
Guided Type Debugging

Sheng Chen and Martin Erwig

School of EECS

Oregon State University

Outline

2

Outline

2

Computing potential changes

Outline

2

Error locationsError locations

Computing potential changes

filtering changes

with user input

Change suggestionsChange suggestions

Outline

2

Error locationsError locations

Computing potential changes

filtering changes

with user input

previous work

Change suggestionsChange suggestions

Outline

3

previous work

Damas & Milner (algorithm W)

Diagnosing type errors: a retrospect

4

Damas & Milner (algorithm W)

Johnson & Walz Wand

Diagnosing type errors: a retrospect

4

Damas & Milner (algorithm W)

Johnson & Walz

Gandhe et al.

McAdam

Heeren

Lerner et al.

Zhang & Myers

McAdam
Yang et al.

Lee & Yi
Choppela

Kustanto & Kameyama

Bernstein & Shark

Chitil & Huch

Rittri

Stuckey et al.

Wand

Soosaipillai

Beaven & Stansifer

Duggan & Bent

Yang et al.

Choppela

Dinesh & Tip

Haack & Wells

Schilling

Yang et al.

McAdam

Findler et al.

Neubauer & Thiemann

Diagnosing type errors: a retrospect

4

Braßel

Chen & Erwig

Let’s start simple

5

Let’s start simple

5

GHC

Let’s start simple

6

Helium

B. J. Heeren. Top Quality Type Error Messages. PhD thesis, 2005

Let’s start simple

6

Helium

B. J. Heeren. Top Quality Type Error Messages. PhD thesis, 2005

Let’s start simple

7

CF typing

Sheng Chen and Martin Erwig. Counter-Factual Typing for Debugging Type Errors. POPL 2014

Let’s start simple

7

Not very informative

CF typing

Sheng Chen and Martin Erwig. Counter-Factual Typing for Debugging Type Errors. POPL 2014

The problem

There is a misalignment of

type error debugger’s goal

and user’s goal

8

The solution

9

Solicit user’s goal about result

type and suggest changes that

match that goal

Guided type debugging in action

10

Guided type debugging in action

11

Outline

12

Computing potential changes

Examine each location

What type should “(:)” have?

13

Examine each location

What type should “(:)” have?

13

Examine each location

What type should “(:)” have?

13

Examine each location

What type should “(:)” have?

(:) is not, or not

the only, cause of

the type error

fail

13

Examine each location

What type should “(:)” have?

(:) is not, or not

the only, cause of

the type error

the type

(:) should have

the type

fail
succeed

13

Combatting exponential blow-up

How to find changes

for all locations ?

How to find changes

for all locations ?

14

Combatting exponential blow-up

exponential in

expression size

How to find changes

for all locations ?

How to find changes

for all locations ?

14

Combatting exponential blow-up

exponential in

expression size

How to find changes

for all locations ?

How to find changes

for all locations ?

14

Reuse computationsReuse computations

Reuse computations with choice types

15

Reuse computations with choice types

15

Choice expressions and choice types

16

Choices encode uncertaintiesChoices encode uncertainties

Choice expressions and choice types

16

Choices encode uncertaintiesChoices encode uncertainties

choice name

Choice expressions and choice types

16

Choices encode uncertaintiesChoices encode uncertainties

choice name

first alternative

Choice expressions and choice types

16

Choices encode uncertaintiesChoices encode uncertainties

choice name

first alternative second alternative

Choice expressions and choice types

16

Choices encode uncertaintiesChoices encode uncertainties

choice name

first alternative second alternative

Choice expressions and choice types

16

Choices encode uncertaintiesChoices encode uncertainties

choice name

first alternative second alternative

Choice expressions and choice types

16

Choices encode uncertaintiesChoices encode uncertainties

exactly one

is chosen

choice name

first alternative second alternative

Choice expressions and choice types

17Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

17

type equivalence

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

17

type equivalence

type equivalence

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

17

type equivalence

type equivalence

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

17

type equivalence

type equivalence
result type

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Remedy ill-typed expressions

