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Abstract 
The system adaptability is one of the most important 
capabilities required for a next generation open system. 
Many research efforts have developed adaptable systems 
that allow various applications to meet their specific 
requirements by combining different policies. However, the 
policy coordination is still problematic. Fine-grained 
policies are sometimes not orthogonal, but often have 
complex constraint dependencies with each other. This 
paper describes the principles for sophisticated policy 
coordination, and then presents our coordination facility 
designed to be used in OpenWebServer, our adaptive web 
server. Our method is inspired by the natural immune 
system, a truly autonomous and decentralized system, and 
coordination facility is developed with iNet, which is a 
framework for building an artificial immune network. This 
facility can relaxes constraints between policies and 
determine the most appropriate set of policies for a given 
system condition. The coordination process is performed 
through decentralized interactions among policies without a 
single point of control, as the natural immune system does. 
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1. Introduction 
The integration of system adaptation support into traditional 
system architecture is important for realizing the next 
generation of open systems.  A promising approach is the 
development and deployment of a single system 
infrastructure that can plug-in and combine the various 
capabilities.  

The heart of such an integrated architecture is the need to 
provide diverse applications with their desired qualities of 
services. We can solve this problem with one of four 
approaches. First, we can overbuild capacity so that even 

the most stringent application meets its requirements. This 
is unlikely to be cost-effective. Second, we can require all 
applications to adapt to the current system configuration. 
This is impractical for a wide range of applications and 
sometimes impossible. Third, we can scrap an application 
and re-build a new one from scratch so that it adapts to 
given requirements. This is often too economically 
expensive. Therefore, the diversity of requirements is likely 
to be efficiently satisfied only by the forth alternative, that 
is, by tailoring system’s components and services to the 
characteristics of the application. This option requires the 
application specifies its service requirements. For example, 
a communication end-system may specify its requirement 
for bandwidth reservation so that it transmits multimedia 
data continuously. Another application may specify its 
concurrency policy so that it performs simultaneous 
information processing efficiently. A key observation to 
adaptable system is that the policy management is a 
unifying theme on which the functions and facilities of the 
new integrated standards can be constructed.  

Software adaptation has been studied by various research 
efforts such as reflection [1], open implementation [2], 
adaptive programming [3], aspect-oriented programming 
[4], component composition [5, 24], and collaboration-
based design [6], as well as quality of service (QoS) policy 
management in the networking community [7]. In every 
approach, there is an entity representing a system execution 
policy. For example, it is called metaobject in the context of 
reflection, concerns in the principle of separation of 
concern [23], component or plug-in in component 
composition, and aspect in aspect-oriented programming. 
Applications can adapt to a given requirement by adding, 
customizing or replacing the entities. For referring to such 
entities, we use the term policy in this paper. 

Policies tend to become fine-grained in highly adaptable 
systems; thereby the number of them increases. However, 
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the greater the number of policies, the more complexity and 
difficulty in maintaining and coordinating them. Fine-
grained policies often have complex constraint relationships 
with each other. In this paper, the policy coordination 
means inspecting the every dependency between policies 
and then resolving co-use/conflict constraints to produce an 
optimized combination from feasible policies. The simplest 
coordination strategy is writing a long sequence of hard-
written if/case statements in a program. Another strategy is 
using the multiple inheritance in a class-based object-
oriented language. Both suffer from combination explosion, 
and cost lots of labor for configuring if/case statements or 
inheritance relationships. They are also fragile for changing 
policy specifications. 

A highly adaptable system requires a sophisticated policy 
control mechanism that coordinates policies in more 
dynamic and flexible manner. It is often ad-hoc and has not 
been addressed in the literature at large, unfortunately, how 
to coordinate policies consistently throughout the system’s 
lifetime. This paper describes our biologically inspired 
coordination facility developed with iNet [25], which is a 
framework simulating the natural immune system. It 
determines an optimized set of policies in the decentralized 
and dynamic manner. This capability provides robustness 
for re-configuring a policy space  

This paper is organized as follows; Section 2 presents our 
context and goal of developing a highly adaptable system. 
Section 3 overviews the natural immune system to explain 
why our work uses its metaphors. Section 4 presents how to 
incorporate the metaphors in iNet for coordinating fine-
grained policies. Section 5 illustrates preliminary results. In 
Sections 6 and 7, we conclude with a note on the current 
status of the project and present future work. 

