
 1

A Decentralized Policy Coordination Facility
in OpenWebServer

Junichi Suzuki
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama City, 223-8522, Japan
+81-45-563-3925

suzuki@yy.cs.keio.ac.jp

Yoshikazu Yamamoto
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama City, 223-8522, Japan
+81-45-563-3925

yama@cs.keio.ac.jp

Abstract
The system adaptability is one of the most important
capabilities required for a next generation open system.
Many research efforts have developed adaptable systems
that allow various applications to meet their specific
requirements by combining different policies. However, the
policy coordination is still problematic. Fine-grained
policies are sometimes not orthogonal, but often have
complex constraint dependencies with each other. This
paper describes the principles for sophisticated policy
coordination, and then presents our coordination facility
designed to be used in OpenWebServer, our adaptive web
server. Our method is inspired by the natural immune
system, a truly autonomous and decentralized system, and
coordination facility is developed with iNet, which is a
framework for building an artificial immune network. This
facility can relaxes constraints between policies and
determine the most appropriate set of policies for a given
system condition. The coordination process is performed
through decentralized interactions among policies without a
single point of control, as the natural immune system does.

Keywords
system adaptation, system evolution, artificial immune
system, policy management, component composition

1. Introduction
The integration of system adaptation support into traditional
system architecture is important for realizing the next
generation of open systems. A promising approach is the
development and deployment of a single system
infrastructure that can plug-in and combine the various
capabilities.

The heart of such an integrated architecture is the need to
provide diverse applications with their desired qualities of
services. We can solve this problem with one of four
approaches. First, we can overbuild capacity so that even

the most stringent application meets its requirements. This
is unlikely to be cost-effective. Second, we can require all
applications to adapt to the current system configuration.
This is impractical for a wide range of applications and
sometimes impossible. Third, we can scrap an application
and re-build a new one from scratch so that it adapts to
given requirements. This is often too economically
expensive. Therefore, the diversity of requirements is likely
to be efficiently satisfied only by the forth alternative, that
is, by tailoring system’s components and services to the
characteristics of the application. This option requires the
application specifies its service requirements. For example,
a communication end-system may specify its requirement
for bandwidth reservation so that it transmits multimedia
data continuously. Another application may specify its
concurrency policy so that it performs simultaneous
information processing efficiently. A key observation to
adaptable system is that the policy management is a
unifying theme on which the functions and facilities of the
new integrated standards can be constructed.

Software adaptation has been studied by various research
efforts such as reflection [1], open implementation [2],
adaptive programming [3], aspect-oriented programming
[4], component composition [5, 24], and collaboration-
based design [6], as well as quality of service (QoS) policy
management in the networking community [7]. In every
approach, there is an entity representing a system execution
policy. For example, it is called metaobject in the context of
reflection, concerns in the principle of separation of
concern [23], component or plug-in in component
composition, and aspect in aspect-oriented programming.
Applications can adapt to a given requirement by adding,
customizing or replacing the entities. For referring to such
entities, we use the term policy in this paper.

Policies tend to become fine-grained in highly adaptable
systems; thereby the number of them increases. However,

 2

the greater the number of policies, the more complexity and
difficulty in maintaining and coordinating them. Fine-
grained policies often have complex constraint relationships
with each other. In this paper, the policy coordination
means inspecting the every dependency between policies
and then resolving co-use/conflict constraints to produce an
optimized combination from feasible policies. The simplest
coordination strategy is writing a long sequence of hard-
written if/case statements in a program. Another strategy is
using the multiple inheritance in a class-based object-
oriented language. Both suffer from combination explosion,
and cost lots of labor for configuring if/case statements or
inheritance relationships. They are also fragile for changing
policy specifications.

A highly adaptable system requires a sophisticated policy
control mechanism that coordinates policies in more
dynamic and flexible manner. It is often ad-hoc and has not
been addressed in the literature at large, unfortunately, how
to coordinate policies consistently throughout the system’s
lifetime. This paper describes our biologically inspired
coordination facility developed with iNet [25], which is a
framework simulating the natural immune system. It
determines an optimized set of policies in the decentralized
and dynamic manner. This capability provides robustness
for re-configuring a policy space

This paper is organized as follows; Section 2 presents our
context and goal of developing a highly adaptable system.
Section 3 overviews the natural immune system to explain
why our work uses its metaphors. Section 4 presents how to
incorporate the metaphors in iNet for coordinating fine-
grained policies. Section 5 illustrates preliminary results. In
Sections 6 and 7, we conclude with a note on the current
status of the project and present future work.