18

Remedy ill-typed expressions

18

envision to change

“not” to “succ” to

remove the type error

Do it systematically

19

Do it systematically

19

“1” can also

cause error

Do it systematically

19

“1” can also

cause error

Too many

possibilities

Do it systematically

19

“1” can also

cause error

Too many

possibilities

Do it on the type level

Do it systematically

19

“1” can also

cause error

Too many

possibilities

Do it on the type level

Do it systematically

19

“1” can also

cause error

Too many

possibilities

Do it on the type level

Do it systematically

19

“1” can also

cause error

Too many

possibilities

Do it on the type level range over types

Computing all potential fixes

20

Outline

21

Error locationsError locations

filtering changes

with user input

Change suggestionsChange suggestions

Combat another exponential problem

22

Combat another exponential problem

22

Given a user input, we

need to examine each fix

to filter out correct fixes

Combat another exponential problem

22

Given a user input, we

need to examine each fix

to filter out correct fixes

exponential in

expression size

Combat another exponential problem

22

Given a user input, we

need to examine each fix

to filter out correct fixes

exponential in

expression sizeOrder fixesOrder fixes

Type change lattice

23

Type change lattice

23

Type change lattice

23

Type change lattice

23

Type change lattice

23

Size of TCL can be exponential

in the size of expression

Type change lattice

23

More general

types

Size of TCL can be exponential

in the size of expression

Type change lattice

23

More general

types

More change

locations

Size of TCL can be exponential

in the size of expression

Type change lattice

23

More general

types

More change

locations

Size of TCL can be exponential

in the size of expression

Important property

24

More change locations

imply more general types

More change locations

imply more general types

Important property

24

More change locations

imply more general types

More change locations

imply more general types

We prefer fixes with fewer

locations

We prefer fixes with fewer

locations

Important property

24

More change locations

imply more general types

More change locations

imply more general types

We prefer fixes with fewer

locations

We prefer fixes with fewer

locations

Start search at bottom will

not miss any useful fixes

Start search at bottom will

not miss any useful fixes

Important property

24

More change locations

imply more general types

More change locations

imply more general types

We prefer fixes with fewer

locations

We prefer fixes with fewer

locations

Start search at bottom will

not miss any useful fixes

Start search at bottom will

not miss any useful fixes

We can create TCLs lazily

(We only maintain it conceptually)

We can create TCLs lazily

(We only maintain it conceptually)

Climbing TCLs

25

Climbing TCLs

25

type:

Expected result

type:

Climbing TCLs

25

type:

Expected result

type:

Climbing TCLs

25

type:

Expected result

type:

Climbing TCLs

25

type:

Expected result

type:

Climbing TCLs

25

type:

Expected result

type:

Climbing TCLs

25

type:

Expected result

type:

Climbing TCLs

26

Climbing TCLs

26

type:

Expected result

type:

Climbing TCLs

26

type:

Expected result

type:

Climbing TCLs

26

type:

Expected result

type:

Climbing TCLs

26

type:

Expected result

type:

Climbing TCLs

26

type:

Expected result

type:

Debugging type errors in annotations

27

Debugging type errors in annotations

27

Debugging type errors in annotations

27

type:

Expected result

type:

Debugging type errors in annotations

27

type:

Expected result

type:

Debugging type errors in annotations

27

type:

Expected result

type:

Debugging type errors in annotations

27

type:

Expected result

type:

Debugging type errors in annotations

27

type:

Expected result

type:

Debugging type errors in annotations

27

type:

Expected result

type:

Debugging type errors in annotations

27

type:

Expected result

type:

Debugging type errors in annotations

27

type:

Expected result

type:

Evaluation programs

Used earlier collected 86

programs from 22 publications

Used earlier collected 86

programs from 22 publications

28

Evaluation programs

Used earlier collected 86

programs from 22 publications

Used earlier collected 86

programs from 22 publications

Translated to the syntax presented

in the paper

Translated to the syntax presented

in the paper

28

Evaluation programs

Used earlier collected 86

programs from 22 publications

Used earlier collected 86

programs from 22 publications

Translated to the syntax presented

in the paper

Translated to the syntax presented

in the paper

28

Each example exhibits a particular

difficulty for type error diagnosing

Evaluation programs

29

Evaluation results

30

Percentage of programs whose type errors

could be removed with at most n suggestions

Evaluation results

30

Percentage of programs whose type errors

could be removed with at most n suggestions

GTD overhead compared to counter-

factual typing is less than 0.5s

In the paper

Formalization of the type systemFormalization of the type system

31

In the paper

Formalization of the type systemFormalization of the type system

Reliability of type annotationsReliability of type annotations

31

In the paper

Formalization of the type systemFormalization of the type system

Reliability of type annotationsReliability of type annotations

Debugging type errors in annotationsDebugging type errors in annotations

31

In the paper

Formalization of the type systemFormalization of the type system

Reliability of type annotationsReliability of type annotations

Debugging type errors in annotationsDebugging type errors in annotations

More about TCLsMore about TCLs

31

Future work

32

More expressive type systemsMore expressive type systems

Programming by searchProgramming by search

Detecting specification failuresDetecting specification failures

Conclusions

33

An effective type

debugging method guided

by user input

An effective type

debugging method guided

by user input

GTD

Conclusions

33

An effective type

debugging method guided

by user input

An effective type

debugging method guided

by user input

Finding all potential fixes and

filtering them with the user

expected type GTD

Conclusions

33

An effective type

debugging method guided

by user input

An effective type

debugging method guided

by user input

Finding all potential fixes and

filtering them with the user

expected type

Reusing computations and

ordering fixes based on

generality of result types

GTD

Made feasible

