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Abstract

Extensibility is a vital property of modern applications. An extension component is downloaded
from Internet and loaded into an application. However, an extension component may be malicious.
Thus there is a risk of the application being illegally accessed. To protect the application from mali-
cious components, this paper proposes amulti-protection page table: a mechanism for providing pro-
tection among an application and components residing in the same address space. A multi-protection
page table provides kernel-level fine-grained protection domains, thereby enabling efficient cross-
domain calls between fine-grained protection domains. To prove that a multi-protection page table
can be implemented on stock hardware, the paper shows the implementation on IA-32 (32-bit Intel
Architectures). Experimental results show that a cross-domain call requires only 267-700 cycles and
the performance in a real application is also good enough.

1 Introduction

Extensibility is a vital property of modern applications. An extensible application allows the user to
enhance application functionalities by incorporating components independently developed by third-party
vendors. These components are frequently downloaded from Internet. The user chooses a component
providing the necessary functionality, downloads it from Internet, and incorporates it in the application.
For example, a web-browser such as Netscape Navigator allows the user to incorporate components
called plug-ins. A plug-in enables the user to browse a new kind of multimedia contents.

Unfortunately, a component downloaded from Internet may bemalicious. Since Internet is filled with
anonymous users, we can not trust all components downloaded from Internet; there may exist a malicious
component. Since the component runs within the same virtual address space that the application runs,
the component can access to the application’s private memory. It is thus possible for the component to
steal the users passwords stored in the memory. It is indispensable to provide a protection domainwithin
a process so as to prevent malicious components from accessing the application’s private memory. We
refer to a protection domain within a process as afine-grained protection domain since a fine-grained
protection domain is finer than a conventional protection domain; that is, a process.

To incorporate the notion of fine-grained protection domains, the previous paper [8] of the authors has
proposed a new abstraction of virtual memory, called amulti-protection page table. A multi-protection
page table enhances a traditional page table so that each virtual memory page can have multiple protection
modes at the same time. A multi-protection page table enables each fine-grained protection domain
to have its own protection modes while sharing a single address space. If components are given the
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protection modes different from those of the application, we can prevent even a malicious component
from accessing the application’s private memory. In addition, since fine-grained protection domains co-
exist within the same process, a cross-domain call does not require to switch any resources attached to
the process. This results in a cross-domain call more efficient than a traditional interprocess call.

In the previous paper, we have shown that a multi-protection page table can be implemented on
RISC processors such as SPARC, MIPS, and Alpha. The present paper shows that a multi-protection
page table can be implemented on IA-32 (32-bit Intel Architecture). IA-32 is the most widely used
architecture in the world but the technique shown in the previous paper can not be applied to IA-32.
That technique extensively exploits modern features of RISC processors such as tagged TLB but IA-32
lacks such modern features. Therefore it poses many challenging problems to develop an implementation
technique of a multi-protection page table on IA-32. Since IA-32 is used in 90% of desktop computers,
developing the technique is significant for practical reasons.

Experimental results indicate that a multi-protection page table on IA-32 is efficient. In a micro
benchmark, it has been shown that a cross-domain call requires only 267–700 cycles. To measure the
performance of a real application, we modified an Apache web-server so that each component of the
Apache (a default Apache consists of 31 components) is placed in different fine-grained protection do-
mains. In the macro benchmark using the modified Apache, the overhead incurred by multi-protection
page table is at most 14.3% when the size of a html file is 64KB.

The rest of the paper is organized as follows. Section 2 describes the protection model based on
multi-protection page tables. Section 3 shows the implementation of multi-protection page tables on
IA-32. Section 4 reports experimental results. Section 5 relates the paper with other work. Section 6
concludes the paper.

2 Fine-grained Protection Domain

2.1 Multi-Protection Page Table

In our protection model, a process holds more than one fine-grained protection domain within itself
(Figure 1). All the fine-grained protection domains in the same process share the virtual address space of
the process.