2. Policy management in OpenWebServer
Our research vehicle for demonstrating an adaptable system
and exploring an effective policy coordination mechanism
is OpenWebServer [8-10]. OpenWebServer is both an
adaptive web server and a framework for building a
versatile web server. It reifies various aspects in a web
server as metaobjects. Each metaobject represents a policy
for concurrency, I/O event dispatching, protocol filtering,
connection management, caching, logging, and service
redundancy. We can produce high-throughput, highly
available or fault tolerant servers by tuning the combination
of these policies dynamically or statically [9].

Coordinating and composing multiple policies,
unfortunately, require precise knowledge of their
constraints and implications. For example, a single-threaded
reactive server1 [11] is efficient when (1) it runs on a uni-

1 Typically implemented by calling select() for simultaneous

connections in a polling loop.

processor platform, (2) the average size of requested files is
relatively small, and (3) the hit rate from simultaneous
connections is relatively low. As the hit rate increases,
however, the multiple thread strategies such as thread-per-
request, thread pool and thread-per-connection are better
choices only if the underlying operating system supports
threads. They can scale well in a multi-processor platform.
A constraint of using the thread-per-connection policy is
that the server operates the HTTP version 1.1. As the size
of requested files grows, the asynchronous I/O event
dispatching 2 outperforms the synchronous concurrency
models using BSD standard socket functions [12, 13]. A
restriction of using asynchronous I/O is that all the
operating systems do not support it. A thread pool can be
designed in the active or passive manner. A passive thread
pool implemented with a kernel-level asynchronous I/O and
simultaneous accept() calls3 is much more efficient than
other pools, though it is not a portable solution.

As such, it is complex to determine a suitable set of policies
consistently according to the current environment and
situation. It is tedious and error-prone. Coordinating fine-
grained policies increases the potential for subtle
programming mistakes and unexpected fatal errors.
Therefore, the rules for combining different policies are
pre-defined statically and maintained in the centralized
manner in the previous version of OpenWebServer, as the
most QoS-enabled systems do today.

Our iNet-based facility addresses this limitation, and
provides an autonomous and decentralized policy
coordination mechanism that determines an optimized
combination of policies by relaxing their constraints and
conflicts.

Our experience of developing OpenWebServer shows that a
policy coordination facility should meet the following
design principles:

• The facility should be integrated for various
applications to adapt to their own requirements, but
modular for supporting a wide range of fine-grained
policies.

• The facility should support a scalable policy space
that allows any policy to be introduced, altered and
removed dynamically.

• The facility should evaluate the effectiveness of a
delivered set of policies and learn a better
combination for the future usage.

2 e.g., Windows NT provides asynchronous I/O system calls such

as WSA*() and TransmitFile(), though it can be
simulated with user-level library [22].

3 Multiple idle threads can call accept() to a single socket with
this mechanism.

 3

• The coordination process should be transparent, or
orthogonal, to a system’s functional logic.

• The coordination process should be performed
through decentralized interactions among
competitive and sometimes conflicting policies, so
that outcomes emerge with a context and
dependencies between policies. This “coordination
without coordinator” principle brings flexibility and
scalability of policy management.

• The coordination process should be decoupled from
the process mapping a policy to a system
components

Generally, highly adaptable system requires the observation
of a target system, followed by careful coordination of
various policies, and finally evaluation of a delivered set of
policies. This paper focuses on observing the system’s
condition and coordinating policies.

In terms of the networking QoS research, our work is
categorized in the application-level QoS policy
coordination within a communication end-system. We do
not discuss QoS policy guarantees and transport/network
level policy specifications. In terms of reflection and
aspect-oriented programming, this paper focuses on the
process to determine a strategy of metaobject composition
and aspect weaving, respectively.

3. Natural immune system
This section overviews the natural immune system. We
have worked for applying metaphors in the natural immune
system, especially the immune network, to our policy
coordination facility in OpenWebServer.

