$.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- ▶ Suppose $ee_{\text{Fol}} \neg \varphi$. Gödel (1929) constructed a sequence of Herbrand models for the Skolem normal form of φ .
- Hilbert & Bernays (1934) formalized Gödel's proof in \mathbb{Z}_2 and thus obtained arithmetical models $\mathcal{M} \models \varphi$ such that $M = \mathbb{N}$ and $P_i^M \subseteq \mathbb{N}^{a_i}$.
- Kleene (1952) observed that since the construction is recursive in the Σ_1^0 -definition of derivability, the P_i^M are Δ_2^0 -definable.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- ▶ Suppose $ee_{\text{Fol}} \neg \varphi$. Gödel (1929) constructed a sequence of Herbrand models for the Skolem normal form of φ .
- Hilbert & Bernays (1934) formalized Gödel's proof in \mathbb{Z}_2 and thus obtained arithmetical models $\mathcal{M} \models \varphi$ such that $M = \mathbb{N}$ and $P_i^M \subseteq \mathbb{N}^{a_i}$.
- Kleene (1952) observed that since the construction is recursive in the Σ_1^0 -definition of derivability, the P_i^M are Δ_2^0 -definable.
- ► Kriesel (1953) and Mostowski (1953) observed that this couldn't be strengthened to Δ⁰₁ because there are finite theories with no recursive models.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- ▶ Suppose $ee_{\text{Fol}} \neg \varphi$. Gödel (1929) constructed a sequence of Herbrand models for the Skolem normal form of φ .
- Hilbert & Bernays (1934) formalized Gödel's proof in \mathbb{Z}_2 and thus obtained arithmetical models $\mathcal{M} \models \varphi$ such that $M = \mathbb{N}$ and $P_i^M \subseteq \mathbb{N}^{a_i}$.
- Kleene (1952) observed that since the construction is recursive in the Σ_1^0 -definition of derivability, the P_i^M are Δ_2^0 -definable.
- Kriesel (1953) and Mostowski (1953) observed that this couldn't be strengthened to Δ_1^0 because there are finite theories with no recursive models.
- Subsequent work on Π⁰₁-classes and the basis theorems grew out of this − e.g. Shoenfield (1960) "The degrees of models".

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- ▶ Suppose $ee_{\text{Fol}} \neg \varphi$. Gödel (1929) constructed a sequence of Herbrand models for the Skolem normal form of φ .
- Hilbert & Bernays (1934) formalized Gödel's proof in \mathbb{Z}_2 and thus obtained arithmetical models $\mathcal{M} \models \varphi$ such that $M = \mathbb{N}$ and $P_i^M \subseteq \mathbb{N}^{a_i}$.
- Kleene (1952) observed that since the construction is recursive in the Σ_1^0 -definition of derivability, the P_i^M are Δ_2^0 -definable.
- Kriesel (1953) and Mostowski (1953) observed that this couldn't be strengthened to Δ_1^0 because there are finite theories with no recursive models.
- Subsequent work on Π⁰₁-classes and the basis theorems grew out of this − e.g. Shoenfield (1960) "The degrees of models".
- Jockush & Soare (1972) showed that every recursive theory has a low model i.e. $\deg(P_i^M)' = \mathbf{0}'$.

Preliminaries	Review 000	Set existence?	History ○○○●○	Philosophy 000000
a 1	6			

 Kleene (1952a) used the Kleene tree to show that Brouwer's Fan Theorem fails if restricted to recursive choice sequences.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- Kleene (1952a) used the Kleene tree to show that Brouwer's Fan Theorem fails if restricted to recursive choice sequences.
- Beth (1947, 1956) proposed a completeness proof for (HPC) based on *Beth models* i.e. infinite "tableau-like" trees.

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy 000000

- Kleene (1952a) used the Kleene tree to show that Brouwer's Fan Theorem fails if restricted to recursive choice sequences.
- Beth (1947, 1956) proposed a completeness proof for (HPC) based on *Beth models* i.e. infinite "tableau-like" trees.
- Gödel & Kreisel (1958, 1961, 1962) raised doubts about proof.

