Constraint Logic Programming for Hedges:
A Semantic Reconstruction

Besik Dundua

DCC-FC & LIACC, University of Porto, Portugal

VIAM, lvane Javakhishvili Tbilisi State University, Georgia

Joint work with Mario Florido, Temur Kutsia and Mircea Marin

What is CLP(H)

» CLP(H): Constraint Logic Programming over hedges.

What is CLP(H)

» CLP(H): Constraint Logic Programming over hedges.

» Hedges: finite sequences of unranked terms and hedge
variables.

What is CLP(H)

» CLP(H): Constraint Logic Programming over hedges.

» Hedges: finite sequences of unranked terms and hedge
variables.

» Unranked terms: function symbols have no fixed arity.

Unranked Term: Example

(1)
1o 1@y @ @) @)
S1610
()

» Different occurrences of the same function symbol may have
different number of arguments.

» Variables: X for hedges, y for terms, F' for function symbols.

Hedge: Example

flg, f(X),9(F(a),y)), X, g(y)

: E:@

» Finite sequences of unranked terms and hedge variables.

Variables

> Term variables — can be instantiated by individual terms.
» Hedge variables — can be instantiated by hedges.

» Function variables — can be instantiated by function symbols.

Variable Instantiation: Example

Variable Instantiation: Example

f(g, f(X),9(F(a),v)) {X = (9(a),y),y = fla), F = g}

(D -

ONO
©) ®
©
®

@&é&o

1

CLP(H) Programs

» Three kinds of variables give flexibility of term traversal.

> It helps to write short, yet quite clear and intuitive code.

CLP(H) Programs

» Three kinds of variables give flexibility of term traversal.

> It helps to write short, yet quite clear and intuitive code.
Example (Rewriting)

rewrite(z,y) « rule(z,y).
rewrite(F(X,z,Y), F(X,y,Y)) < rewrite(z,y).

rule(z,y) < ...

CLP(H) Programs

» Hedges may be constrained with regular hedge languages.

CLP(H) Programs

» Hedges may be constrained with regular hedge languages.
Example (Rewriting)

rewrite(x,y) < rule(x,y).
rewrite(F(X,z,Y), F(X,y,Y)) < rewrite(z,y).

rule(f(X), f(b, X,b)) < X ina™.

In This Talk

» Semantics of CLP(H).
» How to solve constraints.

» Special fragments.

Let's Get a Bit Formal

The

alphabet contains

term, hedge and function variables,
unranked function symbols,

ranked predicate symbols,

true, false, =, in,

regular operators,

logical connectives.

Let's Get a Bit Formal

» Terms are term variables or compound terms:
tu=zx| f(H)|F(H).

» Hedge elements are terms or hedge variables:
hao=t|X.

» Hedges are finite sequences of hedge elements:
H:=hy,... ~hy, n > 0.

Notation:

x: term variable f: function symbol
F': function variable X: hedge variable

Let's Get a Bit Formal

» Regular hedge expressions:

R:= eps (empty hedge expression)
|R-R (concatenation)
|R+R (choice)
| R* (
(

| F(R)

repetition)

function application)

Let's Get a Bit Formal

» Regular hedge expressions:

R:= eps (empty hedge expression)
|R-R (concatenation)
|R+R (choice)
| R* (
(

| F(R)

repetition)
function application)

Example

> f((a(eps) + b(eps))*) - c(eps)* is a regular hedge expression.
» For simplicity, it is written as f((a + b)*) - ¢*.

More Notions

Primitive constraints:
» Equalities: t1 = to.
» Membership atoms: H in R.

More Notions

Primitive constraints:
» Equalities: t1 = to.
» Membership atoms: H in R.

Example

» Equational primitive constraints:

> f(X7a) :f(aaX)'
> (X, F(Y), Z) = fla,z, f(X)).

More Notions

Primitive constraints:
» Equalities: t1 = to.
» Membership atoms: H in R.

Example

» Equational primitive constraints:
> f(X,a) = f(a, X).
> (X, F(Y), Z) = fla,z, f(X)).
» Membership primitive constraints:

» (f(a,a),X,a)in f((a+b)*)-c*.
» X inb*-a.

More Notions

» Atoms: p(t1,...,t,), where p is an n-ary predicate symbol.
» Literal: An atom or a primitive constraint.

» Formulas are defined as usual.

More Notions

» Atoms: p(t1,...,t,), where p is an n-ary predicate symbol.
» Literal: An atom or a primitive constraint.
» Formulas are defined as usual.

Example

> rewrite(F(X,z,Y), F(X,y,Y)) is an atom.

More Notions

» Constraint: A formula built over true, false, and primitive
constraints.

» We work with constraints in disjunctive normal form.