2. Policy management in OpenWebServer 
Our research vehicle for demonstrating an adaptable system 
and exploring an effective policy coordination mechanism 
is OpenWebServer [8-10]. OpenWebServer is both an 
adaptive web server and a framework for building a 
versatile web server. It reifies various aspects in a web 
server as metaobjects. Each metaobject represents a policy 
for concurrency, I/O event dispatching, protocol filtering, 
connection management, caching, logging, and service 
redundancy. We can produce high-throughput, highly 
available or fault tolerant servers by tuning the combination 
of these policies dynamically or statically [9].  

Coordinating and composing multiple policies, 
unfortunately, require precise knowledge of their 
constraints and implications. For example, a single-threaded 
reactive server1 [11] is efficient when (1) it runs on a uni-

                                                           
1 Typically implemented by calling select() for simultaneous 

connections in a polling loop. 

processor platform, (2) the average size of requested files is 
relatively small, and (3) the hit rate from simultaneous 
connections is relatively low. As the hit rate increases, 
however, the multiple thread strategies such as thread-per-
request, thread pool and thread-per-connection are better 
choices only if the underlying operating system supports 
threads. They can scale well in a multi-processor platform. 
A constraint of using the thread-per-connection policy is 
that the server operates the HTTP version 1.1. As the size 
of requested files grows, the asynchronous I/O event 
dispatching 2  outperforms the synchronous concurrency 
models using BSD standard socket functions [12, 13]. A 
restriction of using asynchronous I/O is that all the 
operating systems do not support it. A thread pool can be 
designed in the active or passive manner. A passive thread 
pool implemented with a kernel-level asynchronous I/O and 
simultaneous accept() calls3 is much more efficient than 
other pools, though it is not a portable solution. 

As such, it is complex to determine a suitable set of policies 
consistently according to the current environment and 
situation. It is tedious and error-prone. Coordinating fine-
grained policies increases the potential for subtle 
programming mistakes and unexpected fatal errors. 
Therefore, the rules for combining different policies are 
pre-defined statically and maintained in the centralized 
manner in the previous version of OpenWebServer, as the 
most QoS-enabled systems do today. 

Our iNet-based facility addresses this limitation, and 
provides an autonomous and decentralized policy 
coordination mechanism that determines an optimized 
combination of policies by relaxing their constraints and 
conflicts. 

Our experience of developing OpenWebServer shows that a 
policy coordination facility should meet the following 
design principles: 

• The facility should be integrated for various 
applications to adapt to their own requirements, but 
modular for supporting a wide range of fine-grained 
policies. 

• The facility should support a scalable policy space 
that allows any policy to be introduced, altered and 
removed dynamically. 

• The facility should evaluate the effectiveness of a 
delivered set of policies and learn a better 
combination for the future usage. 

                                                           
2 e.g., Windows NT provides asynchronous I/O system calls such 

as WSA*() and TransmitFile(), though it can be 
simulated with user-level library [22]. 

3 Multiple idle threads can call accept() to a single socket with 
this mechanism. 
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• The coordination process should be transparent, or 
orthogonal, to a system’s functional logic. 

• The coordination process should be performed 
through decentralized interactions among 
competitive and sometimes conflicting policies, so 
that outcomes emerge with a context and 
dependencies between policies. This “coordination 
without coordinator” principle brings flexibility and 
scalability of policy management. 

• The coordination process should be decoupled from 
the process mapping a policy to a system 
components 

Generally, highly adaptable system requires the observation 
of a target system, followed by careful coordination of 
various policies, and finally evaluation of a delivered set of 
policies. This paper focuses on observing the system’s 
condition and coordinating policies.  

In terms of the networking QoS research, our work is 
categorized in the application-level QoS policy 
coordination within a communication end-system. We do 
not discuss QoS policy guarantees and transport/network 
level policy specifications. In terms of reflection and 
aspect-oriented programming, this paper focuses on the 
process to determine a strategy of metaobject composition 
and aspect weaving, respectively. 

3. Natural immune system 
This section overviews the natural immune system. We 
have worked for applying metaphors in the natural immune 
system, especially the immune network, to our policy 
coordination facility in OpenWebServer. 

3.1 Immune system 
The natural immune system is a subject of great research 
interests because it provides powerful and flexible 
information processing capability as a decentralized 
intelligent system. It has some important computational 
aspects such as self/non-self discrimination, learning, 
memory, retrieval, pattern matching and emergent behavior. 
The immune system provides an excellent model of 
adaptive operation at the local level and of emergent 
behavior at the global level. There exists several theories to 
explain immunological phenomena and software models to 
simulate various components in the immune system. They 
have been used for machine learning, computer security, 
fault detection, image processing and searching, and even 
used for prototypes of business production systems [14]. 