Preliminaries	Review	Set existence?	History	Philosophy

- Kleene (1952a) used the Kleene tree to show that Brouwer's Fan Theorem fails if restricted to recursive choice sequences.
- Beth (1947, 1956) proposed a completeness proof for (HPC) based on *Beth models* i.e. infinite "tableau-like" trees.
- Gödel & Kreisel (1958, 1961, 1962) raised doubts about proof.
- Kreisel (1970) showed "HPC is complete" implies the negation of intuitionistic Church's Thesis (CT_0) .

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- Kleene (1952a) used the Kleene tree to show that Brouwer's Fan Theorem fails if restricted to recursive choice sequences.
- Beth (1947, 1956) proposed a completeness proof for (HPC) based on *Beth models* i.e. infinite "tableau-like" trees.
- Gödel & Kreisel (1958, 1961, 1962) raised doubts about proof.
- ▶ Kreisel (1970) showed "HPC is complete" implies the negation of intuitionistic Church's Thesis (CT₀).
- "This shows that the completeness of HPC is a rather dubious commodity." van Dalen (1973), p. 87

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- Kleene (1952a) used the Kleene tree to show that Brouwer's Fan Theorem fails if restricted to recursive choice sequences.
- Beth (1947, 1956) proposed a completeness proof for (HPC) based on *Beth models* i.e. infinite "tableau-like" trees.
- Gödel & Kreisel (1958, 1961, 1962) raised doubts about proof.
- Kreisel (1970) showed "HPC is complete" implies the negation of intuitionistic Church's Thesis (CT₀).
- "This shows that the completeness of HPC is a rather dubious commodity." van Dalen (1973), p. 87
- Yamazaki (2001) showed that the strong completeness of HPC wrt Kripke models is equivalent over RCA₀ to ACA₀.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000		0000●	000000
Friedman (197	4)			

 ACA_0 is obviously sufficient to explicitly define a nonrecursive set (e.g., the jump). WKL₀ is not sufficient, and so the following theorem provides us with an illustration of our theme II.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	0000●	000000
Friedman (197	4)			

 ACA_0 is obviously sufficient to explicitly define a nonrecursive set (e.g., the jump). WKL₀ is not sufficient, and so the following theorem provides us with an illustration of our theme II.

THEOREM 1.7 Suppose A(X) is a Σ_1^1 -formula with X as the only free set variable and

WKL₀ $\vdash (\exists X)(A(X) \land X \text{ is not recursive})$

then

WKL₀ $\vdash \forall Y \exists X(A(X) \land X \text{ is not recursive } \land \forall n(Y_n \neq X)).$

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy •00000

Etchemendy (1990) contra Tarksi (1935) on logical truth

Consider the following sentence:

$$\begin{split} \varphi &= (\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ \land \forall x \neg R(x,x)) \rightarrow \neg \forall x \exists y R(x,y) \end{split}$$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	00000

Etchemendy (1990) contra Tarksi (1935) on logical truth

Consider the following sentence:

$$\begin{split} \varphi &= (\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ & \land \forall x \neg R(x,x)) \rightarrow \neg \forall x \exists y R(x,y) \end{split}$$

To show that ⊭φ – i.e. φ is not a logical truth à la Tarski – requires that ∃M s.t. M ⊨ ¬φ.
Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

$$\begin{split} \varphi &= (\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ & \land \forall x \neg R(x,x)) \rightarrow \neg \forall x \exists y R(x,y) \end{split}$$

- To show that ⊭φ i.e. φ is *not* a logical truth à la Tarski requires that ∃M s.t. M ⊨ ¬φ.
- ▶ Such an *M* must have an *infinite domain*.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

$$\begin{split} \varphi &= (\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ & \land \forall x \neg R(x,x)) \rightarrow \neg \forall x \exists y R(x,y) \end{split}$$