3.1 Immune system
The natural immune system is a subject of great research
interests because it provides powerful and flexible
information processing capability as a decentralized
intelligent system. It has some important computational
aspects such as self/non-self discrimination, learning,
memory, retrieval, pattern matching and emergent behavior.
The immune system provides an excellent model of
adaptive operation at the local level and of emergent
behavior at the global level. There exists several theories to
explain immunological phenomena and software models to
simulate various components in the immune system. They
have been used for machine learning, computer security,
fault detection, image processing and searching, and even
used for prototypes of business production systems [14].

The basic components of the immune system are
macrophages, antibodies and lymphocytes. B-lymphocytes
are the cells maturing in the bone marrow. Roughly 107

distinct types of B-lymphocytes are contained in a human
body, each of which has a distinct molecular structure and
produces antibodies from its surface. The antibody

recognizes and eliminates a specific type of antigens, e.g.
viruses, which are the foreign substances invading a human
body. The key portion of antigen that is recognized by the
antibody is called epitope, which is the antigen determinant
(see Figure 1). Paratope is the portion of antibody that
corresponds to a specific type of antigens (Figure 1). Once
an antibody combines an antigen via their epitope and
paratope, the antibody start to eliminate the antigen. Recent
studies in immunology have clarified that each type of
antibody also has its own antigenic determinant, called an
idiotope (Figure 1). This means an antibody is recognized
as an antigen by another antibody.

3.2 Immune network
Based on this fact, Jerne proposed the concept of the
immune network, or idiotypic network [26-28], which states
that antibodies and lymphocytes are not isolated, but they
are communicating with each other (Figure 1). The idiotope
of an antibody is recognized by another antibody as an
antigen. This network is formed on the basis of idiotope
recognition with the stimulation and suppression chains
among antibodies. Thus, the immune response eliminating
foreign antigens is offered by the entire immune system (or,
at least, more than one antibody) in a collective manner,
although the dominant role may be played by a single
antibody whose paratope fits best with the epitope of the
specific invading antigen. The immune network also helps
to keep the quantitative balance of antibodies. Through
stimulation/suppression interactions, the populations of
specific antibodies increase very rapidly following the
recognition of any foreign antigen and, after eliminating the
antigen, decrease again [29]. Performed based on this self-

epitope

antigen

Antibody 2
(anti-idiotype to paratope)

Antibody 3
(anti-idiotype to idiotope)

Antibody 1

idiotope

paratope

suppression

stimulation

epitope

antigen

Antibody 2
(anti-idiotype to paratope)

Antibody 3
(anti-idiotype to idiotope)

Antibody 1

idiotope

paratope

suppression

stimulation

suppression

stimulation

Figure 1: Interactions in the immune network. The immune
response to an antigen results in the formation of anti-
idiotype antibodies specific to the individual idiotope of
the primary antibody (Antibody 1). These anti-idiotype
antibodies (Antibody 2 and 3) in turn induce the formation
of anti-anti-idiotype antibodies.

 4

regulating mechanism, the immune response 4 has an
emergent property through many local interactions.

The network structure is not fixed, but varies continuously
according to dynamic changes of environment. This flexible
self-organizing function is realized mainly by incorporating
newly generated cells and/or removing useless ones. The
new cells are generated by both gene recombination in bone
marrow and mutation in the proliferation process of
activated cells. Although many new cells are generated
every day, most of them have no effect on the existing
network and soon die away without any stimulation. Due to
such enormous loss, the immune system maintains an
appropriate set of cells so that the system can adapt to
environmental changes in the piecemeal way.

4. Immunologically-inspired policy
coordination with iNet
As described in the previous section, the phenomena
appeared in natural immune network meet most of the
design requirements for sophisticated policy coordination
listed in Section 2. This section presents our iNet
framework for simulating the immune network, and
describes how we can design a policy coordination facility
from the immunological point of view.

4.1 Policy coordination facility as an artificial
immune network
In our immunological perspective, a system’s current
conditions are considered as an antigen, e.g. the number of
simultaneous network connections, average size of
requested files, types of operating systems, the number of
available processors, and supported types of protocols.
Each QoS policy is regarded as an antibody, e.g.
concurrency policies (thread-per-request, active/passive
thread pool, thread-per-connection, etc.) and I/O event
dispatching policies (synchronous and asynchronous).
Policies are linked with each other based on the stimulation
and suppression relationships. The interaction relationships
are modeled based on constraints in combining policies.