A multi-protection page table is an extension of a traditional page table. Each row of the multi-
protection page table consists of more than one protection mode of a virtual memory page, in addition
to the mapping of the virtual memory page and a physical memory page. Each column of the protection
mode represents the protection mode of each fine-grained protection domain. Namely, each fine-grained
protection domain has its own column of the protection mode (see Fig. 1). At any instance of time, only
the protection-mode column corresponding to the currently executing domain is effective.

Using this abstraction of virtual memory, we can prevent malicious components from accessing the
application’s private memory. For example, Figure 1 shows that the virtual page #0 is readable and
executable in the protection domain #1, whereas it is unaccessible in the other protection domains. In
this way, the application’s pages are protected from malicious components.

2.2 Cross-domain Calls between Fine-Grained Protection Domains

Our system provides the facility of cross-domain calls by which an entry point of one fine-grained pro-
tection domain is invoked from another fine-grained protection domain. To call an entry point in another
fine-grained protection domain, a calling thread presents to the kernel an identifier of the called com-
ponent and an identifier of the entry point. The kernel assigns an identifier (a small integer) to every
component when the component is loaded into the application.

When the calling thread traps into the kernel, the kernel switches the effective column of the protec-
tion modes. Then the kernel upcalls the called component, passing the identifier of the calling component
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Figure 1: Multi-protection page table

and the identifier of the entry point. The called component checks whether the calling component has the
permission to invoke the specified entry point. If it has, the thread jumps into the entry point. Otherwise,
the component returns an error code to the kernel.

Since all fine-grained protection domains share all computing resources such as time slice, memory
mappings, and so on, the kernel has only to switch the protection modes of memory pages, without
any complicated operations such as scheduling, TLB flush, and so on. As a result, our mechanism
of protection provides a much more efficient cross-domain call compared with traditional interprocess
communications.

2.3 Protection Policy

Each process has exactly onepolicy component that determines a protection policy of the process. A
policy component determines which memory page is accessible from which fine-grained protection do-
mains. The kernel obeys the policy supplied by the policy component. The policy component itself is in
one of the fine-grained protection domains and is protected from malicious components.

2.4 Example of Web-Browsers

As a concrete example of our protection model, consider the case where a web browser loads a plug-in
from Internet. The browser and the plug-in are put in different fine-grained protection domains. The
web-browser determines which memory page is accessible from the plug-in and thus plays the role of
a policy component. In most cases the memory protection is set so that the plug-in can execute its
own code, read and write its own data and stack segments while the memory areas of the browser are
set to be unaccessible from the plug-in. Thereafter the plug-in can invoke the browser’s API by using
cross-domain calls.
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3 Implementation on IA-32

3.1 Implementation of Multi-protection Page Table

A multi-protection page table can be implemented on modern RISC processors without any special hard-
ware support. Actually, we have already shown the implementation technique on RISC processors such
as SPARC, Alpha, and MIPS in the previous paper [8]. Modern RISC processors are all equipped with
tagged TLBs, and the technique exploits tagged TLBs as a central part of the implementation. Unfortu-
nately, IA-32 lacks tagged TLBs and thus the technique can not be applied to the IA-32 family. IA-32 is
the most widely used architecture in the world and thus it is significant for practical reason to show the
implementation technique on IA-32.

3.1.1 IA-32 Segmentation

Segments are protected from each other by hardware. An illegal access, either beyond the segment
limit or without legal permission, generates a general-protection exception. A virtual address of IA-32
consists of two integers: a 16-bitsegment selector and a 32-bitoffset. A virtual address is translated into
a physical address in the two stages: (1) the segmentation stage and (2) the paging stage (see Figure 2).

In the first stage, the segmentation mechanism translates a virtual address into alinear address. A
linear address is different from a virtual address. It is invisible from the user program and appears only
in the process of the translation. A virtual address is translated into a linear address by adding thebase
address of the segment and the offset embedded in the virtual address. The base address of the segment is
obtained from the segment descriptor, which is specified by the segment selector embedded in the virtual
address. A segment descriptor specifies the base address, the size, and the access rights, and the present
flag of the segment.