- To show that ⊭φ i.e. φ is *not* a logical truth à la Tarski requires that ∃M s.t. M ⊨ ¬φ.
- ▶ Such an *M* must have an *infinite domain*.
- Similarly, to *invalidate* $\forall x R(x, x)$ requires the existence of an irreflexive relation.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

$$\begin{split} \varphi &= (\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ & \land \forall x \neg R(x,x)) \rightarrow \neg \forall x \exists y R(x,y) \end{split}$$

- To show that ⊭φ i.e. φ is *not* a logical truth à la Tarski requires that ∃M s.t. M ⊨ ¬φ.
- ▶ Such an *M* must have an *infinite domain*.
- Similarly, to *invalidate* $\forall x R(x, x)$ requires the existence of an irreflexive relation.
- Etchemendy: the extensional adequacy of Tarski's definition of logical truth has "extralogical" – i.e. set theoretic – commitments.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

$$\begin{split} \varphi &= (\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ & \land \forall x \neg R(x,x)) \rightarrow \neg \forall x \exists y R(x,y) \end{split}$$

- To show that ⊭φ i.e. φ is *not* a logical truth à la Tarski requires that ∃M s.t. M ⊨ ¬φ.
- ▶ Such an *M* must have an *infinite domain*.
- Similarly, to *invalidate* $\forall x R(x, x)$ requires the existence of an irreflexive relation.
- Etchemendy: the extensional adequacy of Tarski's definition of logical truth has "extralogical" – i.e. set theoretic – commitments. Similarly for the Completeness Theorem.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

$$\begin{split} \varphi &= (\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ & \land \forall x \neg R(x,x)) \rightarrow \neg \forall x \exists y R(x,y) \end{split}$$

- To show that ⊭φ i.e. φ is *not* a logical truth à la Tarski requires that ∃M s.t. M ⊨ ¬φ.
- ▶ Such an *M* must have an *infinite domain*.
- Similarly, to *invalidate* $\forall x R(x, x)$ requires the existence of an irreflexive relation.
- Etchemendy: the extensional adequacy of Tarski's definition of logical truth has "extralogical" – i.e. set theoretic – commitments. Similarly for the Completeness Theorem.
- Question: How far do these commitments extend?

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- Fnitely axiomatizable theories with no recursive models:
 - \rightarrow EFA + \neg Con(EFA) (Tennenbaum 1959, MacAloon 1982)
 - $GB Inf = \{\varphi_1, \dots, \varphi_n\}$ (Rabin 1958)

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	00000

- Fnitely axiomatizable theories with no recursive models:
 - + $EFA + \neg Con(EFA)$ (Tennenbaum 1959, MacAloon 1982)
 - GB Inf = $\{\varphi_1, \dots, \varphi_n\}$ (Rabin 1958)
- In order to show
 - $\not\models$ EFA \rightarrow Con(EFA)
 - $\blacktriangleright \not\models (\varphi_1 \land \ldots \land \varphi_{n-1}) \to \neg \varphi_n$

requires the existence of *non-recursive* countermodels.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	00000

- Fnitely axiomatizable theories with no recursive models:
 - + $EFA + \neg Con(EFA)$ (Tennenbaum 1959, MacAloon 1982)
 - $GB Inf = \{\varphi_1, \dots, \varphi_n\}$ (Rabin 1958)
- In order to show
 - $\not\models$ EFA \rightarrow Con(EFA)
 - $\blacktriangleright \not\models (\varphi_1 \land \ldots \land \varphi_{n-1}) \to \neg \varphi_n$

requires the existence of *non-recursive* countermodels.

 So the extra-logical commitments implicit in Tarski's definitions (and Completeness) extend to non-recursive sets.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	00000

- Fnitely axiomatizable theories with no recursive models:
 - + $EFA + \neg Con(EFA)$ (Tennenbaum 1959, MacAloon 1982)
 - GB Inf = $\{\varphi_1, \dots, \varphi_n\}$ (Rabin 1958)
- In order to show
 - $\not\models$ EFA \rightarrow Con(EFA)
 - $\blacktriangleright \not\models (\varphi_1 \land \ldots \land \varphi_{n-1}) \to \neg \varphi_n$

requires the existence of *non-recursive* countermodels.