More Notions

» Constraint: A formula built over true, false, and primitive
constraints.

» We work with constraints in disjunctive normal form.

» CLP program: A finite set of rules of the form
Y(Ly A+ ALy — A), written as

A(—Ll,...,Ln,

where A is an atom and the L's are literals.

» Goal: A formula of the form 3(Ly A--- A Ly), n >0,
written as

— Ly,...,Ly.

CLP(H) Programs and Goals: Examples

» Program for removing duplicate arguments from a term:

remove _duplicates(F(X,z,Y,x,Z),y) +
remove_duplicates(F (X, z,Y, Z),y).

remove_duplicates(x, x).

» Goal: Find a term, obtained by removing duplicate arguments
from f(a, g(b), g(b), a,c):

+ remove_duplicates(f(a, g(b), g(b),a,c),y).

CLP(H) Programs and Goals: Examples

> A program that implements the rewriting mechanism,
together with a rule to perform rewritings of the form

rewrite(xz,y) « rule(z,y).
rewrite(F(X,z,Y), F(X,y,Y)) < rewrite(z,y).
rule(f(X), f(b, X,b)) + X ina™.

» Goal: Find a term that rewrites to f(a, f(b, f(b,a,a,b))):

« rewrite(z, f(a, f(b, f(b,a,a,b)))).

Declarative Semantics

» A structure for our language: & := (D, I).
» D: a non-empty domain.
» [: an interpretation function, mapping
» each function symbol f to a function I(f): D* — D,
» each n-ary predicate symbol p to an n-ary relation I(p) C D™.
» A variable assignment for G: a function that maps

» term variables to elements of D,
» hedge variables to elements of D*,
» function variables to functions from D* to D.

Declarative Semantics

Interpretation of syntactic categories with respect to a structure
S = (D, I) and a variable assignment o.

» Terms are interpreted as elements of D:

[V]e.o := o(v),
[f(H)leo == I(F)([H]so),
[F(H)]eo = o(F)([H]eo)-

» Hedges are interpreted as elements of D*:

[[(Hb e 7Hn)]]6,0 = ([[HlﬂG,m ceey [[HHHG,U)7

Declarative Semantics

Interpretation of syntactic categories with respect to a structure
S = (D, I) and a variable assignment o.

» Regular expressions are interpreted as (regular) subsets of D*:
(o has no effect and is omitted.)

[eps]s = {¢},

[Ri - Re]e == {(H1, H2) | Hi € [Ri]e, H2 € [Ro]s},
[R1 4+ Ro]e := [Ri]s U [Re]s,

[R*]e := [Rl&-

[f(R)e :=={I(f)(H) | H € [R]s},

Declarative Semantics

Interpretation of syntactic categories with respect to a structure
S = (D, I) and a variable assignment o.

» Primitive equational constraints are interpreted as equality:

S):a t1 = to iff [[tl]]G,o = [[t2]]G,U~

> Primitive membership constraints are interpreted as set
membership:

& =, H inRiff [H]s, € [R]e-

» Other formulas are interpreted in the standard way.

Declarative Semantics

Intended structure: 3 = (D, I), where
» D is the set of ground terms,
» [defined for every f by I(f)(H) = f(H).

Declarative Semantics

Intended structure: 3 = (D, I), where
» D is the set of ground terms,
» [defined for every f by I(f)(H) = f(H).

Intended interpretation of a program P: a subset of the Herbrand
basis of P.

Declarative Semantics

Notation:
» G = A: G is a model of A.
» = A: Any structure is a model of A.

» P = G if G is a goal which holds in every model of the
program P.

Facts:
1. Every program P has a least intended model, denoted Im(P).
2. For every program P and goal G, P = G iff Im(P) = G.

Constraints

») stands for conjunction of primitive constraints.

» K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.

Constraints

») stands for conjunction of primitive constraints.
» K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.
» K not in the solved form, examples:
1.z = f(a,X)AN(Y,a) = (a, f(b),X)AX in f(a)*-b.

Constraints

») stands for conjunction of primitive constraints.

» K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.

» K not in the solved form, examples:
1.z = f(a,X)AN(Y,a) = (a, f(b),X)AX in f(a)*-b.
2.z = fla, X) AN (Y, a, f(b) = (a, f(0),Y) A X in f(a)"-

Constraints

») stands for conjunction of primitive constraints.
» K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.
» K not in the solved form, examples:
1.z = f(a,X)AN(Y,a) = (a, f(b),X)AX in f(a)*-b.
2. 2= fla, X)N(Y,a, f(b) = (a, f(D),Y)ANX in f(a)*-b.
3. 2= fla, X)ANX in f(a)"-bA X ina®.