In the second stage, the paging mechanism translates a linear address into a physical address. This
translation is performed in the same way as ordinary paging mechanism except that IA-32 translates a
linear address, not a virtual address, into a physical address.

A segment is enabled/disabled by setting/clearing the present flag bit in the segment descriptor. Only
a valid segment is accessible in the user mode and an access to an invalid segment generates a segment-
not-present exception. It is impossible for the user program to enable an invalid segment because rewrit-
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Figure 3: Implementation of a multi-protection page table

ing the present flag in the segment descriptor is possible only in the kernel mode.

3.1.2 Segmentation-based Implementation

To prevent a thread in one fine-grained protection domain from accessing the memory areas of other
domains, each fine-grained protection domain is assigned to one segment, as shown in Figure 3. By
doing this, a component can not access to the memory areas of other components because a segment is
isolated from each other by hardware. But a malicious component can access illegally to other segments
by changing the segment selector to another domain’s selector.

To prevent the malicious component from accessing illegally, all segments are disabled by the kernel
except for the segment associated to the currently valid domain. Thereby it becomes impossible for the
malicious component to access other components because a user program can not enable any segments.

A cross-domain call can be implemented as follows. The kernel provides a software interrupt for
a cross-domain call. When a thread interrupts the kernel, the kernel rewrites the present flags in the
segment descriptors of the caller and the callee segments. The caller’s segment is disabled and the
callee’s segment is enabled. Then the kernel saves the context of the caller and restores the context of the
callee. This is all to be done: the kernel need not to schedule, flush TLBs, and other complicated things
because all domains in the same process share the computing resources of the process.

To enable each fine-grained protection domain to have different page protection modes, each segment
is mapped to a different area in the linear address space. Figure 3 shows that the segment #1 is mapped
to the linear pages #0 to #3, the segment #2 is mapped to pages #4 to #7, and so on. In this way each
page in the segments can have its own page protection modes. For example, Figure 3 shows that page #0
is read-only in the segment #1, while it is unaccessible in the segment #2.
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The advantage of this approach is that we can avoid the cost of TLB miss and cache miss when
switching protection domains because all segments share a single page table. Also, we can avoid the cost
of switching the resources assigned to the processes because all components and application can share it.

3.2 Optimizing cross-domain calls

A cross-domain call between an application and extension components can be optimized by exploiting
the ring protection of IA-32. This optimization is effective because the cross-domain calls between an
application and extension components will be performed more frequently than between the extension
components themselves. This section describes the optimization method of cross-domain calls after
explaining the ring protection.

3.2.1 Ring protection

The ring protection limits the accessibility of a segment according to its privilege level. A segment
descriptor specifies the privilege level of the segment. IA-32 provides four privilege levels, numbered
from 0 to 3. The ring 0 is the most privileged and the ring 3 is the least privileged. The processor
prohibits direct accesses to the segment with greater privilege level. Normally, a kernel resides in the
segment with privilege level 0, and a user program resides in the segment with privilege level 3.

To call procedures with more privileged level such as system calls, a program calls a gate. A gate
is the mechanism to communicate safely with the procedures with different privilege levels. A gate of
IA-32 specifies the entry point (a segment selector and offset) of the callee procedure. A call to the gate
causes the shift to the more privilege level and switching the stack.

3.2.2 Optimization

The key idea of this optimization is that an application is trusted and thus there is no need to prevent an
application from making accesses to extension components. To prevent the extension components from
accessing the application’s segment, the kernel sets the privilege level of the application to the ring 2
and those of the components to the ring 3. By doing this, an application can call a component without
interrupting the kernel but it is protected from the components.

Note that this optimization is applied only to cross-domain calls between an application and compo-
nents. A cross-domain call between a component and a component, the software interrupt is required as
mentioned in Section 3.1.2.

4 Experiments

4.1 Set up

All experiments are performed on the following system. The hardware is PC with Intel PentiumII
400MHz processor and 128MB memory. The kernel is our prototype implementation based on the Linux
2.2.12 kernel.