- So the extra-logical commitments implicit in Tarski's definitions (and Completeness) extend to non-recursive sets.
- Revised Hilbert's dictum:

"Consistency implies existence non-constructively."

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Completeness formalized in \mathcal{L}_2 :

(Comp) $\forall S(\operatorname{Con}(S) \to \exists M \forall n(\operatorname{Prov}_S(n) \to M(n) = 1))$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Completeness formalized in \mathcal{L}_2 :

(Comp) $\forall S(\operatorname{Con}(S) \to \exists M \forall n(\operatorname{Prov}_S(n) \to M(n) = 1))$

where M(x) satisfies Tarski-like clauses.

 $\blacktriangleright \operatorname{RCA}_0 \vdash \operatorname{Comp} \leftrightarrow \operatorname{WKL}$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Completeness formalized in \mathcal{L}_2 :

 $(\operatorname{Comp}) \quad \forall S(\operatorname{Con}(S) \to \exists M \forall n(\operatorname{Prov}_S(n) \to M(n) = 1))$

- $\blacktriangleright \operatorname{RCA}_0 \vdash \operatorname{Comp} \leftrightarrow \operatorname{WKL}$
- \blacktriangleright On the "minimal non-constructivity" of ${\rm WKL}_0$ à la Friedman:
 - If $\mathcal{M} \models WKL_0$ then, there exists $\mathcal{M}' \subseteq_{\omega} \mathcal{M}$ such that $\mathcal{M}' \models WKL_0$ and $\mathcal{S}_{\mathcal{M}'} \subsetneq \mathcal{S}_{\mathcal{M}}$.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Completeness formalized in \mathcal{L}_2 :

 $(\operatorname{Comp}) \quad \forall S(\operatorname{Con}(S) \to \exists M \forall n(\operatorname{Prov}_S(n) \to M(n) = 1))$

- $\blacktriangleright \operatorname{RCA}_0 \vdash \operatorname{Comp} \leftrightarrow \operatorname{WKL}$
- \blacktriangleright On the "minimal non-constructivity" of ${\rm WKL}_0$ à la Friedman:
 - If $\mathcal{M} \models WKL_0$ then, there exists $\mathcal{M}' \subseteq_{\omega} \mathcal{M}$ such that $\mathcal{M}' \models WKL_0$ and $\mathcal{S}_{\mathcal{M}'} \subsetneq \mathcal{S}_{\mathcal{M}}$.
 - REC = $\bigcap \{ \mathcal{S}_{\mathcal{M}} : \mathcal{M} \models WKL_0 \}.$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Completeness formalized in \mathcal{L}_2 :

 $(\operatorname{Comp}) \quad \forall S(\operatorname{Con}(S) \to \exists M \forall n(\operatorname{Prov}_S(n) \to M(n) = 1))$

- $\blacktriangleright \operatorname{RCA}_0 \vdash \operatorname{Comp} \leftrightarrow \operatorname{WKL}$
- \blacktriangleright On the "minimal non-constructivity" of WKL_0 à la Friedman:
 - If $\mathcal{M} \models WKL_0$ then, there exists $\mathcal{M}' \subseteq_{\omega} \mathcal{M}$ such that $\mathcal{M}' \models WKL_0$ and $\mathcal{S}_{\mathcal{M}'} \subsetneq \mathcal{S}_{\mathcal{M}}$.
 - REC = $\bigcap \{ \mathcal{S}_{\mathcal{M}} : \mathcal{M} \models WKL_0 \}.$
 - There exists an ω -model $\mathcal{M} \models \text{WKL}_0$ such that all $X \in \mathcal{S}_{\mathcal{M}}$ are *low* - i.e. $X' = \mathbf{0}'$.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Completeness formalized in \mathcal{L}_2 :

 $(\operatorname{Comp}) \quad \forall S(\operatorname{Con}(S) \to \exists M \forall n(\operatorname{Prov}_S(n) \to M(n) = 1))$

