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What is CLP(H)

I CLP(H): Constraint Logic Programming over hedges.

I Hedges: finite sequences of unranked terms and hedge
variables.

I Unranked terms: function symbols have no fixed arity.
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Unranked Term: Example

f(g, f(X), g(F (a), y))
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I Different occurrences of the same function symbol may have
different number of arguments.

I Variables: X for hedges, y for terms, F for function symbols.



Hedge: Example

f(g, f(X), g(F (a), y)), X, g(y)
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I Finite sequences of unranked terms and hedge variables.



Variables

I Term variables – can be instantiated by individual terms.

I Hedge variables – can be instantiated by hedges.

I Function variables – can be instantiated by function symbols.
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CLP(H) Programs

I Three kinds of variables give flexibility of term traversal.

I It helps to write short, yet quite clear and intuitive code.

Example (Rewriting)

rewrite(x, y)← rule(x, y).

rewrite(F (X,x, Y ), F (X, y, Y ))← rewrite(x, y).

rule(x, y)← . . .

· · ·
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CLP(H) Programs

I Hedges may be constrained with regular hedge languages.

Example (Rewriting)
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rule(f(X), f(b,X, b))← X in a∗.
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In This Talk

I Semantics of CLP(H).

I How to solve constraints.

I Special fragments.



Let’s Get a Bit Formal

The alphabet contains

I term, hedge and function variables,

I unranked function symbols,

I ranked predicate symbols,

I true, false,
.
=, in,

I regular operators,

I logical connectives.



Let’s Get a Bit Formal

I Terms are term variables or compound terms:

t ::= x | f(H) | F (H).

I Hedge elements are terms or hedge variables:

h ::= t | X.

I Hedges are finite sequences of hedge elements:

H ::= h1, . . . , hn, n ≥ 0.

Notation:

x: term variable f : function symbol
F : function variable X: hedge variable



Let’s Get a Bit Formal

I Regular hedge expressions:

R ::= eps (empty hedge expression)

| R · R (concatenation)

| R + R (choice)

| R∗ (repetition)

| f(R) (function application)

Example

I f((a(eps) + b(eps))∗) · c(eps)∗ is a regular hedge expression.

I For simplicity, it is written as f((a+ b)∗) · c∗.
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More Notions

Primitive constraints:

I Equalities: t1
.
= t2.

I Membership atoms: H in R.

Example

I Equational primitive constraints:
I f(X, a) = f(a,X).
I f(X,F (Y ), Z)

.
= f(a, x, f(X)).

I Membership primitive constraints:
I (f(a, a), X, a) in f((a+ b)∗) · c∗.
I X in b∗ · a.
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More Notions

I Atoms: p(t1, . . . , tn), where p is an n-ary predicate symbol.

I Literal: An atom or a primitive constraint.

I Formulas are defined as usual.

Example

I rewrite(F (X,x, Y ), F (X, y, Y )) is an atom.
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More Notions

I Constraint: A formula built over true, false, and primitive
constraints.

I We work with constraints in disjunctive normal form.

I CLP program: A finite set of rules of the form
∀(L1 ∧ · · · ∧ Ln → A), written as

A← L1, . . . , Ln,

where A is an atom and the L’s are literals.

I Goal: A formula of the form ∃(L1 ∧ · · · ∧ Ln), n ≥ 0,
written as

← L1, . . . , Ln.
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CLP(H) Programs and Goals: Examples

I Program for removing duplicate arguments from a term:

remove duplicates(F (X,x, Y, x, Z), y)←
remove duplicates(F (X,x, Y, Z), y).

remove duplicates(x, x).

I Goal: Find a term, obtained by removing duplicate arguments
from f(a, g(b), g(b), a, c):

← remove duplicates(f(a, g(b), g(b), a, c), y).



CLP(H) Programs and Goals: Examples

I A program that implements the rewriting mechanism,
together with a rule to perform rewritings of the form
f → f(b, b), f(a)→ f(b, a, b), f(a, a)→ f(b, a, a, b), etc.

rewrite(x, y)← rule(x, y).

rewrite(F (X,x, Y ), F (X, y, Y ))← rewrite(x, y).

rule(f(X), f(b,X, b))← X in a∗.

I Goal: Find a term that rewrites to f(a, f(b, f(b, a, a, b))):

← rewrite(x, f(a, f(b, f(b, a, a, b)))).



Declarative Semantics

I A structure for our language: S := 〈D, I〉.
I D: a non-empty domain.
I I: an interpretation function, mapping

I each function symbol f to a function I(f) : D∗ → D,
I each n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

I A variable assignment for S: a function that maps
I term variables to elements of D,
I hedge variables to elements of D∗,
I function variables to functions from D∗ to D.



Declarative Semantics

Interpretation of syntactic categories with respect to a structure
S = 〈D, I〉 and a variable assignment σ.

I Terms are interpreted as elements of D:

JvKS,σ := σ(v),

Jf(H)KS,σ := I(f)(JHKS,σ),

JF (H)KS,σ := σ(F )(JHKS,σ).

I Hedges are interpreted as elements of D∗:

J(H1, . . . ,Hn)KS,σ := (JH1KS,σ, . . . , JHnKS,σ),



Declarative Semantics

Interpretation of syntactic categories with respect to a structure
S = 〈D, I〉 and a variable assignment σ.

I Regular expressions are interpreted as (regular) subsets of D∗:
(σ has no effect and is omitted.)