The goal of our method is that a policy coordination facility
augmented by an artificial immune network determines the

4 the humoral immune response, precisely

best combination of policies suitable for a given condition,
as the natural immune network does. This coordination
process is performed in the bottom-up, or emergent, manner
through the decentralized local interactions between
policies without any single point of control.

4.2 iNet architecture
Our policy coordination facility is developed with iNet
[25]. iNet is a Java-based framework for building artificial
immune networks. It has been open for public use at Keio
University since 1999, and will be released for researchers
simulating the immune network mechanisms and exploring
the design space of artificial immune networks. iNet serves
as an infrastructure in our several research projects building
biologically inspired multi-agent systems, where artificial
immune networks optimize the strategy and behavior of an
agent in a pursuit game [15] and Robocup soccer game
simulation [16].

Figure 2 shows the structure of an antibody used in iNet.
Each antibody represents a policy. Paratope represents a
precondition under which a certain policy is selected.
Idiotope represents the references to other stimulating
antibodies with degrees of the stimuli. Both paratope and
epitope are typed with string. Matching both string values
means an antibody responds to an antigen. Table 1 shows a
list of preconditions and policies supported in
OpenWebServer. Both precondition and policy are
specified by a combination of major and minor IDs. Each
major policy ID specifies a policy group. Figure 3 depicts a
class diagram showing the kernel of iNet. Every policy used
in OpenWebServer is defined by the class OWSPolicy
derived from AntiBody. Calculator and its
implementation classes are used for calculating all the

Figure 3: A UML class diagram for the kernel of iNet

Antibody

Precondition
under which this
policy is selected

policy

paratope

references to stimulating
antibodies and degrees
of the stimuli

idiotope

Antibody

Precondition
under which this
policy is selected

policypolicy

paratope

references to stimulating
antibodies and degrees
of the stimuli

idiotope

Figure 2: The antibody structure in iNet

 5

antibodies’ populations through their interactions and
selecting an antibody whose population is the highest.

4.3 Interactions among antibodies
This section describes the interaction among antibodies,
which is the basic structure and dynamics of our policy
decision network, with a simple sample.

Figure 4 shows a simple subset of our immune network.
This network is used to determine the best-suited
concurrency policy according to a current system condition.
It contains four antibodies representing three kinds of
policies; single-threaded reactive, thread pool and thread-
per-connection. Antibody 1 represents that the single-
threaded reactive policy is activated when the average of
requested files is relatively small. However, the thread pool
policy is activated if the number of HTTP simultaneous
connections grows, because antibody 1 stimulates antibody
3. Inversely, the reactive policy is suppressed by the thread
pool policy, if the server has to handle many connections
even when the average file size is small.

Now, suppose that OpenWebServer (1) transfers relatively
small size of files, (2) handles relatively many connections,
and (3) supports the HTTP version 1.1. In this situation,
these three antigens stimulate antibodies 1, 2 and 4
simultaneously. Then, the populations of the antibodies
increase. However, each population varies through the
stimulating/suppressing interactions indicated by arrows
between antibodies. As a result, the population of the
antibody 2, i.e. thread-per-connection, would increase, and
then it would be selected by the immune network.

In the case where OpenWebServer (1) transfers relatively
small size of files, (2) does not have to handle many
connections, and (3) supports the HTTP version 1.1,
antibody 1, i.e. the reactive policy, would be selected in the
same way.

4.4 Dynamics of antibody selection
Figure 5 shows a generalized view of an antibody within in
an immune network. The i-th antibody stimulates M
antibodies and suppresses N antibodies. mji and mik denote
affinities between antibody j and i, and between antibody i
and k, respectively. The affinity means the degree of
stimulation or suppression. mi is an affinity between an