Constraints

») stands for conjunction of primitive constraints.
» K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.

» K not in the solved form, examples:

1.z = f(a,X)AN(Y,a) = (a, f(b),X)AX in f(a)*-b.

2 = fla, X) A (Yoo, £(8) = (a f(B),Y) A X in f(a)? -b
3. =z = f(a,)/\Xlnf(a)* bA X ina*.

4. = f(a,Y)NY = (a, f(b),X) AN X in f(a)*-.

Constraints

») stands for conjunction of primitive constraints.
» K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.

» K not in the solved form, examples:

1.z = f(a,X)AN(Y,a) = (a, f(b),X)AX in f(a)*-b.

2 = fla, X) A (Yoo, £(8) = (a f(B),Y) A X in f(a)? -b
3. xif(a,X)/\Xln fla)*-bA X ina*.

4. = f(a,Y)NY = (a, f(b),X) AN X in f(a)*-.

5 o) 10, XA = (e f (B X0 A X i F(a)" b

Constraints

v

K stands for conjunction of primitive constraints.

v

K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.
IC not in the solved form, examples:
= fla,X)N(Y,a) = (a, f(b),X)AX in f(a)*-D.
= fla,X)N(Y,a, f(b)) = (a, f(D),Y)AX in f(a)*-b.
= fla, X)ANXin f(a)* - DA X ina*.
x=fla,Y)ANY = (a, f(b),X) A X in f(a)*-b.
5 f(z,0) = f(f(a,X),b) AY = (a, f(b),X) A X in f(a)* - .

The constraints 1-2 are in the partially solved form.

v
b .

v

v

The constraint 3-5 are not even partially solved.

Constraints

v

v

v

v

v

v

K stands for conjunction of primitive constraints.

K in the solved form, example:
» 2= fa, X)ANY = (a, f(b),X) A X in f(a)*-b.
IC not in the solved form, examples:

i e S =

5.

= fla,X)N(Y,a) = (a, f(b),X)AX in f(a)*-D.

2= f(a, X) A (V.a, f(5) = (a, £(5),Y) A X in f(a)* -b.
z=fla, X)ANX in f(a)"-bA X ina*.

x=fla,Y)ANY = (a, f(b),X) A X in f(a)*-b.

F(2,5) = F(f(a, X)) AY = (a, £(5),X) A X in f(a)* b

The constraints 1-2 are in the partially solved form.

The constraint 3-5 are not even partially solved.

Every solved constraint is partially solved, but not vice versa.

true is solved, false is not partially solved.

Constraints

Notation:

» C: A constraint in DNF IC; Vv - --

» J: An intended structure.

Theorem
If C is solved, then J |= 3C.

VEK,.

Constraint Solver

> A rule-based algorithm, denoted solve.
» Input: a constraint in DNF.

» Output: a constraint in DNF.

Properties:

Theorem
If solve(Cin) = Cout, then
> Cout is equivalent to Ci,,

> Cout is false or in partially solved form.

Constraint Solver

Example

» Input to the solver:
(X, F(Y), Z) = f(a,z, f(X)) A X ina(d”) - a(b")"
» Output:

X=aNz=FY)NZ= f(a)
VX=(a,2)ANF=fAY = (a,2) ANZ=eAzina(b*)*

» The output is in the solved form.

Constraint Solver

Example

> Input to the solver:
fg(X), f(a, X)) = f(f(Y,a), f(X,a))
> Output:
X = (Y,a) A (a,Y) = (Y, a)

» The output is in the partially solved form.

Special Fragments

» What kind of constraints are reduced by solve either to false
or to a solved form?
» We identified two such fragments:

» well-moded fragment
» KIF fragment

Well-Moded Constraints

» A conjunction of primitive constraints K =y A -+ Amy is
well-moded, if for each 1 <7 < n,

Well-Moded Constraints

» A conjunction of primitive constraints K =y A -+ Amy is
well-moded, if for each 1 <7 < n,
» if m; is t1 = to, then either all variables of ¢1 or all variables of
ty occur in T A AT_1,

Well-Moded Constraints

» A conjunction of primitive constraints K =y A -+ Amy is
well-moded, if for each 1 <7 < n,

» if m; is t1 = to, then either all variables of ¢1 or all variables of
ty occur in T A AT_1,

» if m; is H in R, then all variables of H occurin my A--- Am;_1

Well-Moded Constraints

» A conjunction of primitive constraints K =y A -+ Amy is
well-moded, if for each 1 <7 < n,

» if m; is t1 = to, then either all variables of ¢1 or all variables of
ty occur in T A AT_1,
» if m; is H in R, then all variables of H occur in my A--- Am;_1.