As described in Section 3, we implemented two mechanisms: (1) the segmentation-based mechanism
and (2) the ring-protection-based mechanism. Hereinafter, we call the formersegment and the latter
ring.

4.2 A micro benchmark

In order to estimate the baseline cost of a cross-domain call, we measured the cycles of a null cross-
domain call. A call was made repeatedly in a tight loop to reduce the influence of cache misses. The
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Table 1: Cycles for a null cross-domain call

Method Time Cycles
Segment 1.75µs 700
Ring 0.67µs 267
IPC 15.75µs 5600

Table 2: Cycle breakdown ofsegment

Operation Cycles
User mode Kernel mode

Caller stub 51
Callee stub 41
Software Interrupt(kernel trap) 86 * 2
Parameter check 16 * 2
Context setup 12 * 2
Segment enable/disable 12 * 2
Segment register reload 15 * 2
misc 26 * 2
Interrupt return(kernel return) 137 * 2
Total 92 304 * 2

number of cycles was obtained using the performance counter of PentiumII. We also measured the
average cycles of a traditional interprocess communication (IPC) for comparison.

As shown in Table 1,segment is about 8 times faster thanIPC andring is about 2.6 times faster
thansegment.

Table 2 shows the breakdown of the cycles for a null cross-domain call bysegment. Sinceseg-
ment requires two kernel entries for every one cross-domain call, the operation in the kernel mode is
executed twice (denoted by “*2”). The cost of a null cross-domain call is 304 cycles. A stub code for
interrupting the kernel is not optimized, so we can expect this cost is much more reduced.

Table 3 shows the breakdown of cycles for a null cross-domain call byring. This approach requires
no kernel entry. The cost of a cross-domain call is 86 cycles for calling a module and 80 cycles for
returning to an application. Some additional operations such as “context setup” and “segment register
save & reload” are performed by the application.

4.3 A Macro Benchmark

In order to estimate the performance of a real application, we measured the performance of themodified
Apache web server. The Apache allows extension components to be loaded at runtime to extend its
functionalities. By default, it consists of 31 components. We regard these components as distrusted, as
if they came from Internet and were loaded dynamically. In this scenario, we put them in fine-grained
protection domains for protection purpose.

To make the porting of the Apache easier, the standard C library is put in the protection domain of
the Apache body. Therefore, all library calls from the components are made via cross-domain calls,
although some functions such asmemcpy() are inline-expanded. This setup causes many unnecessary
cross-domain calls because some functions are apparently safe to be in the protection domains of the
components. Thus the performance shown in this section is the worst case; we can expect the better
performance.
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Table 3: Breakdown of cycles for Privilege Level 2

Operation Cycles
Context setup 11
Segment register save & reload 18
Inter-Segment return(upcall) 86
Inter-Segment call 80
Segment register restore 18
misc 54
Total 267
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The protection policy used in this experiment is naive. All the application data, including a stack, are
shared among the components. This allows to pass a pointer to a stack beyond the protection boundaries.
Some functions such asgethostbyname(), which return a pointer to the static region, is wrapped
to return a pointer to the shared region by copying the result data. This slightly degrades the measured
performance.

As a benchmark program, the experiments used the ApacheBench, a benchmark that comes with the
Apache distribution. The server is based on the Apache 1.3.9. All components of the Apache are enabled
by configuration and put into different protection domains. The configuration of the Apache is default
except that the logging is off to avoid the I/O becoming bottleneck.

The client requests the same file 1000 times, with 10 simultaneous connections, using the HTTP
KeepAlive feature. The file size ranges from 1KByte to 256KByte. The results are obtained from the
output of the ApacheBench. We run the client on the same machine with the server to avoid the network
becoming bottleneck.

Figure 4 shows the results of the experiments. The performance of our approach is constantly worse
than “No Protection”, but the degradation by using our approach is at most in the order of 3.5MByte/sec
at a file size of 96KB. Our approach ofring shows a little better performance thansegment.