- ▶ $RCA_0 \vdash Comp \leftrightarrow WKL$
- \blacktriangleright On the "minimal non-constructivity" of WKL_0 à la Friedman:
 - If $\mathcal{M} \models WKL_0$ then, there exists $\mathcal{M}' \subseteq_{\omega} \mathcal{M}$ such that $\mathcal{M}' \models WKL_0$ and $\mathcal{S}_{\mathcal{M}'} \subsetneq \mathcal{S}_{\mathcal{M}}$.
 - REC = $\bigcap \{ \mathcal{S}_{\mathcal{M}} : \mathcal{M} \models WKL_0 \}.$
 - There exists an ω -model $\mathcal{M} \models \text{WKL}_0$ such that all $X \in \mathcal{S}_{\mathcal{M}}$ are *low* i.e. $X' = \mathbf{0}'$.
 - If $\langle A_i : i \in \mathbb{N} \rangle$ are non-recursive, then exists ω -model $\mathcal{M} \models \mathrm{WKL}_0 \text{ s.t. } A_i \notin \mathcal{S}_M, \forall i \in \mathbb{N}.$

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

Completeness formalized in \mathcal{L}_2 :

 $(\operatorname{Comp}) \quad \forall S(\operatorname{Con}(S) \to \exists M \forall n(\operatorname{Prov}_S(n) \to M(n) = 1))$

- $\blacktriangleright \operatorname{RCA}_0 \vdash \operatorname{Comp} \leftrightarrow \operatorname{WKL}$
- \blacktriangleright On the "minimal non-constructivity" of WKL_0 à la Friedman:
 - If $\mathcal{M} \models WKL_0$ then, there exists $\mathcal{M}' \subseteq_{\omega} \mathcal{M}$ such that $\mathcal{M}' \models WKL_0$ and $\mathcal{S}_{\mathcal{M}'} \subsetneq \mathcal{S}_{\mathcal{M}}$.
 - REC = $\bigcap \{ \mathcal{S}_{\mathcal{M}} : \mathcal{M} \models WKL_0 \}.$
 - There exists an ω -model $\mathcal{M} \models \text{WKL}_0$ such that all $X \in \mathcal{S}_{\mathcal{M}}$ are *low* i.e. $X' = \mathbf{0}'$.
 - If $\langle A_i : i \in \mathbb{N} \rangle$ are non-recursive, then exists ω -model $\mathcal{M} \models \mathrm{WKL}_0$ s.t. $A_i \notin \mathcal{S}_M, \forall i \in \mathbb{N}.$
- So while Completeness entails non-constructive set existence, it does not require existence of *specific* non-recursive sets.

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy

1) John believes that there exists a perfect number > 100000.

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy

1) John believes that there exists a perfect number > 100000.

• Two readings:

1.i) $\exists x \operatorname{Bel}(j, \lceil \operatorname{Perfect}(\dot{x}) \land \dot{x} > 1000000^{\circ})$ (de re)

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy

1) John believes that there exists a perfect number > 100000.

Two readings:

1.i) $\exists x \operatorname{Bel}(j, \operatorname{Perfect}(\dot{x}) \land \dot{x} > 1000000^{\circ})$ (de re)1.ii) $\operatorname{Bel}(j, \exists x \operatorname{Perfect}(x) \land x > 1000000^{\circ})$ (de dicto)

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy

1) John believes that there exists a perfect number > 100000.

Two readings:

1.i) $\exists x \operatorname{Bel}(j, \operatorname{`Perfect}(\dot{x}) \land \dot{x} > 1000000^{"})$ (de re)1.ii) $\operatorname{Bel}(j, \operatorname{`\exists} x \operatorname{Perfect}(x) \land x > 1000000^{"})$ (de dicto)

▶ 1.i) is a belief about a specific number (i.e. 33550336).

