Guided Type Debugging

Sheng Chen and Martin Erwig
School of EECS

Oregon State University

Outline

not 1

Outline

Computing potential changes

A(Bool — Bool, ¢1) B{(Int, ¢2)

not 1
B(A(L, a1), A(Bool, as))

Outline

Computing potential changes

A(Bool — Bool, ¢1) B{(Int, ¢2)

not 1
B(A(L, a1), A(Bool, as))

filtering changes
with user input

Change suggestions
Error locations

Outline

previous work Computing potential changes

A(Bool — Bool, ¢1) B{(Int, ¢2)

not 1
B(A(L, a1), A(Bool, as))

filtering changes
with user input

Change suggestions
Error locations

Outline

p

previous work ’ [Computing potential changes

h

}\A<Bool — Bool, ¢1) | [B(Int, §b2>}

\not /

 BA(L), ABoo1, az))

filtering changes
with user input

Change suggestions
Error locations

2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
1994
1992
1990
1988
1986
1984

1982

Diagnosing type errors: a retrospect

A

Damas & Milner (algorithm W)

reparation

reordering
unification

debugging

explanation

slicing

others

>

2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
1994
1992
1990
1988
1986
1984

1982

Diagnosing type errors: a retrospect

A

Johnson & Walz

Wand

Damas & Milner (algorithm W)

reparation

reordering
unification

debugging

explanation

slicing

others

>

Diagnosing type errors: a retrospect

AZhang & Myers

2014 i -
015 Chen & Erwig Schilling

2010 Kustanto & Kameyama

2008 Lerner et al.

2006 Neubauer & Thiemann
2004 Heeren Lee & Yi Brallel Haack & Wells

2002 McAdam Choppela Stuckey etal. Yangetal. \F(;nndlee([%tl al.
2000 Yang et al. Chitil & Huch I\/IgAd '
1990 McAdam Dinesh & Ti e
1996 | Gandhe et al. Bernstein & Shark Duggan & Bent P

1994 o :
1997 Rittri ~ Beaven & Stansifer Choppela

1990 Soosaipillai
1988

1986 |Johnson & Walz Wand

1984 : .
1982 Damas & Milner (algorithm W) »

reparation reordering debugging explanation slicing others
unification

Let’s start simple

f = foldl (:) []

Let’s start simple

f = foldl (:) []
GHC

Occurs check: cannot construct the infinite type: a0 = [a0]
Expected type: [a0] -> [[a0]] -> [aO0]
Actual type: [a0] -> [[a0]] -> [[a0]]
In the first argument of ‘foldl’, namely ‘(:)’
In the expression: foldl (:) []

Let’s start simple

f = foldl (:) []
Helium

Type error in constructor

expression Dol

type :a -> [a] -> [a]

expected type : [b] -> c -> [b]
because : unification would give infinite type
probable fix : use ++ instead

B. J. Heeren. Top Quality Type Error Messages. PhD thesis, 2005

Let’s start simple

f = foldl (:) []
Helium

Type error in constructor

expression Dol

type :a -> [a] -> [a]

expected type : [b] -> c -> [b]
because : unification would give infinite type
probable fix : use ++ instead

Result type: [[al] -> [a]
What if the expected type is:
[a] -> [a]

B. J. Heeren. Top Quality Type Error Messages. PhD thesis, 2005

Let’s start simple

f = foldl (:) []
CF typing

f has type errors.

Some possible fixes
1 change (:) from a -> [a] -> [a] to [a] -> b -> [a].
2 change foldl
from type (a => b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> [b] -> c.
More fixes?

Sheng Chen and Martin Erwig. Counter-Factual Typing for Debugging Type Errors. POPL 2014

Let’s start simple

f = foldl (:) []
CF typing

f has type errors.

Some possible fixes
1 change (:) from a -> [a] -> [a] to [a] -> b -> [a].
2 change foldl
from type (a => b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> [b] -> c.
More fixes?

