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Abstract The query of continuous nearest target objects for a specific route on road network is of primary interest in geo-

graphical information systems. Existing methods for computing continuous nearest neighbor (CNN) are based on straight-line

distance between points on the assumption that the whole graph can be stored in main memory. We have proposed a fast

method for searching continuous nearest target objects along a route on road network. CNN search based on road network is

composed of two steps: one is locating a computation point on the route; and another is searching the nearest object for this

computation point based on the shortest path in the road network. We proposed heuristics for generating computation points

and the region for searching the shortest path based on the intermediate results. By using our method, all the search processes

can be limited to the corresponding search region, and the CNN search process can be greatly accelerated. However, when the

whole graph cannot be stored in the main memory, the previous method cannot handle the problem. In this paper, we present a

fast method for searching CNN on a large road network. The objective is not to artificially introduce hierarchy into a network

model, but rather to investigate a search method based on the networks which bear a natural hierarchy and natural partition.
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1. Introduction

The capability of computing path queries is an essential feature in

new database systems for many advanced applications such as nav-

igation systems and Geographical Information Systems (GIS) [1].

For example, one of the primary functionalities in Intelligent Trans-

portation Systems (ITS) [2] is to find routes from the current loca-

tion of a vehicle to a desired destination with a minimum cost, the

cost could represent shortest distance, travel time, etc. In ITS sys-

tems, many path requests can be submitted over large transportation

network: the whole network is too large to be stored in the main

memory at once. This problem referrs to the disk-based search.

To solve it, many methods have been proposed [1] [3] [4] [5] from a

pre-computation viewpoint. Proper partitions are done to the road

network, and some parts of the path length are pre-computed. The

cost of the following path search process is related to the number

of:

1) nodes and road segments on road network in every partition;

2) boundary nodes in every partition;

3) partitions used in search process.

Comparing to the cost of processing in the main memory, the cost

of accessing partitions on disks is expensive. Therefore, this paper

proposes a method to decrease the times of disk access by minimiz-

ing the search region. In particular this paper investigates a typical

query problem over large road network: searching continuous near-

est target objects along a predefined route on large road network.

This search retrieves the nearest neighbor (NN) for ev-

ery point on the route and the result is a set of triples �

������ �����	
�� �
�� , such that interval is a sub-route, point

is the nearest target object of all points on the sub-route, and path is

the shortest path from the sub-route to the point.

We propose heuristics to accelerate this search by

1) using the search region, so-called r-region, for searching NN

for every computation node;

2) using the path search region, so-called p-region, for comput-

ing shortest path from the computation point to its NN candidates;

3) decreasing r-region and p-region in the process of comput-

ing one pair of nodes: the computation point and one of its NN

candidates;

4) sorting boundary nodes inside p-region.

The rest of this paper is organized as follows. Section 2 discusses

work related to CNN queries, our previous works and shortest path

search on large hierarchical road network. Section 3 describes our

approaches. Section 4 introduces the algorithms. The conclusion is

drawn in Section 5.

2. Related and Previous Work

The issue of this paper referrs to the continuous nearest neighbor

search and the path search on large road network.

2. 1 Continuous nearest neighbor search

The existing work for CNN search is almost presented from the

computational geometry perspective [6] [7] [8]. To the best of our



knowledge, the latest work dealing with CNN queries is given in [6].

CNN search for line segments was effective, based on the straight-

line distance between objects. The same effect can be found in [8],

which only finds the single NN for the whole line segments.

We have proposed the method [9] to solve the problem based on

common situations in GIS: the distance from a point on the route to

a target place should be decided by the path length or travel cost of

them; and the target objects and the road network are managed in

GIS datasets, respectively. Consider the example given in Figure 1,

where the specific route is �� �� �, and the target object set is �� �, ��,

��, ��, �� , ���. The output of the query is �� ��� �� ��� �� �� , �

��� ��� ��� �� �� , � ��� ��� ��� �� �� , � ��� ��� ��� �� �� �,

� ��� ��� �� �� �� �: the target object �� is NN for the interval

(subroute) �� ��� �, and the shortest path from the subroute to �� is

��; �� is NN for the subroute ��� ��� � with the shortest path ��; ��

is also NN for the subroute ��� ��� � with the shortest path ��; �� is

that for the subroutes ��� ��� � and ��� �� � with the shortest paths

�� and ��, respectively.

By proposing heuristics for selecting computation points (e.g.,

�S, �� , ��, �� , ��� in the previous example) and initializing NN

search region for these computation points, our CNN search finds

the target objects with the shortest path length from all the points on

the route effectively.

However, when the road network or the sub-network inside the

search region is too large to be stored in the main memory, the short-

est path search becomes complex and the traditional path search

method (e.g., Dijkstra’s algorithm) is not applicable.
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Figure 1 Road network, specific route [S, E], and target objects.

