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Let’s start simple

f = foldl (:) []
GHC

Occurs check: cannot construct the infinite type: a0 = [a0]
Expected type: [a0] -> [[a0]] -> [aO0]
Actual type: [a0] -> [[a0]] -> [[a0]]
In the first argument of ‘foldl’, namely ‘(:)’
In the expression: foldl (:) []
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f = foldl (:) []
Helium

Type error in constructor

expression Dol

type :a -> [a] -> [a]

expected type : [b] -> c -> [b]
because : unification would give infinite type
probable fix : use ++ instead

B. J. Heeren. Top Quality Type Error Messages. PhD thesis, 2005



Let’s start simple

f = foldl (:) []
Helium

Type error in constructor

expression Dol

type :a -> [a] -> [a]

expected type : [b] -> c -> [b]
because : unification would give infinite type
probable fix : use ++ instead

Result type: [[al] -> [a]
What if the expected type is:
[a] -> [a]

B. J. Heeren. Top Quality Type Error Messages. PhD thesis, 2005



Let’s start simple

f = foldl (:) []
CF typing

f has type errors.

Some possible fixes
1 change (:) from a -> [a] -> [a] to [a] -> b -> [a].
2 change foldl
from type (a => b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> [b] -> c.
More fixes?

Sheng Chen and Martin Erwig. Counter-Factual Typing for Debugging Type Errors. POPL 2014



Let’s start simple

f = foldl (:) []
CF typing

f has type errors.

Some possible fixes
1 change (:) from a -> [a] -> [a] to [a] -> b -> [a].
2 change foldl
from type (a => b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> [b] -> c.
More fixes?

Not very informative

Sheng Chen and Martin Erwig. Counter-Factual Typing for Debugging Type Errors. POPL 2014



The problem

There is a misalignment of
type error debugger’s goal
and user’s goal




The solution

Solicit user’s goal about result
type and suggest changes that
match that goal



Guided type debugging in action
f = foldl (:) []

What is the expected type of £f7
[a] -> [a]

Potential fixes:
1 Change (:) to (flip (:)).
2 change foldl
from type (a -> b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> b -> [a] -> [a]
There are no other one-change fixes.
Show two-change fixes? (y/n)



Guided type debugging in action

f = foldl (:) []

What is the expected type of £f7
[[a]] -> [a]

Potential fixes:
1 Change (:)
from type a -> [a] -> [a]
to type [a] -> [a] -> [a]
2 change foldl
from type (a -> b -> a) -> a -> [b] -> a
to type (a -> [a] -> [a]) -> b -> [[a]] -> [a]
There are no other one-change fixes.
Show two-change fixes? (y/n)
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Examine each location

What type should “(:)” have?

fold £ z [] = (:) z []
fold f z (x:xs8) = fold £ (f z x) xs

flipf xy=1fyx
rev = fold (flip (:)) []

palin xs = rev Xs == X8
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What type should “(:)” have? (T, 9) — infer(F U {(uv,a)},palin)

fail
fold f z [] = uv z []
fold f z (x:xs) = fold f (f z x) xs
flipfxy=1%fyx (:) is not, or not
rev = fold (flip (:)) [] the only, cause of

. the type error
palin xs = rev Xs == XS



Examine each location

What type should “(:)” have? (T, 9) — infer(F U {(uv,a)},palin)

succeed

(:) should have
fold £ z [] = uv z [] the type ()
fold f z (x:xs) = fold £ (f z x) xs

fail

flipf xy=1f yx (:) is not, or not

rev = fold (flip (:)) [] the only, cause of

. the type error
palin xs = rev Xs == XS
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Reuse computations with choice types

(:) z []
fold f (f z x) xs

fold f z []
fold f z (x:x8)

flip f xy=1%f y x
rev = fold (flip (:)) []

palin Xxs = rev Xxs == XS



Reuse computations with choice types

(:) z []
fold f (f z x) xs

fold f z []
fold f z (x:x8)

flip f xy=1%f y x
rev = fold (flip (:)) []

palin xs = rev Xxs == XS

O() Pq)
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Choice expressions and choice types

Choices encode uncertainties

first alternative second alternative

A(even, succ) 1

choice name

exactly one
is chosen

even 1 succ 1



Choice expressions and choice types

A(Int — Bool,Int — Int) Int

A(even, succ) 1

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014
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Choice expressions and choice types

A(Int — Bool,Int — Int) Int

_ A(even, succ) 1
type equivalence
result type

A(Int, Int) —A(Bool, Int) Int— A(Bool, Int)

type equivalence

Sheng Chen, Martin Erwig and Eric Walkingshaw. Extending Type Inference to Variational Programs. TOPLAS 2014
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Do it systematically

A(Bool — Bool, ¢1)

' range over types
not 1 Do it on the type level g yp

B<Int7¢2>
“1” can also
cause error

A(not, succ) B(1,True) Too many
possibilities
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Computing all potential fixes

no change change
Bool — Bool | Bool — Bool
no change Int Bool
L Bool
not
Int — a5 a4 — A
change Int Q4
5 a5