Not very informative

Sheng Chen and Martin Erwig. Counter-Factual Typing for Debugging Type Errors. POPL 2014

The problem

There is a misalignment of
type error debugger’s goal
and user’s goal

The solution

Solicit user’s goal about result
type and suggest changes that
match that goal

Guided type debugging in action
f = foldl (:) []

What is the expected type of £f7
[a] -> [a]

Potential fixes:
1 Change (:) to (flip (:)).
2 change foldl
from type (a -> b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> b -> [a] -> [a]
There are no other one-change fixes.
Show two-change fixes? (y/n)

Guided type debugging in action

f = foldl (:) []

What is the expected type of £f7
[[a]] -> [a]

Potential fixes:
1 Change (:)
from type a -> [a] -> [a]
to type [a] -> [a] -> [a]
2 change foldl
from type (a -> b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> b -> [[a]] -> [a]
There are no other one-change fixes.
Show two-change fixes? (y/n)

Outline

previous work Computing potential changes

A(Bool — Bool, ¢1) B(Int, ¢o) \
not /

filtering changes
with user input

Change suggestions
Error locations

12

Examine each location

What type should “(:)” have?

fold £ z [] = (:) z []
fold f z (x:xs8) = fold £ (f z x) xs

flipf xy=1fyx
rev = fold (flip (:)) []

palin xs = rev Xs == X8

Examine each location

What type should “(:)” have?

fold f z [] = uv z []
fold f z (x:xs) = fold f (f z x) xs

flipf xy=1f yx
rev = fold (flip (:)) [

palin xs = rev Xs == XS

Examine each location

What type should “(:)” have? (T, 9) — infer(F U {(uv,a)},palin)

fold f z [] = uv z []
fold f z (x:xs) = fold f (f z x) xs

flipf xy=1f yx
rev = fold (flip (:)) [

palin xs = rev Xs == XS

Examine each location

What type should “(:)” have? (T, 9) — infer(F U {(uv,a)},palin)

fail
fold f z [] = uv z []
fold f z (x:xs) = fold f (f z x) xs
flipfxy=1%fyx (:) is not, or not
rev = fold (flip (:)) [] the only, cause of

. the type error
palin xs = rev Xs == XS

Examine each location

What type should “(:)” have? (T, 9) — infer(F U {(uv,a)},palin)

succeed

(:) should have
fold £ z [] = uv z [] the type ()
fold f z (x:xs) = fold £ (f z x) xs

fail

flipf xy=1f yx (:) is not, or not

rev = fold (flip (:)) [] the only, cause of

. the type error
palin xs = rev Xs == XS

Combatting exponential blow-up

How to find changes
for all locations ?

14

Combatting exponential blow-up

How to find changes
for all locations ?

W

exponential in
expression size

14

Combatting exponential blow-up

How to find changes
for all locations ?

W

} Reuse computations

= o~

14

Reuse computations with choice types

(:) z []
fold f (f z x) xs

fold f z []
fold f z (x:x8)

flip f xy=1%f y x
rev = fold (flip (:)) []

palin Xxs = rev Xxs == XS

Reuse computations with choice types

(:) z []
fold f (f z x) xs

fold f z []
fold f z (x:x8)

flip f xy=1%f y x
rev = fold (flip (:)) []

palin xs = rev Xxs == XS

O() Pq)

Choice expressions and choice types

Choices encode uncertainties

A(even, succ) 1

Choice expressions and choice types

Choices encode uncertainties

A(even, succ) 1

choice name

Choice expressions and choice types

Choices encode uncertainties

first alternative

A(even, succ) 1

choice name

Choice expressions and choice types

Choices encode uncertainties

first alternative second alternative

A(even, succ) 1

choice name

Choice expressions and choice types

Choices encode uncertainties

first alternative second alternative

A(even, succ) 1

choice name

even 1

Choice expressions and choice types

Choices encode uncertainties

first alternative second alternative

A(even, succ) 1

choice name

even 1 succ 1

Choice expressions and choice types

Choices encode uncertainties

first alternative second alternative

A(even, succ) 1

choice name

exactly one
is chosen

even 1 succ 1

Choice expressions and choice types

A(Int — Bool,Int — Int) Int

A(even, succ) 1

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

A(Int — Bool,Int — Int) Int

_ A(even, succ) 1
type equivalence

A(Int,Int) —>A(Bool, Int)

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

A(Int — Bool,Int — Int) Int

_ A(even, succ) 1
type equivalence

A(Int, Int) —A(Bool, Int) Int— A(Bool, Int)

type equivalence

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

A(Int — Bool,Int — Int) Int

_ A(even, succ) 1
type equivalence

A(Int, Int) —A(Bool, Int) Int— A(Bool, Int)

type equivalence

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Choice expressions and choice types

A(Int — Bool,Int — Int) Int

_ A(even, succ) 1
type equivalence
result type

A(Int, Int) —A(Bool, Int) Int— A(Bool, Int)

type equivalence

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014

Remedy ill-typed expressions

not 1

Remedy ill-typed expressions

not 1

envision to change
“not” to “succ” to
remove the type error

A(not, succ) 1

Do it systematically

not 1

A(not, succ) 1

Do it systematically

not 1

“1” can also
cause error

A(not, succ) B(1,True)