The basic components of the immune system are 
macrophages, antibodies and lymphocytes. B-lymphocytes 
are the cells maturing in the bone marrow. Roughly 107  

distinct types of B-lymphocytes are contained in a human 
body, each of which has a distinct molecular structure and 
produces antibodies from its surface. The antibody 

recognizes and eliminates a specific type of antigens, e.g. 
viruses, which are the foreign substances invading a human 
body. The key portion of antigen that is recognized by the 
antibody is called epitope, which is the antigen determinant 
(see Figure 1). Paratope is the portion of antibody that 
corresponds to a specific type of antigens (Figure 1). Once 
an antibody combines an antigen via their epitope and 
paratope, the antibody start to eliminate the antigen. Recent 
studies in immunology have clarified that each type of 
antibody also has its own antigenic determinant, called an 
idiotope (Figure 1). This means an antibody is recognized 
as an antigen by another antibody. 

3.2 Immune network 
Based on this fact, Jerne proposed the concept of the 
immune network, or idiotypic network [26-28], which states 
that antibodies and lymphocytes are not isolated, but they 
are communicating with each other (Figure 1). The idiotope 
of an antibody is recognized by another antibody as an 
antigen. This network is formed on the basis of idiotope 
recognition with the stimulation and suppression chains 
among antibodies. Thus, the immune response eliminating 
foreign antigens is offered by the entire immune system (or, 
at least, more than one antibody) in a collective manner, 
although the dominant role may be played by a single 
antibody whose paratope fits best with the epitope of the 
specific invading antigen. The immune network also helps 
to keep the quantitative balance of antibodies. Through 
stimulation/suppression interactions, the populations of 
specific antibodies increase very rapidly following the 
recognition of any foreign antigen and, after eliminating the 
antigen, decrease again [29]. Performed based on this self-
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Figure 1: Interactions in the immune network. The immune 
response to an antigen results in the formation of anti-
idiotype antibodies specific to the individual idiotope of 
the primary antibody (Antibody 1). These anti-idiotype 
antibodies (Antibody 2 and 3) in turn induce the formation 
of anti-anti-idiotype antibodies. 



 4

regulating mechanism, the immune response 4  has an 
emergent property through many local interactions. 

The network structure is not fixed, but varies continuously 
according to dynamic changes of environment. This flexible 
self-organizing function is realized mainly by incorporating 
newly generated cells and/or removing useless ones. The 
new cells are generated by both gene recombination in bone 
marrow and mutation in the proliferation process of 
activated cells. Although many new cells are generated 
every day, most of them have no effect on the existing 
network and soon die away without any stimulation. Due to 
such enormous loss, the immune system maintains an 
appropriate set of cells so that the system can adapt to 
environmental changes in the piecemeal way.  

4. Immunologically-inspired policy 
coordination with iNet 
As described in the previous section, the phenomena 
appeared in natural immune network meet most of the 
design requirements for sophisticated policy coordination 
listed in Section 2. This section presents our iNet 
framework for simulating the immune network, and 
describes how we can design a policy coordination facility 
from the immunological point of view. 

4.1 Policy coordination facility as an artificial 
immune network 
In our immunological perspective, a system’s current 
conditions are considered as an antigen, e.g. the number of 
simultaneous network connections, average size of 
requested files, types of operating systems, the number of 
available processors, and supported types of protocols. 
Each QoS policy is regarded as an antibody, e.g. 
concurrency policies (thread-per-request, active/passive 
thread pool, thread-per-connection, etc.) and I/O event 
dispatching policies (synchronous and asynchronous). 
Policies are linked with each other based on the stimulation 
and suppression relationships. The interaction relationships 
are modeled based on constraints in combining policies. 

The goal of our method is that a policy coordination facility 
augmented by an artificial immune network determines the 

                                                           
4 the humoral immune response, precisely 

best combination of policies suitable for a given condition, 
as the natural immune network does. This coordination 
process is performed in the bottom-up, or emergent, manner 
through the decentralized local interactions between 
policies without any single point of control. 

4.2 iNet architecture 
Our policy coordination facility is developed with iNet 
[25]. iNet is a Java-based framework for building artificial 
immune networks. It has been open for public use at Keio 
University since 1999, and will be released for researchers 
simulating the immune network mechanisms and exploring 
the design space of artificial immune networks. iNet serves 
as an infrastructure in our several research projects building 
biologically inspired multi-agent systems, where artificial 
immune networks optimize the strategy and behavior of an 
agent in a pursuit game [15] and Robocup soccer game 
simulation [16]. 