20
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Combat another exponential problem

not 1 1
no change change
Bool — Bool | Bool — Bool
no change Int Bool
. . 1 Bool
Given a user input, we not Tnt = op o — o
need to examine each fix change Int o
to filter out correct fixes Qs Qs

/L~

Order fixes

- Orderis




Type change lattice

not 1 A(B(1,Bool), as)



Type change lattice

not 1 A(B(1,Bool), as)

ihL



Type change lattice

not 1 A(B(1,Bool), as)

{A}a as {B},Bool

e

ihL



Type change lattice

not 1 A(B(1,Bool), as)



Type change lattice

not 1 A(B(1,Bool), as)

Size of TCL can be exponential
in the size of expression



Type change lattice

not 1 A(B(1,Bool), as)
More general
types
{A, B}, (0754
{A}< >Bool
{hL

Size of TCL can be exponential
in the size of expression



Type change lattice

not 1 A(B(1,Bool), as)
More general More change
types locations
{A7 B}7a5
{A}< >Bool
{51

Size of TCL can be exponential
in the size of expression



Type change lattice

not 1 A(B(1,Bool), as)
More general < More change
types locations
{A7 B}7a5
{A}< >Bool
{51

Size of TCL can be exponential
in the size of expression
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Important property

More change locations We prefer fixes with fewer
imply more general types locations

Start search at bottom wiill
not miss any useful fixes

We can create TCLs lazily
(We only maintain it conceptually)
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Climbing TCLs

not 1
no change change
Bool — Bool | Bool — Bool
1 no change Int Bool
«
Expected result t }’\ ° L Bool
t - Tnt Int — a5 04 — O3
ype: 1ln \ change Int Q4
{}7 1 a's 8731

Potential fixes:

1 Change not

from type Bool -> Bool

to type Int -> Int
There are no other one-change fixes.
Show two-change fixes? (y/n)
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Climbing TCLs

not 1

Expected result
type: Bool

no change change
Bool — Bool | Bool — Bool
no change Int Bool
{A}, a5 {B}7 Bool 1 Bool
= - not
Int — ax 0y — Q5
change Int Q4
L as as

Potential fixes:

1 Change 1 from type Int to type Bool
2 Change not

from type Bool -> Bool

to type Int -> Bool
There are no other one-change fixes.
Show two-change fixes? (y/n)
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Debugging type errors in annotations

Expected result
type: Int

{C}, Int

e

L

v = id (3::Bool)

A<B<C<J_, Int>, C<B001, 041>>, B<C<J_, Q{2>, (,1{2>>

Potential fixes:

1 Change annotation Bool to Int
There are no other one-change fixes.
Show two-change fixes? (y/n)
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Evaluation programs

Used earlier collected 86
programs from 22 publications

Translated to the syntax presented
in the paper

Each example exhibits a particular
difficulty for type error diagnosing



Evaluation programs

plot £ dx dy oy =

\f vy x->f£f (y x) (y 3) (not x)

let fxs = getY¥s f dx
ys = map (\y-> fromIntegral (y-oy)*dy) [maxY,maxY-1..minY]
rows = map (doRow fxs) ys idStack stk = pop (push undefined stk)
in unlines rows push top stk = (top:stk)
where pop (top,stk) = stk
doRow [] r = "" empty = []
doRow (y:ys) r = (if y < r && y > (r-dy) then *
else ) : doRow r ys
getYs f dx = [ £ ((centre x * dx)) | x <- [minX..maxX] ]
where centre = (+) .5
split xs =
case xs of
1 -> i, 0
reverse (X:Xs) = reverse Xs ++ X [x] -> ([, x)
last xs = head (reverse xs) (x:y:2z8) ->
init = reverse . tail . reverse let (xs, ys) = split zs
rotateR xs = last xs : 1nit xs

in (x:xs, y:ys)
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86 examples with Oracle
1 2 3 >4  never
CF typing | 67% 80% 88% 92% 8%
GTD 83% 90% 92% 92% 8%

Percentage of programs whose type errors
could be removed with at most n suggestions



Evaluation results

86 examples with Oracle
1 2 3 >4  never
CF typing | 67% 80% 88% 92% 8%
GTD 83% 90% 92% 92% 8%

Percentage of programs whose type errors
could be removed with at most n suggestions

GTD overhead compared to counter-
factual typing is less than 0.5s
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In the paper

Formalization of the type system

Reliability of type annotations
Debugging type errors in annotations

More about TCLs



Future work

More expressive type systems

Detecting specification failures

Programming by search
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Conclusions

Finding all potential fixes and
filtering them with the user

GTD N\a‘m"‘\% expected type
An effective type _
debugging method guided Made feasible

by user input

Reusing computations and
ordering fixes based on
generality of result types