Figure 5 shows the overhead estimated from Figure 4. As the file size grows, the overhead becomes
the lower. For example, at the file size of 64KB, the overhead is 14.3% forsegment and 10.3% for
ring, while at the file size of 128KB, 7.6% forsegment and 5.5% forring.
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Table 4: Number of cross-domain calls

The number of calls from modules 71
The number of calls from application 59
Total number of calls 130

This is due to the characteristic of HTTP. Most cross-domain calls between components are made
when a negotiation is performed at the beginning of a connection. After the negotiation, the server simply
transmits the requested file to the client, without any complicated operations. Then the cost of the cross-
domain call does not depend on the file size. Consequently, the overhead of a HTTP request becomes
relatively lower as the file size grows.

Figure 6 shows the latency of each request. The average overhead is about 0.26ms forsegment and
0.17ms forring. This result also shows that the overhead of cross-domain calls is hardly influenced by
the file size.

Table 4 shows that how many cross-domain calls are made for each HTTP request. The Apache calls
components 71 times and these components call the functions the Apache provides 59 times. Thus, 130
cross-domain calls are made per one connection. This means that 227.5µs forsegment and 87.1µs
for ring is spent to perform cross-domain calls. In comparison with the results of Figure 6, this result
shows that the overhead of our approach is mainly due to the cost of cross-domain calls.

5 Related Work

The protection mechanisms developed so far are classified into the kernel-based approach and the language-
based approach. The kernel-based approach often utilizes the hardware for managing virtual memory
(MMU). The conventional operating systems only support acoarse-grained protection domain that is
intended for protecting a process. As a result, the traditional protection domains are too heavyweight to
be used for components. To the contrary, the language-based approach provides afine-grained protection
domain by using different techniques for language processing. The language-based techniques devel-
oped so far can be classified into the three approaches: (1) virtual machine, (2) code modification, and
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(3) proof carrying code.
In the virtual-machine approach, a component is expressed in byte-code and a virtual machine in-

terprets instructions one by one. Since the virtual machine can check, if necessary, the validity of all
the byte-code instructions, a fine-grained protection domain can be implemented easily. The apparent
disadvantage of this approach is inefficiency due to interpretation overhead.

The second approach, code modification, inserts a code sequence into the component code in order
to check the safety of the code. The SFI approach proposed by Wahbe et al. [10, 1] checks memory
accesses of components by inserting a set of instructions before all the memory access instructions. This
approach incurs constant overhead independently of the number of cross-domain calls.

The third approach, proof carrying code [7], provides a mechanism by which a kernel can determine
that it is safe to execute a component. A special compiler called acertificating compiler generates binary
codes in a special form called proof-carrying code or PCC. Each PCC binary contains, in addition to the
native code, a formal proof that the code obeys the protection policy determined by the kernel. Then the
kernel validates the proof before executing the code. The main difficulty of this approach is in generating
the safety proof automatically. To reduce this difficulty, the expressive power of protection policies is
limited so that automatic proof is feasible.

Many literatures [9, 11] report that the kernel-based approach is too heavyweight, but we claim that
this is due to the lack of abstraction for fine-grained protection domains in conventional operating sys-
tems. Recent results of research on interprocess communication are encouraging since even the context
switch between conventional coarse-grained protection domains can be implemented efficiently (as re-
ported in LRPC [2], Spring [5, 4], and L4 [6]). In fact, recent research shows a efficient implementation
of intra-address space protection mechanism [3].

6 Conclusion

We have developed a mechanism of fine-grained protection domains. Fine-grained protection domains
co-exist within a single address space and prevent malicious components from accessing unauthorized
memory areas. To support fine-grained protection domains, we have proposed a new abstraction called
a multi-protection page table. A multi-protection page table extends traditional page tables so that each
virtual memory page can have multiple protection modes at the same time. This paper showed an im-
plementation of multi-protection page tables on the IA-32. By exploiting segmentation mechanism, we
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achieved a cross-domain call that requires only 267 - 700 cycles in a null cross-domain call. We also
demonstrated that the cross-domain calls are efficient enough in a real application using an Apache web
server.
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