Do it systematically

not 1
“1” can also
cause error
A(not, succ) B(1,True) Too many

possibilities

Do it systematically

not 1 Do it on the type level

“1” can also
cause error

A(not, succ) B(1,True) Too many
possibilities

Do it systematically

A(Bool — Bool, ¢1)

not 1 Do it on the type level

“1” can also
cause error

A(not, succ) B(1,True) Too many
possibilities

Do it systematically

A(Bool — Bool, ¢1)

not 1 Do it on the type level

B<Int7¢2>
“1” can also
cause error

A(not, succ) B(1,True) Too many
possibilities

Do it systematically

A(Bool — Bool, ¢1)

' range over types
not 1 Do it on the type level g yp

B<Int7¢2>
“1” can also
cause error

A(not, succ) B(1,True) Too many
possibilities

not 1

A(Bool — Bool, B(Int,ay) — a5)

A(B(1,Bool), as)

B(Int, A(Bool, ary))

Computing all potential fixes

no change change
Bool — Bool | Bool — Bool
no change Int Bool
L Bool
not
Int — a5 a4 — A
change Int Q4
5 a5

20

Outline

previous work

A(Bool — Bool, ¢1)

not 1

Computing potential changes

B<Int7 ¢2>

B(A(L, 1), A(Bool, aa))

filtering changes
with user input

Change suggestions

Error locations

21

Combat another exponential problem

not 1

1

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — a5 4 — Qg
change Int Q4
as 5

Combat another exponential problem

not 1
no change change
Bool — Bool | Bool — Bool
no change Int Bool
. . 1 Bool
Given a user input, we not Tnt = op o — o
need to examine each fix change Int o
to filter out correct fixes Qs Qs

Combat another exponential problem

not 1
no change change
Bool — Bool | Bool — Bool
no change Int Bool
. . 1 Bool
Given a user input, we not Tnt = op o — o
need to examine each fix change Int o
to filter out correct fixes Qs Qs

exponential in
expression size

22

Combat another exponential problem

not 1 1
no change change
Bool — Bool | Bool — Bool
no change Int Bool
. . 1 Bool
Given a user input, we not Tnt = op o — o
need to examine each fix change Int o
to filter out correct fixes Qs Qs

/L~

Order fixes

- Orderis

Type change lattice

not 1 A(B(1,Bool), as)

Type change lattice

not 1 A(B(1,Bool), as)

ihL

Type change lattice

not 1 A(B(1,Bool), as)

{A}a as {B},Bool

e

ihL

Type change lattice

not 1 A(B(1,Bool), as)

Type change lattice

not 1 A(B(1,Bool), as)

Size of TCL can be exponential
in the size of expression

Type change lattice

not 1 A(B(1,Bool), as)
More general
types
{A, B}, (0754
{A}< >Bool
{hL

Size of TCL can be exponential
in the size of expression

Type change lattice

not 1 A(B(1,Bool), as)
More general More change
types locations
{A7 B}7a5
{A}< >Bool
{51

Size of TCL can be exponential
in the size of expression

Type change lattice

not 1 A(B(1,Bool), as)
More general < More change
types locations
{A7 B}7a5
{A}< >Bool
{51

Size of TCL can be exponential
in the size of expression

Important property

More change locations
imply more general types

Important property

More change locations We prefer fixes with fewer
imply more general types locations

Important property

More change locations We prefer fixes with fewer
imply more general types locations

Start search at bottom wiill
not miss any useful fixes

Important property

More change locations We prefer fixes with fewer
imply more general types locations

Start search at bottom wiill
not miss any useful fixes

We can create TCLs lazily
(We only maintain it conceptually)

Climbing TCLs

not 1

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result
type: Int

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result

type: Int

L

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result

type: Int

{A}a a5

L

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result

type: Int

{14}70%

{B},Bool

e

L

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result

type: Int

{A}a a5

L

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1
no change change
Bool — Bool | Bool — Bool
1 no change Int Bool
«
Expected result t }’\ ° L Bool
t - Tnt Int — a5 04 — O3
ype: 1ln \ change Int Q4
{}7 1 a's 8731

Potential fixes:

1 Change not

from type Bool -> Bool

to type Int -> Int
There are no other one-change fixes.
Show two-change fixes? (y/n)