Figure 2 shows the structure of an antibody used in iNet. 
Each antibody represents a policy.  Paratope represents a 
precondition under which a certain policy is selected. 
Idiotope represents the references to other stimulating 
antibodies with degrees of the stimuli. Both paratope and 
epitope are typed with string. Matching both string values 
means an antibody responds to an antigen. Table 1 shows a 
list of preconditions and policies supported in 
OpenWebServer. Both precondition and policy are 
specified by a combination of major and minor IDs. Each 
major policy ID specifies a policy group. Figure 3 depicts a 
class diagram showing the kernel of iNet. Every policy used 
in OpenWebServer is defined by the class OWSPolicy 
derived from AntiBody. Calculator and its 
implementation classes are used for calculating all the 

 
Figure 3: A UML class diagram for the kernel of iNet 
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Figure 2: The antibody structure in iNet 
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antibodies’ populations through their interactions and 
selecting an antibody whose population is the highest. 

4.3 Interactions among antibodies 
This section describes the interaction among antibodies, 
which is the basic structure and dynamics of our policy 
decision network, with a simple sample.  

Figure 4 shows a simple subset of our immune network. 
This network is used to determine the best-suited 
concurrency policy according to a current system condition. 
It contains four antibodies representing three kinds of 
policies; single-threaded reactive, thread pool and thread-
per-connection. Antibody 1 represents that the single-
threaded reactive policy is activated when the average of 
requested files is relatively small. However, the thread pool 
policy is activated if the number of HTTP simultaneous 
connections grows, because antibody 1 stimulates antibody 
3. Inversely, the reactive policy is suppressed by the thread 
pool policy, if the server has to handle many connections 
even when the average file size is small.  

Now, suppose that OpenWebServer  (1) transfers relatively 
small size of files, (2) handles relatively many connections, 
and (3) supports the HTTP version 1.1. In this situation, 
these three antigens stimulate antibodies 1, 2 and 4 
simultaneously. Then, the populations of the antibodies 
increase. However, each population varies through the 
stimulating/suppressing interactions indicated by arrows 
between antibodies. As a result, the population of the 
antibody 2, i.e. thread-per-connection, would increase, and 
then it would be selected by the immune network. 

In the case where OpenWebServer (1) transfers relatively 
small size of files, (2) does not have to handle many 
connections, and (3) supports the HTTP version 1.1, 
antibody 1, i.e. the reactive policy, would be selected in the 
same way.  

4.4 Dynamics of antibody selection 
Figure 5 shows a generalized view of an antibody within in 
an immune network. The i-th antibody stimulates M 
antibodies and suppresses N antibodies. mji and mik denote 
affinities between antibody j and i, and between antibody i 
and k, respectively. The affinity means the degree of 
stimulation or suppression. mi is an affinity between an 

Paratope major ID Paratope minor ID Policy major ID Policy minor ID 

FILE_SIZE L, M, S CONCURRENCY REACTIVE 

NO_OF_CONNECTION M, A, F  THREAD_PER_REQUEST 

NO_OF_CPU M, S  ACTIVE_THREAD_POOL 

OS_THREAD_SUPPORT T, F  PASSIVE_THREAD_POOL 

OS_ASYNC_IO_SUPPORT T, F  THREAD_PER_CONNECTION 

AVAILABLE_THREADS M, A, F IO SYNCH 

SUPPORTED_PROTOCOL HTTP10, HTTP11  ASYNCH 

  CACHE LRU 

   FIFO 

  PROTOCOL HTTP10 

   HTTP11 

 

Table 1: A list of supported kinds of paratope and policies 
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Figure 5: An antibody and its neighbors 
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antigen and antibody i. All affinities are supposed to be 
defined a priori in this paper (see also Section 6). 

The antibody population is represented by the concept of 
concentration in our method. The concentration of the i-th 
antibody, denoted by ai, is calculated with the following 
equations, which is originally proposed by Farmer et al. 
[17, 18] and then extended by Ishiguro et al. [19, 20]: 

 

In the first equation, the first and second term of the right 
hand side denote the stimulation and suppression from other 
antibodies. mji and mik are positive values between 0 and 1. 
The third term, mi, is 1 when antibody i is stimulated 
directly by an antigen, otherwise 0. The forth term, k, 
denotes the dissipation factor representing the antibody’s 
natural death. This value is 0.1. The initial concentration 
value for every antibody, i.e. ai(0), is 0.01. 

The second equation is the function that is used to squash 
the parameter Ai(t), calculated by the first equation, between 
0 and 1.  