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- 1) John believes that there exists a perfect number > 100000.
 - Two readings:
 - 1.i) $\exists x \operatorname{Bel}(j, \operatorname{`Perfect}(\dot{x}) \land \dot{x} > 1000000')$ (de re)1.ii) $\operatorname{Bel}(j, \operatorname{`\exists} x \operatorname{Perfect}(x) \land x > 1000000')$ (de dicto)
 - 1.i) is a belief about a specific number (i.e. 33550336).
 - 1.ii) is a belief about an existential proposition (i.e. a "bare" existence claim).

Preliminaries	Review	Set existence?	History	Philosophy
00000	0000	00000	00000	000000

- 1) John believes that there exists a perfect number > 100000.
 - Two readings:
 - 1.i) $\exists x \operatorname{Bel}(j, \operatorname{Perfect}(\dot{x}) \land \dot{x} > 1000000^{\circ})$ (de re)1.ii) $\operatorname{Bel}(j, \operatorname{\exists} x \operatorname{Perfect}(x) \land x > 1000000^{\circ})$ (de dicto)
 - ▶ 1.i) is a belief about a specific number (i.e. 33550336).
 - 1.ii) is a belief about an existential proposition (i.e. a "bare" existence claim).
- 2) John believes that there are spies.
 - Two readings:

2.i) $\exists x \operatorname{Bel}(j, \operatorname{Spy}(\dot{x}))$ (de re)

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- 1) John believes that there exists a perfect number > 100000.
 - Two readings:
 - 1.i) $\exists x \operatorname{Bel}(j, \operatorname{Perfect}(\dot{x}) \land \dot{x} > 1000000^{\circ})$ (de re)1.ii) $\operatorname{Bel}(j, \operatorname{\exists} x \operatorname{Perfect}(x) \land x > 1000000^{\circ})$ (de dicto)
 - ▶ 1.i) is a belief about a specific number (i.e. 33550336).
 - 1.ii) is a belief about an existential proposition (i.e. a "bare" existence claim).
- 2) John believes that there are spies.
 - Two readings:

2.i) $\exists x \operatorname{Bel}(j, \operatorname{Spy}(\dot{x}))$ (de re) 2.ii) $\operatorname{Bel}(j, \exists x \operatorname{Spy}(x))$ (de dicto)

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- 1) John believes that there exists a perfect number > 100000.
 - Two readings:
 - 1.i) $\exists x \operatorname{Bel}(j, \operatorname{Perfect}(\dot{x}) \land \dot{x} > 1000000^{\circ})$ (de re)1.ii) $\operatorname{Bel}(j, \operatorname{\exists} x \operatorname{Perfect}(x) \land x > 1000000^{\circ})$ (de dicto)
 - ▶ 1.i) is a belief about a specific number (i.e. 33550336).
 - 1.ii) is a belief about an existential proposition (i.e. a "bare" existence claim).
- 2) John believes that there are spies.
 - Two readings:
 - 2.i) $\exists x \operatorname{Bel}(j, \operatorname{Spy}(\dot{x}))$ (de re) 2.ii) $\operatorname{Bel}(j, \exists x \operatorname{Spy}(x))$ (de dicto)
 - 2.i) is a belief about a specific person requiring knowledge of identifying features – e.g. height, gender, nationality.

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- 1) John believes that there exists a perfect number > 100000.
 - Two readings:
 - 1.i) $\exists x \operatorname{Bel}(j, \operatorname{Perfect}(\dot{x}) \land \dot{x} > 1000000^{\circ})$ (de re)1.ii) $\operatorname{Bel}(j, \operatorname{\exists} x \operatorname{Perfect}(x) \land x > 1000000^{\circ})$ (de dicto)
 - 1.i) is a belief about a specific number (i.e. 33550336).
 - 1.ii) is a belief about an existential proposition (i.e. a "bare" existence claim).
- 2) John believes that there are spies.
 - Two readings:
 - 2.i) $\exists x \operatorname{Bel}(j, \operatorname{Spy}(\dot{x})^{\intercal})$ (de re) 2.ii) $\operatorname{Bel}(j, \exists x \operatorname{Spy}(x)^{\intercal})$ (de dicto)
 - 2.i) is a belief about a specific person requiring knowledge of identifying features – e.g. height, gender, nationality.
 - 2.ii) is a belief about a "bare" existential proposition.