Paratope major ID Paratope minor ID Policy major ID Policy minor ID

FILE_SIZE L, M, S CONCURRENCY REACTIVE

NO_OF_CONNECTION M, A, F THREAD_PER_REQUEST

NO_OF_CPU M, S ACTIVE_THREAD_POOL

OS_THREAD_SUPPORT T, F PASSIVE_THREAD_POOL

OS_ASYNC_IO_SUPPORT T, F THREAD_PER_CONNECTION

AVAILABLE_THREADS M, A, F IO SYNCH

SUPPORTED_PROTOCOL HTTP10, HTTP11 ASYNCH

 CACHE LRU

 FIFO

 PROTOCOL HTTP10

 HTTP11

Table 1: A list of supported kinds of paratope and policies

paratope policy

Antibody i

paratope policy

paratope policy

paratope policy

Antibody 1

Antibody k

Antibody M

paratope policy

paratope policy

paratope policy

Antibody 1

Antibody j

Antibody N

Antigen

mi1

miM

mik

m1i

mNi

mji

mi

…
…

…
…

paratope policypolicy

Antibody i

paratope policyparatope policypolicy

paratope policyparatope policypolicy

paratope policyparatope policypolicy

Antibody 1

Antibody k

Antibody M

paratope policyparatope policypolicy

paratope policyparatope policypolicy

paratope policyparatope policypolicy

Antibody 1

Antibody j

Antibody N

AntigenAntigenAntigen

mi1

miM

mik

m1i

mNi

mji

mi

…
…

…
…

Figure 5: An antibody and its neighbors

Antibody 3

NoOfConn
Few

Reactive

FileSize
Small

Reactive

Antibody 1

Protocol
HTTP11

TPConn

Antibody 2

NoOfConn
Many

TPool

Antibody 4

stimulation suppression

Antibody 3

NoOfConn
Few

NoOfConn
Few

ReactiveReactive

FileSize
Small

FileSize
Small

ReactiveReactive

Antibody 1

Protocol
HTTP11
Protocol
HTTP11

TPConnTPConn

Antibody 2

NoOfConn
Many

NoOfConn
Many

TPoolTPool

Antibody 4

stimulation suppression

Figure 4: A sample immune network

 6

antigen and antibody i. All affinities are supposed to be
defined a priori in this paper (see also Section 6).

The antibody population is represented by the concept of
concentration in our method. The concentration of the i-th
antibody, denoted by ai, is calculated with the following
equations, which is originally proposed by Farmer et al.
[17, 18] and then extended by Ishiguro et al. [19, 20]:

In the first equation, the first and second term of the right
hand side denote the stimulation and suppression from other
antibodies. mji and mik are positive values between 0 and 1.
The third term, mi, is 1 when antibody i is stimulated
directly by an antigen, otherwise 0. The forth term, k,
denotes the dissipation factor representing the antibody’s
natural death. This value is 0.1. The initial concentration
value for every antibody, i.e. ai(0), is 0.01.

The second equation is the function that is used to squash
the parameter Ai(t), calculated by the first equation, between
0 and 1.

Every antibody’s concentration is calculated 30 times
repeatedly. Then, an antibody is selected from each policy
group. If no antibody exceeds the predefined threshold (0.7)
during the 30 calculation steps, the antibody of the highest
concentration is selected, i.e. winner-tales-all strategy. If an
antibody’s concentration exceeds the threshold, an antibody
is selected based on the probability proportional to the
current concentrations, i.e. roulette-wheel selection strategy.
An antibody whose concentration is below 0.2 is never
selected.

5. Results of preliminary experiments
We have conducted some initial experiments to validate the
feasibility of our policy coordination method. We built an
artificial immune network incorporating 10 policies listed in
Table 1. It defines 38 stimulation/suppression relationships
with their fixed affinities (see Section 6).

In our first experiment, we evaluated the static system
adaptability by supplying some sets of antigens regarding
the underlying system platform. For example, when
OpenWebServer is executed on a uni-processor platform
running an operating system that supports the thread and
asynchronous I/O, our policy coordination facility chose the
single-threaded reactive policy at first, instead of an
asynchronous concurrency policy. Our artificial immune
network is configured to select a policy conservatively, and
scale to more sophisticated ones when the original policy is

not appropriate in the current system condition. In a multi-
processor platform, the threading concurrency policies had
higher priorities than a single-threaded concurrency model.
In the situation that the system runs on an operating system
that does not support the threading capability, the single-
threaded reactive policy was selected independently of the
underlying CPU architecture.

The second experiment tested the dynamic system
adaptability by supplying antigens indicating the runtime
system conditions. While the average size of requested files
is small and the server’s hit rate is low, the single-threaded
reactive policy was selected. When the file size is within the
middle range, the server was still single-threaded, or
incorporated thread-per-request or thread pool policy. As
the file size grows relatively large, an asynchronous
concurrency policy had higher priority. This policy was
sometimes used with a caching policy. When the number of
network connections increases, the thread pool, thread-per-
connection and asynchronous concurrency were selected
depending on the multi-CPU, HTTP 1.1 and asynchronous
I/O support respectively.