JepsKS := {ε},
JR1 · R2KS := {(H1, H2) | H1 ∈ JR1KS, H2 ∈ JR2KS},
JR1 + R2KS := JR1KS ∪ JR2KS,
JR∗KS := JRK∗S.
Jf(R)KS := {I(f)(H) | H ∈ JRKS},



Declarative Semantics

Interpretation of syntactic categories with respect to a structure
S = 〈D, I〉 and a variable assignment σ.

I Primitive equational constraints are interpreted as equality:

S |=σ t1
.
= t2 iff Jt1KS,σ = Jt2KS,σ.

I Primitive membership constraints are interpreted as set
membership:

S |=σ H in R iff JHKS,σ ∈ JRKS.

I Other formulas are interpreted in the standard way.



Declarative Semantics

Intended structure: I = 〈D, I〉, where

I D is the set of ground terms,

I I defined for every f by I(f)(H) = f(H).

Intended interpretation of a program P : a subset of the Herbrand
basis of P .
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Declarative Semantics

Notation:

I S |= A: S is a model of A.

I |= A: Any structure is a model of A.

I P |= G if G is a goal which holds in every model of the
program P .

Facts:

1. Every program P has a least intended model, denoted lm(P ).

2. For every program P and goal G, P |= G iff lm(P ) |= G.



Constraints

I K stands for conjunction of primitive constraints.
I K in the solved form, example:

I x
.
= f(a,X) ∧ Y .

= (a, f(b), X) ∧X in f(a)∗ · b.

I K not in the solved form, examples:

1. x
.
= f(a,X) ∧ (Y, a)

.
= (a, f(b), X) ∧X in f(a)∗ · b.

2. x
.
= f(a,X) ∧ (Y, a, f(b))

.
= (a, f(b), Y ) ∧X in f(a)∗ · b.

3. x
.
= f(a,X) ∧X in f(a)∗ · b ∧X in a∗.

4. x
.
= f(a, Y ) ∧ Y .

= (a, f(b), X) ∧X in f(a)∗ · b.
5. f(x, b)

.
= f(f(a,X), b) ∧ Y .

= (a, f(b), X) ∧X in f(a)∗ · b.

I The constraints 1–2 are in the partially solved form.

I The constraint 3–5 are not even partially solved.

I Every solved constraint is partially solved, but not vice versa.

I true is solved, false is not partially solved.
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Constraints

Notation:

I C: A constraint in DNF K1 ∨ · · · ∨ Kn.

I I: An intended structure.

Theorem
If C is solved, then I |= ∃C.



Constraint Solver

I A rule-based algorithm, denoted solve.

I Input: a constraint in DNF.

I Output: a constraint in DNF.

Properties:

Theorem
If solve(Cin) = Cout, then

I Cout is equivalent to Cin,
I Cout is false or in partially solved form.



Constraint Solver

Example

I Input to the solver:

f(X,F (Y ), Z)
.
= f(a, x, f(X)) ∧X in a(b∗) · a(b∗)∗

I Output:

X
.
= a ∧ x .

= F (Y ) ∧ Z .
= f(a)

∨ X .
= (a, x) ∧ F .

= f ∧ Y .
= (a, x) ∧ Z .

= ε ∧ x in a(b∗)∗

I The output is in the solved form.



Constraint Solver

Example

I Input to the solver:

f(g(X), f(a,X))
.
= f(f(Y, a), f(X, a))

I Output:

X
.
= (Y, a) ∧ (a, Y )

.
= (Y, a)

I The output is in the partially solved form.



Special Fragments

I What kind of constraints are reduced by solve either to false
or to a solved form?

I We identified two such fragments:
I well-moded fragment
I KIF fragment



Well-Moded Constraints

I A conjunction of primitive constraints K = π1 ∧ · · · ∧ πn is
well-moded, if for each 1 ≤ i ≤ n,

I if πi is t1
.
= t2, then either all variables of t1 or all variables of

t2 occur in π1 ∧ · · · ∧ πi−1,
I if πi is H in R, then all variables of H occur in π1 ∧ · · · ∧ πi−1.

I A constraint C = K1 ∨ · · · ∨ Kn is well-moded, if each Ki is
well-moded.

I F1(X, y, Z)
.
= f(a, b) ∧ F1(a, Z)

.
= F2(x, Y,X) ∧ Y in a∗ is a

well-moded constraint.

I F1(X, y, Z)
.
= f(a,X) ∧ F1(a, Z)

.
= F2(x, Y,X) ∧ Y in a∗ is

not a well-moded constraint.
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Well-Moded and KIF Constraints

Lemma
Let C be a well-moded or a KIF constraint and solve(C) = C′,
where C′ 6= false. Then C′ is solved.
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I Can we characterize programs that give rise well-moded or
KIF constraints during derivations?

I Yes.
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I KIF programs are easy: Just require that all occurrences of
hedge variables happen in the last argument positions in
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I Well-moded programs need a bit more involved definition.
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Well-Moded Program

Example (Rewriting)

rewrite(x, y)← rule(x, y).

rewrite(F (X,x, Y ), F (X, y, Y ))← rewrite(x, y).

rule(f(X), f(b,X, b))← X in a∗.



Summary

I CLP(H) programs explore benefits of different kinds of
variables and unranked symbols.

I The programs are short, yet quite clear and intuitive.

I CLP(H) generalizes languages such as, e.g., CLP(Flex)
(Coelho and Florido, 2004), CLP(S) (Rajasekar, 1994),
CLP(Σ∗) (Walinsky, 1989).

I Semantics of CLP(H) has been studied.

I A constraint solver, which computes partial solutions, has
been developed.

I Two fragments (well-moded, KIF), which can be solved
completely, have been identified.
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