Climbing TCLs

not 1

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result

type: Bool

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result

type: Bool

L

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

{A}a Qs
Expected result
type: Bool

L

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

{14}70%
Expected result
type: Bool

{B},Bool

e

L

no change change
Bool — Bool | Bool — Bool
no change Int Bool
1 Bool
not
Int — ax 0y — Q5
change Int Q4
(879 (875

Climbing TCLs

not 1

Expected result
type: Bool

no change change
Bool — Bool | Bool — Bool
no change Int Bool
{A}, a5 {B}7 Bool 1 Bool
= - not
Int — ax 0y — Q5
change Int Q4
L as as

Potential fixes:

1 Change 1 from type Int to type Bool
2 Change not

from type Bool -> Bool

to type Int -> Bool
There are no other one-change fixes.
Show two-change fixes? (y/n)

Debugging type errors in annotations

v = id (3::Bool)

Debugging type errors in annotations

v = id (3::Bool)

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

Debugging type errors in annotations

Expected result v = id (3::Bool)
type: Int

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

Debugging type errors in annotations

Expected result v = id (3::Bool)
type: Int

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

L

Debugging type errors in annotations

Expected result v = id (3::Bool)
type: Int

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

1A}, L

N

L

Debugging type errors in annotations

Expected result v = id (3::Bool)
type: Int

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

L

Debugging type errors in annotations

Expected result v = id (3::Bool)
type: Int

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

{B},Bool

L

Debugging type errors in annotations

Expected result v = id (3::Bool)
type: Int

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

L

Debugging type errors in annotations

Expected result v = id (3::Bool)
type: Int

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

{C}, Int

e

L

Debugging type errors in annotations

Expected result
type: Int

{C}, Int

e

L

v = id (3::Bool)

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

Potential fixes:

1 Change annotation Bool to Int
There are no other one-change fixes.
Show two-change fixes? (y/n)

Evaluation programs

Used earlier collected 86
programs from 22 publications

Evaluation programs

Used earlier collected 86
programs from 22 publications

Translated to the syntax presented
in the paper

Evaluation programs

Used earlier collected 86
programs from 22 publications

Translated to the syntax presented
in the paper

Each example exhibits a particular
difficulty for type error diagnosing

Evaluation programs

plot £ dx dy oy =

\f vy x->f£f (y x) (y 3) (not x)

let fxs = getY¥s f dx
ys = map (\y-> fromIntegral (y-oy)*dy) [maxY,maxY-1..minY]
rows = map (doRow fxs) ys idStack stk = pop (push undefined stk)
in unlines rows push top stk = (top:stk)
where pop (top,stk) = stk
doRow [] r = "" empty = []
doRow (y:ys) r = (if y < r && y > (r-dy) then *
else) : doRow r ys
getYs f dx = [£ ((centre x * dx)) | x <- [minX..maxX]]
where centre = (+) .5
split xs =
case xs of
1 -> i, 0
reverse (X:Xs) = reverse Xs ++ X [x] -> ([, x)
last xs = head (reverse xs) (x:y:2z8) ->
init = reverse . tail . reverse let (xs, ys) = split zs
rotateR xs = last xs : 1nit xs

in (x:xs, y:ys)

Evaluation results

86 examples with Oracle
1 2 3 >4 never
CF typing | 67% 80% 88% 92% 8%
GTD 83% 90% 92% 92% 8%

Percentage of programs whose type errors
could be removed with at most n suggestions

Evaluation results

86 examples with Oracle
1 2 3 >4 never
CF typing | 67% 80% 88% 92% 8%
GTD 83% 90% 92% 92% 8%

Percentage of programs whose type errors
could be removed with at most n suggestions

GTD overhead compared to counter-
factual typing is less than 0.5s

In the paper

Formalization of the type system

In the paper

Formalization of the type system

Reliability of type annotations

In the paper

Formalization of the type system

Reliability of type annotations

Debugging type errors in annotations

In the paper

Formalization of the type system

Reliability of type annotations
Debugging type errors in annotations

More about TCLs

Future work

More expressive type systems

Detecting specification failures

Programming by search

Conclusions

GTD

An effective type
debugging method guided
by user input

Conclusions

Finding all potential fixes and
filtering them with the user

GTD N\a'\“.\dea expected type

An effective type
debugging method guided
by user input

Conclusions

Finding all potential fixes and
filtering them with the user

GTD N\a‘m"‘\% expected type
An effective type _
debugging method guided Made feasible

by user input

Reusing computations and
ordering fixes based on
generality of result types