Our initial experiments are simple, but we can see our
facility selects appropriate antibodies to both the static and
dynamic situations by changing the priorities among
antibodies. Note that the coordination process is not
performed by a single coordinator entity, but through
decentralized interactions among antibodies.

6. Future work
This paper focuses on the policy coordination of critical
determinants to the HTTP server performance: concurrency
and I/O [12, 13]. We are testing our coordination facility
with more complex experiments using greater number of
antibodies. Our latest immune network includes new 12
policies regarding sever redundancy, application-level
service support (e.g. CGI, Servlet and Java Server Pages),
logging, and protocol pipeline-parsing.

In the current structure of the iNet-based immune network,
the stimulation/suppression relationships are defined
statically using fixed affinity values. This means the
coordination process is basically performed as an immune
network designer expected at the design time. However, this
network does not provide a true dynamic feature as
described in Section 3.2. The coordination facility should
be able to add/remove relationships between antibodies and
change affinity values at run-time for OpenWebServer to
evolve more effectively. We chose a conservative strategy
for building an artificial immune network as the first
research step, because the “trial and error”-style
coordination can often result in fatal errors due to
delivering a disallowed combination of policies. Now that
we have validated the effectiveness of our artificial immune
network for OpenWebServer, however, we are moving
forward to more dynamic coordination as an extension of

))(5.0exp(1

1
)(

)()(
1

)(
1)(

11

tA
ta

takmtam
M

tam
Ndt

tdA

i
i

ii

M

k

kikj

N

j

ji
i

−+
=







−+−⋅= ∑∑

=

⋅

=

 7

this work. The next goal is to provide the emergence of the
knowledge of policy combination.

As for a mathematical model to simulate the phenomena of
the natural immune network, there exist several models
such as liner networks, cyclic networks, Cayley-tree-like
network and generalized shape-space model, which are
proposed by theoretical immunologists [21]. Our
coordination facility uses a cyclic network model proposed
by Farmer et al. [17, 18]. We plan to evaluate other network
models in more detail.

Also, we plan to incorporate some additional
immunological concept, e.g. tolerance and immune memory
in iNet.

7. Conclusion
This paper addresses current problems and limitations in
coordinating fine-grained QoS policies, and then proposes a
new decision-making method inspired by the natural
immune network. Our iNet-based coordination facility
defines each policy as an antibody, and selects the most
appropriate set of policies through the decentralized
interactions among antibodies. We believe our work
provides a blue print showing a decentralized coordination
mechanism as a next logical extension to existing adaptive
and QoS-enabled systems. Information regarding iNet and
OpenWebServer can be obtained from
www.yy.cs.keio.ac.jp/~suzuki/project/aisf/ and
www.yy.cs.keio.ac.jp/~suzuki/immunity/.

8. Acknowledgements
We thank Toshimitsu Minami and Mio Yamamoto for our
constructive discussions, which have been critical to
develop iNet and OpenWebServer. They expanded
application studies of our iNet-based artificial immune
network. We are also grateful to Nozomu Matsui for
improving an earlier version of this paper.

9. References
[1] G. Kiczales et al. The Art of the Metaobject Protocol.

MIT Press, 1991.

[2] G. Kiczales, Beyond the Black Box: Open
Implementation, IEEE Software, vol. 13, no. 1, 1996.

[3] K. J. Lieberherr, The Art of Growing Adaptive Object-
Oriented Software, PWS Publishing Company, 1995.

[4] G. Kiczales et al., Aspect-Oriented Programming, In
Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’97), Springer LNCS
1241, 1997.

[5] M. Aksit et al., Abstracting Object-Interactions Using
Composition-Filters, In Object-based Distributed
Processing, R. Guerraoui et al. (eds.), 1993.

[6] M. Mezini and K. Lieberherr, Adaptive Plug-and-Play
Components for Evolutionary Software Development,

In Proceedings of the Conference of Object-Oriented
Programming, Systems and Languages (OOPSLA’98),
1998.

[7] T. A. Campbell, QoS Architectures, In Multimedia
Communications Networks, M. Tatipamula and B.
Khasnabish (Eds.), Artech House Publishers, Chapter
3, 1998.