Every antibody’s concentration is calculated 30 times 
repeatedly. Then, an antibody is selected from each policy 
group. If no antibody exceeds the predefined threshold (0.7) 
during the 30 calculation steps, the antibody of the highest 
concentration is selected, i.e. winner-tales-all strategy. If an 
antibody’s concentration exceeds the threshold, an antibody 
is selected based on the probability proportional to the 
current concentrations, i.e. roulette-wheel selection strategy. 
An antibody whose concentration is below 0.2 is never 
selected. 

5. Results of preliminary experiments 
We have conducted some initial experiments to validate the 
feasibility of our policy coordination method. We built an 
artificial immune network incorporating 10 policies listed in 
Table 1. It defines 38 stimulation/suppression relationships 
with their fixed affinities (see Section 6).  

In our first experiment, we evaluated the static system 
adaptability by supplying some sets of antigens regarding 
the underlying system platform. For example, when 
OpenWebServer is executed on a uni-processor platform 
running an operating system that supports the thread and 
asynchronous I/O, our policy coordination facility chose the 
single-threaded reactive policy at first, instead of an 
asynchronous concurrency policy.  Our artificial immune 
network is configured to select a policy conservatively, and 
scale to more sophisticated ones when the original policy is 

not appropriate in the current system condition. In a multi-
processor platform, the threading concurrency policies had 
higher priorities than a single-threaded concurrency model. 
In the situation that the system runs on an operating system 
that does not support the threading capability, the single-
threaded reactive policy was selected independently of the 
underlying CPU architecture. 

The second experiment tested the dynamic system 
adaptability by supplying antigens indicating the runtime 
system conditions. While the average size of requested files 
is small and the server’s hit rate is low, the single-threaded 
reactive policy was selected. When the file size is within the 
middle range, the server was still single-threaded, or 
incorporated thread-per-request or thread pool policy. As 
the file size grows relatively large, an asynchronous 
concurrency policy had higher priority. This policy was 
sometimes used with a caching policy. When the number of 
network connections increases, the thread pool, thread-per-
connection and asynchronous concurrency were selected 
depending on the multi-CPU, HTTP 1.1 and asynchronous 
I/O support respectively. 

Our initial experiments are simple, but we can see our 
facility selects appropriate antibodies to both the static and 
dynamic situations by changing the priorities among 
antibodies. Note that the coordination process is not 
performed by a single coordinator entity, but through 
decentralized interactions among antibodies.  

6. Future work 
This paper focuses on the policy coordination of critical 
determinants to the HTTP server performance: concurrency 
and I/O [12, 13]. We are testing our coordination facility 
with more complex experiments using greater number of 
antibodies. Our latest immune network includes new 12 
policies regarding sever redundancy, application-level 
service support (e.g. CGI, Servlet and Java Server Pages), 
logging, and protocol pipeline-parsing.  

In the current structure of the iNet-based immune network, 
the stimulation/suppression relationships are defined 
statically using fixed affinity values. This means the 
coordination process is basically performed as an immune 
network designer expected at the design time. However, this 
network does not provide a true dynamic feature as 
described in Section 3.2. The coordination facility should 
be able to add/remove relationships between antibodies and 
change affinity values at run-time for OpenWebServer to 
evolve more effectively. We chose a conservative strategy 
for building an artificial immune network as the first 
research step, because the “trial and error”-style 
coordination can often result in fatal errors due to 
delivering a disallowed combination of policies. Now that 
we have validated the effectiveness of our artificial immune 
network for OpenWebServer, however, we are moving 
forward to more dynamic coordination as an extension of 
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this work. The next goal is to provide the emergence of the 
knowledge of policy combination. 

As for a mathematical model to simulate the phenomena of 
the natural immune network, there exist several models 
such as liner networks, cyclic networks, Cayley-tree-like 
network and generalized shape-space model, which are 
proposed by theoretical immunologists [21]. Our 
coordination facility uses a cyclic network model proposed 
by Farmer et al. [17, 18]. We plan to evaluate other network 
models in more detail. 

Also, we plan to incorporate some additional 
immunological concept, e.g. tolerance and immune memory 
in iNet. 

7. Conclusion 
This paper addresses current problems and limitations in 
coordinating fine-grained QoS policies, and then proposes a 
new decision-making method inspired by the natural 
immune network. Our iNet-based coordination facility 
defines each policy as an antibody, and selects the most 
appropriate set of policies through the decentralized 
interactions among antibodies. We believe our work 
provides a blue print showing a decentralized coordination 
mechanism as a next logical extension to existing adaptive 
and QoS-enabled systems. Information regarding iNet and 
OpenWebServer can be obtained from 
www.yy.cs.keio.ac.jp/~suzuki/project/aisf/ and 
www.yy.cs.keio.ac.jp/~suzuki/immunity/.  
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