» A constraint C = K1V ---V K, is well-moded, if each K; is
well-moded.

Well-Moded Constraints

» A conjunction of primitive constraints K =y A -+ Amy is
well-moded, if for each 1 <7 < n,

» if m; is t1 = to, then either all variables of ¢1 or all variables of
ty occur in T A AT_1,
» if m; is H in R, then all variables of H occur in my A--- Am;_1.
» A constraint C = K1V ---V K, is well-moded, if each K; is
well-moded.
» F1(X,y,Z) = fla,b) N Fi(a,Z) = Fo(x,Y,X)AY ina" is a
well-moded constraint.

Well-Moded Constraints

v

A conjunction of primitive constraints L =71 A--- Am, is
well-moded, if for each 1 <7 < n,

» if m; is t1 = to, then either all variables of ¢1 or all variables of
ty occur in T A AT_1,

» if m; is H in R, then all variables of H occur in my A--- Am;_1.
A constraint C = K1 V- -- V K, is well-moded, if each ; is
well-moded.
F(X,y,2) = f(a,b) AN Fi(a,Z) = Fa(z,Y,X)AY ina* is a
well-moded constraint.
F(X,y,Z) = f(a, X)NFi(a,Z) = F5(z,Y,X)ANY ina* is
not a well-moded constraint.

KIF Constraints

> A constraint C = K1V ---V Ky is in KIF form, if all hedge
variables appear in the last positions.

KIF Constraints

> A constraint C = K1V ---V Ky is in KIF form, if all hedge
variables appear in the last positions.

> (z,9,Y) = (f(X),b, X) N F(a, Z) =
F(x,9(Y),g(a,b, X)) A (a,Y) in a* is a KIF constraint.

KIF Constraints

> A constraint C = K1V ---V Ky is in KIF form, if all hedge
variables appear in the last positions.

> (2,4,Y) = (f(X),0,X) AN Fla,Z) =
F(x,9(Y),g(a,b, X)) A (a,Y) in a* is a KIF constraint.

> (z,Y,y) = (f(X),0,X) AN F(a,Z) =
F(z,9(Y),g(a,b, X)) A (a,Y) in a* is not a KIF constraint.

KIF Constraints

v

A constraint C =y vV --- V IC,, is in KIF form, if all hedge
variables appear in the last positions.

(9, Y) = (f(X),b, X) N Fl(a, Z) =

F(x,9(Y),g(a,b, X)) A (a,Y) in a* is a KIF constraint.
(,Y,y) = (f(X),0,X) A F(a, Z) =

F(z,9(Y),g(a,b, X)) A (a,Y) in a* is not a KIF constraint.
(,9,Y) = (f(X),0,X) N F(a, Z) =
F(z,9(Y),g(a,b,X,c)) A(a,Y) in a* is not a KIF constraint
either.

v

v

v

Well-Moded and KIF Constraints

Lemma
Let C be a well-moded or a KIF constraint and solve(C) = C’,
where C' # false. Then C' is solved.

Relating to Programs

» Can we characterize programs that give rise well-moded or
KIF constraints during derivations?

Relating to Programs

» Can we characterize programs that give rise well-moded or
KIF constraints during derivations?

> Yes.

Relating to Programs

» Can we characterize programs that give rise well-moded or
KIF constraints during derivations?

> VYes.
» Well-moded programs, KIF programs.

Relating to Programs

» Can we characterize programs that give rise well-moded or
KIF constraints during derivations?

> VYes.
» Well-moded programs, KIF programs.

» KIF programs are easy: Just require that all occurrences of
hedge variables happen in the last argument positions in
subterms.

Relating to Programs

» Can we characterize programs that give rise well-moded or
KIF constraints during derivations?

> VYes.
» Well-moded programs, KIF programs.

» KIF programs are easy: Just require that all occurrences of
hedge variables happen in the last argument positions in
subterms.

» Well-moded programs need a bit more involved definition.

Well-Moded Program

Example (Rewriting)

rewrite(z,y) < rule(x,y).
rewrite(F(X,z,Y), F(X,y,Y)) < rewrite(z,y).

rule(f(X), f(b, X,b)) < X ina™.

Summary

» CLP(H) programs explore benefits of different kinds of
variables and unranked symbols.

» The programs are short, yet quite clear and intuitive.

» CLP(H) generalizes languages such as, e.g., CLP(Flex)
(Coelho and Florido, 2004), CLP(S) (Rajasekar, 1994),
CLP(X*) (Walinsky, 1989).

» Semantics of CLP(H) has been studied.

» A constraint solver, which computes partial solutions, has
been developed.

» Two fragments (well-moded, KIF), which can be solved
completely, have been identified.

	Introduction
	Preliminaries