[8] J. Suzuki and Y. Yamamoto. OpenWebServer: An
Adaptive Web Server using Software Patterns. In IEEE
Communications, Vol. 37, No. 4, pages 46-52, April
1999.

[9] J. Suzuki and Y. Yamamoto, Dynamic Adaptation in
the Web Server Design Space using OpenWebServer,
In Proceedings of SPA '99, March 1999.

[10] J. Suzuki and Y. Yamamoto. Building an Adaptive
Web Server with a Meta-architecture: AISF approach.
In Proceedings of SPA’98, March 1998.

[11] D. C. Schmidt. Reactor - An Object Behavioral Pattern
for Event Demultiplexing and Event Handler
Dispatching. In Proceedings of the First Pattern
Languages of Programs, 1994.

[12] J. C. Hu and D. C. Schmidt. Developing Flexible and
High-performance Web Servers with Frameworks and
Patterns. In ACM Computing Surveys, May 1998.

[13] J. C. Hu, S. Mungee and D. C. Schmidt. Principles for
Developing and Measuring High-Performance Web
Servers over ATM”. In Proceedings of
INFOCOMM’98, 1998.

[14] D. Dasgupta (Ed.), Artificial Immune Systems and
Their Applications, Springer, 1999.

[15] T. Minami, Modeling a Multi-Agent System with
Artificial Immune Network, M.S. Thesis, Department
of Computer Science, Graduate School of Science and
Technology, Keio University, 2000 (in Japanese).

[16] M. Yamamoto, iPlayers: A Decentralized Behavior
Arbitration among Soccer Agents, B.S. Thesis,
Department of Information and Computer Science,
Keio University, 2000 (in Japanese).

[17] J. D. Farmer, N. H. Packard and A. S.Perelson, The
Immune System, Adaptation, and Machine Learning,
Physica, D 22, 184/204, 1986.

[18] J. D. Farmer, S. A. Kauman and N. H. Packard,
Adaptive Dynamic Networks as Models for the
Immune System and Autocatalytic Sets, Technical
Report LA-UR-86-3287, LosAlamos National
Laboratory, 1986.

[19] A. Ishiguro, T. Kondo, Y. Watanabe and Y. Uchikawa,
Dynamic Behavior Arbitration of Autonomous Mobile
Robots Using Immune Networks, In Proceedings of

 8

IEEE International Conference on Evolutionary
Computation, 722/727, 1995.

[20] A. Ishiguro, T. Kondo, Y. Watanabe and Y. Uchikawa,
An Immunological Approach to Behavior Arbitration
for Autonomous Mobile Robots, In Proceedings of
International Symposium on Artificial Life and
Robotics, 132/137, 1996.

[21] D. Chowdhury, Immune Network: An Example of
Complex Adaptive Systems, In Artificial Immune
Systems and Their Applications, D. Dasgupta (Ed.), pp.
89-104, Springer, 1999.

[22] I. Pyarali, T. Harrison, D. C. Schmidt, and T. Jordan,
Proactor: an Object Behavioral Pattern for
Demultiplexing and Dispatching Handlers for
Asynchronous Events, In Pattern Languages of
Program Design 4, Harrison, Foote and Rohnert (eds.),
Addison-Wesley, 1999.

[23] W. L. Hursch and C. V. Lopes, Separation of
Concerns, Technical Report NU-CCS-95-03,
Northeastern University, 1995.

[24] Y. Ichisugi, EPP: Extensible Type System Framework
for a Java Pre-Processor, In Proceedings of SPA’99,
1999.

[25] J. Suzuki and Y. Yamamoto, iNet: An Extensible
Framework for Simulating Immune Network,
Submitted to Special Track on Artificial Immune
Systems and Their Applications at IEEE International
Conference on Systems, Man, and Cybernetics 2000
(SMC’00), 2000.

[26] N. K. Jerne, The Immune System, Scientific American,
Vol. 229, No. 1, pp. 52-60, 1973.

[27] N. K. Jerne, The Generative Grammar of the Immune
System, EMBO Journal, Vol. 4, No. 4, 1985.

[28] N. K. Jerne, Idiotypic Networks and Other
Preconceived Ideas, Immunological Review, Vol. 79,
No.5-24, 1984.

[29] J. Kuby, Immunology, third edition, Freeman, 1997.

