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Our goal

We have:

data A = ...

predicate ::A→ Bool

A desired size (number of construcors used)

We want to:

Randomly generate values that satisfy predicate

With uniform probability distribution
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Examples

Examples:

ordered :: [ Int ]→ Bool
To generate ordered lists

(typeCheck TInt) ::Exp→ Bool
To generate expressions of type Int



Application: Property Based Testing

insert :: Int→ [ Int ]→ [ Int ]

ordered :: [ Int ]→ Bool

prop ins :: Int→ [ Int ]→ Bool
prop ins x xs = ordered xs =⇒ ordered (insert x xs)

*Main> quickCheck prop_ins

+++ OK, passed 100 tests.

Most tests pass without executing tested code

Solution: generate only ordered lists



Hand written data generators are ...
... complicated to write

A generator for ordered lists is more complex than the
insert function it tests
Expensive
Generators may contain errors

... not compositional

ordered ,nonempty ::Gen [ Int ]
orderedNonempty ::Gen [ Int ]
orderedNonempty = ? -- We start from scratch here
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Random distribution

ordered ::Gen [ Int ]

What is the probability of generating [1,2,3]?

Do all ordered lists have a positive probability?

What about a more complicated generator, like type
correct lambda terms?



Our Method

Start with a finite set of values and a predicate p

Choose a value x uniformly at random

If p x ⇒ True, we are done

Else, exclude x from the set and any similar values
‘Similar’ means p does not distinguish between them

x and y are similar if there exists a partial value z s.t.

p z ⇒ False
z v x -- (”z is x with some parts undefined”)
z v y
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Example: Sorted lists

Predicate: ordered :: [ Int ]→ Bool

Start with all lists of a given size

Random list: [2,1,3,3] falsifies predicate

Exclude all lists starting with 2,1
because ordered (2 : 1 :⊥)⇒ False



Example

Generating typed lambda terms

data E v = Lam (E (Maybe v))
| App (E v) (E v)
| Var v



Example

data Void -- The empty type
type Closed = E Void

data Type = Int | Type 7→ Type | ...
typeCheck ::Type→ Closed → Bool

p ::Closed → Bool
p = typeCheck (Int 7→ Int)



Generic datatype representation

T = 1 | T ⊕T | T ⊗T | Con T

data E v = Lam (E (Maybe v))
| App (E v) (E v)
| Var v

Ev = Lam Ev⊕1⊕App (Ev ⊗Ev )⊕Var v
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Cardinalities

|T |k is the number of values in T with k constructors

|1|0 = 1
|1|k+1 = 0

|A⊕B |k=|A|k + |B |k

|A⊗B |k= ∑
a+b=k

|A|a ∗ |B |b

|〈Con 〉A|0 = 0
|〈Con 〉A|k+1 =|A|k

|Ev |0 = 0
|Ev |k+1 =|Ev⊕1|k + |Ev ⊗Ev |k + |v |k
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Generating Expressions of type Int→ Int and size 8

|E0|8= 506 (Only some of which are Int→ Int)



⊥ :E0

Start with ⊥, note that p ⊥⇒⊥
Probability P(Lam) of starting with a lambda =
#values with head lambda / total #values

|Lam E1|8= 464, P(Lam) = 0.92

|App (E0⊗E0)|8= 42, P(App) = 0.08

|Var 0|8= 0, P(Var) = 0
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Lam

⊥ :E1

P(Lam) = 0.7

P(App) = 0.3

P(Var) = 0



Lam

Lam

⊥ :E2

Predicate fails (p (Lam (Lam ⊥))⇒ False)

Backtracking points:
App (E0⊗E0)
Lam (App (E1⊗E1))



⊥ :E ′

New set: E ′ = App (E0⊗E0)⊕Lam (App (E1⊗E1))

|E ′|8= 182

New probabilities

|App (E0⊗E0)|8= 42, P(App) = 0.23

|Lam (App (E1⊗E1))|8= 140, P(Lam/App) = 0.77



App

⊥2 :E0⊥1 :E0

Should ⊥1 or ⊥2 be expanded next?

App

⊥2 :E0Lam

⊥1 :E1

|E1⊗E0|6= 41,
P(Lam) = 0.98

App

⊥3 :E0App

⊥2 :E0⊥1 :E0

|(E0⊗E0)⊗E0|6= 1,
P(App) = 0.02
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App

⊥3 :E0App

⊥2 :E0⊥1 :E0

Expanding ⊥1

|Lam E1⊗ (E0⊗E0)|6= 1, P(Lam) = 1

|App (E0⊗E0)⊗ (E0⊗E0)|6= 0, P(App) = 0



App

⊥3 :E0App

⊥2 :E0Lam

⊥1 :E1

Expanding ⊥1

|Var 1⊗ (E1⊗E1)|3=|1⊗E1⊗E1|2= 1, P(Var 0) = 1



App

Lam

Var 0

App

Lam

Var 0

Lam

Var 0

((λx → x) (λx → x)) (λx → x)



Limitations

Relies on predicates being lazy (in the negative case)

Memory usage is often an issue



What else is in the paper?

Some evidence that this is practically useful:
Generating Lamda terms rediscovered bugs in GHC

Memory and speed benchmarks

Modified algorithms that improve performance at the
expense of introducing a (predictable) bias