2. 2 Path query on large road network

The shortest path problem on general graphs has already been

well-studied: e.g., Dijkstra’s algorithm is widely used and actually

very fast when the whole road network can be stored in the main

memory. Recently, new algorithms have been proposed to address

the problem of large dataset: the whole road network cannot be

stored in the main memory at once. HEPV approach proposed by [1]

is typical. In this method, a graph is first divided into partitions, and

then boundary nodes are pushed to the second level to form a su-

per graph. All-pair shortest paths among the boundary nodes in the

same partition are also computed, and the corresponding edges are

added to the super graph. If the supper graph is still too large, it

is divided further into partitions and a third level graph is gener-

ated. This process continues until the top-level super graph is small

enough to be resident in the main memory. This whole set of super

graphs and the ground level graph is called a hierarchical graph. For

a path query from the source s to the destination d, the system first

looks for the partitions containing two nodes: partitions S and D,

respectively. The shortest path from s to d is the concatenation of a

shortest path from s to a boundary node u in S, a shortest path from

u to a boundary node v in D, and a shortest path from v to d, i.e.,

�� ��� �� � �����	��� ��� �� � �� ��� 	� � �� �	� ����

The shortest paths within S and D are easily acquired. To find the

shortest distance from u to v, one must recursively find the shortest

path of them in the hierarchical graph. Furthermore, to find out the

shortest path from s to d should compute three parts for all pairs of

(u,v). The search process would result in times of disk access. So, a

method to accelerate the process and decrease the number of disks

to be accessed is proposed in this paper.

3. Approach

The problem of CNN search which we address in this paper is to

find NN for any point along a specific route on the large hierarchi-

cal road network. NN is the target object with the shortest path from

the point on the route. In the ordinary GIS, all the target objects and

road network are managed in index structures, respectively. For ex-

ample, the target objects are indexed by R-tree [10].

There are two main issues in solving this problem: one is the se-

lection of computation point on the route; and another is the compu-

tation of NN for the computation point, including the computation

of the shortest path and the selection of NN.

The first problem can be solved by using heuristics, proposed in

our previous work [9]. Here, the heuristics for the selection of NN

and shortest path search are given as follows:

1) Although the straight-line distance is not completely con-

sistent to the path length on road network, the object with shorter

distance from the source has higher possibility to get shorter path

length. So, NN search for a computation point begins from select-

ing a candidate based on the straight-line distance between the com-

putation point and the candidate. With the premise that the whole

dataset cannot be stored inside the main memory, the heuristic for

decreasing the NN search region (r-region) is proposed;

2) The cost of path search is deeply dependent on the search

region: the larger the region is, the more road segments and nodes

of road would be. The method for initializing the path search region



(p-region) for the NN candidates of the computation point and the

method for minimizing p-region during the computation of shortest

path are proposed;

3) There are relations between p-region and r-region: the inter-

mediate results during the shortest path computation can be used to

decrease r-region and the number of NN candidates.

3. 1 Heuristics for selecting NN for a computation point

In our approach the selection of computation point uses the fol-

lowing heuristics:

[Heuristic 1] The start point on the route is the first com-

putation point;

[Heuristic 2] The next computation point is an intersec-

tion on the road network, which is the next intersection

of the divergence between the route and the shortest path

from the previous computation point to its NN.

Here, the divergence is a point on the route, where the shortest path

branches off the route. If there is no overlap between the path and

the route, the computation point can be regarded as the divergence.

Heuristic 1 gives the start point of the search; Heuristic 2 helps to

select the following computation point. In this paper, we only use

this result and the detail description is given in [9].

[Heuristic 3] The initial NN search region for a compu-

tation point c is a circle area, whose center is c and radius

is r:

� � �
���� � �
���� �

Here, t is NN for the previous computation point and q is a diver-

gence. As the value of �
���� has computed in the previous NN

search step, and the value of �
�� �� is the curve length between c

and q, the computation of r is not expensive.

We can observe the example given in Figure 2, where c is the

computation point, S is the previous one, and t is NN for S with the

shortest path ��. All NN candidates for c are located inside the ini-

tial search region r-region. The region is the circle area centering

on c with radius r.

3. 2 Heuristics for decreasing search region of path search

To find the shortest path from the computation point c to a candi-

date �
�

is based on an even smaller region: p-region shown in Figure

2.

In Figure 2, the path length from the current computation point c

to NN of the previous computation point is r, and the straight-line

distance between c and the candidate node �
�

is �
�

. For an easy de-

scription we define a coordinate for them in Figure 3: the origin O

of the coordinate is on the center of line �� � , the x-axis passes along

line ��� , and the y-axis is perpendicular to the x-axis on the origin O.