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy ○○○○●○

3) John is a finitist/predicativist/constructivist, ...

Preliminaries	Review	Set existence?	History	Philosophy
00000	000	00000	00000	000000

- 3) John is a finitist/predicativist/constructivist, \dots
 - i) He is committed to the existence of type $\Phi(X)$ sets.
 - ii) But denies/is agnostic about the existence non- $\Phi(X)$ sets.

Preliminaries	Review 000	Set existence?	History 00000	Philosophy

- 3) John is a finitist/predicativist/constructivist, ...
 - i) He is committed to the existence of type $\Phi(X)$ sets.
 - ii) But denies/is agnostic about the existence non- $\Phi(X)$ sets.
 - E.g. $\Phi(X) =$ finite, recursive, arithmetical, hyperarithmetical, ..., countable, Borel, analytic, coanalytic, projective, ...

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy

- 3) John is a finitist/predicativist/constructivist, ...
 - i) He is committed to the existence of type $\Phi(X)$ sets.
 - ii) But denies/is agnostic about the existence non- $\Phi(X)$ sets.
 - E.g. $\Phi(X) =$ finite, recursive, arithmetical, hyperarithmetical, ..., countable, Borel, analytic, coanalytic, projective, ...
 - Two readings of 3.i):
 - $\exists X(\text{Committed}(j, \ulcorner\Phi(\dot{X}))))$ (de re)
 - Committed $(j, \exists X(\Phi(X)))$ (de dicto)

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy

- 3) John is a finitist/predicativist/constructivist, ...
 - i) He is committed to the existence of type $\Phi(X)$ sets.
 - ii) But denies/is agnostic about the existence non- $\Phi(X)$ sets.
 - E.g. $\Phi(X) =$ finite, recursive, arithmetical, hyperarithmetical, ..., countable, Borel, analytic, coanalytic, projective, ...
 - Two readings of 3.i):
 - $\exists X(\text{Committed}(j, \ulcorner\Phi(\dot{X}))\urcorner)$ (de re)
 - Committed $(j, \exists X(\Phi(X)))$ (de dicto)
 - Per Simpson (1999) WKL_0 formalizes "finitistic reductionism".

Preliminaries 00000	Review 000	Set existence?	History 00000	Philosophy

- 3) John is a finitist/predicativist/constructivist, ...
 - i) He is committed to the existence of type $\Phi(X)$ sets.
 - ii) But denies/is agnostic about the existence non- $\Phi(X)$ sets.
 - E.g. $\Phi(X) =$ finite, recursive, arithmetical, hyperarithmetical, ..., countable, Borel, analytic, coanalytic, projective, ...
 - Two readings of 3.i):
 - $\exists X(\text{Committed}(j, \ulcorner\Phi(\dot{X}))\urcorner)$ (de re)
 - Committed $(j, \exists X(\Phi(X)))$ (de dicto)
 - ▶ Per Simpson (1999) WKL₀ formalizes "finitistic reductionism".
 - Perhaps finitistic reductionists should be understood as being committed *de dicto* to the existence of non-recursive sets but not committed to them *de re*?

Preliminaries	Review 000	Set existence?	History 00000	Philosophy ○○○○●

Bernays (1950) "Mathematical consistency and existence"

The difficulties to which we have been led here ultimately arise from the fact that the concept of consistency itself is not at all unproblematic. The common acceptance of the explanation of mathematical existence in terms of consistency is no doubt due in considerable part to the circumstance that on the basis of the simple cases one has in mind, one forms an unduly simplistic idea of what consistency (compatibility) of conditions is. One thinks of the compatibility of conditions as something the complex of conditions wears on its sleeve ... In fact, however, the role of the conditions is that they affect each other in functional use and by combination. The result obtained in this way is not contained as a constituent part of what is given through the conditions. It is probably the erroneous idea of such inherence that gave rise to the view of the tautological character of mathematical propositions.