To find the shortest path from c to �
�

is based on the road segments

inside the region (as the dotted line in Figure 3):
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c

t’

S

Eta tb tc

t tf 

tg r r

P1

q

r-region

p-region

Figure 2 Search region generated for a new computation point: NN search

region r-region and shortest path search region p-region
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���� ���
�

��� ������ � �� �
�

��� ������ � �� �� ���

This means that any path from c to �
�

via a point on the boundary of

(or inside) this region is equal to (or shorter than) r. All road seg-

ments on the shortest path could only be found inside this region,

if there is any path shorter than r from c to �
�

. Here, we prove this

region is legal and is also the smallest one.

1) To prove the region is legal, we give an assumption that there

was a point p1 (x1,y1) outside p-region locating on a path from c to

�
�

, and the length of this path �� ��� �
�

� is not longer than r:

�� ��� �
�

� �� ��

According to triangular inequality, the path length is not shorter than

the straight-line distances among c, p1 and �
�

, which is:

���
���� � ����� ����
������ ��� �
�

� �

�
��� � ������ � ��� �

�
���� ������ � ����

���
���� � ����� ����
������ ��� �
�

� �� �� ��� �
�

� �� ��

and

�
��� � ������ � ��� �

�
���� ������ � ��� �� ��

By the definition of p-region, p1 is inside p-region. This result is

contradictory to the assumption.

2) To prove the region is the smallest region for the search, we

assume that there is a point p1 (x1,y1) on the boundary of p-region,

and a path from c to �
�

crosses p1. There are

���
���� � ����� ����
������ ��� �
�

� � ��

By the definition, the length of this path �� ��� �
�

� is not longer

than r and �� ��� �
�

� is not shorter than ���
���� � ���� �
����
������ ��� �

�

�:

���
���� � ����� ����
������ ��� �
�

� �� �� ��� �
�

� �� ��

then

�� ��� �
�

� � ��

This means that any region of smaller than p-region may be results

in an answer missing and p-region is the smallest region for this

search.

The region can also be simplified to a rectangle with length r and

width
�
�� � ���.

3. 3 Relation between p-region and r-region

The selection of a candidate for NN search is based on the

straight-line distance between the computation point and the target

objects: therefore, the next candidate for the computation point is

located in a ring, which is between circle d and circle r in Figure

4. After the computation of shortest path from c to a candidate �
�

,

if the shortest �
�

is shorter than r, �
�

is set up as a smaller r-region
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Figure 4 Relations between p-region and r-region for one computation

point

for the following search. And p-region for the next candidate be-

comes smaller, too. With the search steps, d becomes longer and

longer while r becomes shorter and shorter, and p-region becomes

smaller and smaller, too. The area of p-region for the candidate �
�

is

simplified as

���
�� � ������
�

� � ��
�

�� � ����

The area of p-region for the next candidate �
��

can be simplified as

���
�� � ������
��

� � �
� �
�

��� � �����

As �
�

�� � and �
��

� �
�

;

so

���
�� � ������
��

� �� ���
��� ������
�

��

The relation between p-region and r-region is very useful in the

CNN computation based on the large hierarchical road network.

4. Algorithm for Large Hierarchical Road Net-
work

In order to find CNN for a predefined route on large hierarchi-

cal road network, we adopt a partition method similar to HEPV [1].

Roughly speaking, the partitions of road network are regarded as a

set of rectangles: e.g., bold-line rectangles in Figure 5. The bound-

ary nodes are pushed to the upper level to form a super graph. All-

pair shortest paths among the boundary nodes in the same partition

are computed, and the corresponding edges are added to the super

graph. c and �
�

are the computation point and NN candidate; and � 


and 	� are boundary nodes in c-partition and �
�

-partition, respec-

tively. In the super graph, there are pre-computed edges among � 


(�=1,2...) and those among 	� (�=1,2...). The gray region in Figure

5 represents current p-region. The shortest path from c to �
�

is:

�� ��� �
�

� � �����	��� ��� �� � �� ��� 	� � �� �	� �
�

���



Here, u and v are limited to be inside p-region.

p-region may be decreased with the computation steps: thus, the

number of u and v becomes smaller and smaller. In this section,

we first give a method for selecting the pair of (u, v), and then give

the algorithm for CNN search based on a large hierarchical road

network.

4. 1 Heuristic for sorting boundary nodes

In order to find the shortest path from the source node to the end

node, the method proposed in [1] should compare the path length for

all the pairs of the source and end boundary nodes. In our method,

the computation is limited to the boundary nodes inside p-region:

furthermore, p-region may be decreased during the computation

process; and some pairs of (u, v) in the previous p-region may be

not inside the following p-region. p-region is decreased along the

directions of black arrows in Figure 5. The boundary node on c-

partition, which is further from ��, has a higher possibility to be

ignored in the following search. So, we select boundary nodes in

the sequence of the distance between them and the cross-node of

the corresponding boundary and line �� � . In Figure 5, �
 (	� ) are

sorted on the distances between � 
 (	�) and �� (	�). The directions

of white arrows in Figure 5 depict this situation.
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Figure 5 Situation of p-region and boundary nodes when computation

point and NN candidate belong to different partitions.

4. 2 Algorithm for CNN search on large hierarchical road

network

Here, we describe the algorithms of CNN search, and NN-search

with the shortest path search based (SP-search) on p-region. As

we divide CNN search into a series of NN searches for compu-

tation points on the route, the algorithm of CNN search takes the

responsibility of generating the computation point and initializing

NN search region. At the beginning, the computation point is the

start point of the route, and the search region for NN search is set

to a Maximum value. The Maximum value could be specified by

the user (e.g., less than 2km away from the route) or determined by

some heuristics. The following steps run repeatedly to compute the

result of triples for every computation point by calling NN search

procedure, and generate the computation point and corresponding

search region r-region. We give the algorithm as follows:

==========================

Algorithm CNN-search

�� Input: route [S, E], target object set T

Output: Result set of triples

�� ������ ����	
��� ��� �,...���

1. Initialize:

set first computation point: CP = S;

set NN search region for CP: r = Max;

2. Do steps 3 to 5 until CP equals to E;

3. Call NN-search with CP, r; and get a triple of

� �� ���� ��� ����� � �;

4. Replace interval [CP, q] with [����, q],

insert � �� ����� � ��� ����� � � into Result set;

5. Generate next computation point CP:

CP = next intersection from q along route;

set NN search region for CP:

r = ������ + �����;

==========================

The NN search process bases on the R-tree index and a prior-

ity queue Queue. Queue is used to record the intermediate results:

the R-tree nodes which are overlapped with the search region and

the target objects. The key used to order the elements on Queue is

straight-line distance of R-tree node and path length computed for

target object. Queue is initialized as a node of the target object R-

tree, which overlaps with the search region. When a target object

turns out on the head of the priority queue, it becomes the candidate

for further computation: the path length is computed for the candi-

date based on the search region. If the path length is smaller than

the key of the head element of the queue, the candidate is the result.

Otherwise, when the path length is smaller than the radius of search

region, the search region is reset with the new length as radius. The

value of radius is decreased by keeping step with the ongoing path

length computation for the candidates, and the search region is ad-

justed until there is no candidate inside the search region. The NN

search algorithm is given as follows:

==========================

Algorithm NN-search

�� Input: route [S, E], target object set T;

source point CP and search region r;

Output: a triple � ������ ����	
��� ��� ���

1. Initialize: priority queue Queue;

2. Locate first node overlapping with region r

on R-tree, compute straight-line distance d between

it and CP, and insert node into Queue;

3. Do steps 4 to 5 unless Queue is Null;

4. If head of Queue is leaf node of R-tree,

Then



(1) initialize p-region with r and d,

(2) Call SP-search to compute shortest path SP

from CP to it,

(3) insert result to Queue;

(4) If SP is smaller than r

Then reset r with SP;

Else

(1) compute straight-line distance between them,

(2) insert result to Queue;

5. If head of Queue is leaf node with computed

shortest path

��object t of leaf node is NN for CP, computed path ������

is shortest path from CP to t��

Find divergence q of ������ and route;

Return result of triple � �� ���� ��� ����� � �;

==========================

==========================

Algorithm SP-search

�� Input: source point CP, candidate point t and p-region;

Output: shortest path length��

1. Locate CP and t to partitions on ground level;

2. Compute out �� and 
� of corresponding partitions;

3. Do steps 4 to 6, until there is no new pair of (��, 
� );

4. Sort �� (
�) in order of straight-line distance

between �� (
�) and �� (
�);

5. Select pair of (��, 
� ), do step 6;

6. Compute SP with path length of (CP,��), (��,
� ) and (
� ,�
�

),

If SP is less than r then reset p-region;

7. Return r as shortest path length;

==========================

5. Conclusion

From a viewpoint of decreasing the times of disk access, we pro-

posed a method for CNN search on the large hierarchical road net-

work by minimizing the search region. The method does not only

initialize NN search region for every computation point, but also

minimizes the path region for NN search on road network. By us-

ing this method, CNN search along a route on the large hierarchical

road network is greatly accelerated.

We have used our method in an urban district GIS to realize CNN

search based on shortest path length over road network. Because the

travel time cannot be simply regarded as proportionating the path

length, this method cannot be used to compute CNN based on travel

time over dynamic transportation network, i.e., provide up-to-date

query results on the keep-changing transportation network. To solve

the problem is in our future work.
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