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We have:
o data A= ...
@ predicate:: A — Bool

@ A desired size (number of construcors used)
We want to:

@ Randomly generate values that satisfy predicate
@ With uniform probability distribution



Examples:
@ ordered ::[Int] — Bool
To generate ordered lists

o (typeCheck Tint):: Exp — Bool
To generate expressions of type Int



Application: Property Based Testing

insert :: Int — [Int] — [Int]
ordered :: [Int] — Bool

prop_ins :: Int — [Int] — Bool
prop_ins x xs = ordered xs = ordered (insert x xs)

*Main> quickCheck prop_ins
+++ 0K, passed 100 tests.

@ Most tests pass without executing tested code
@ Solution: generate only ordered lists



Hand written data generators are ...
@ ... complicated to write

@ A generator for ordered lists is more complex than the
insert function it tests
e Expensive

e Generators may contain errors



Hand written data generators are ...
@ ... complicated to write

@ A generator for ordered lists is more complex than the
insert function it tests

e Expensive

e Generators may contain errors

@ ... not compositional

ordered, nonempty :: Gen [ Int]
orderedNonempty :: Gen [Int]
orderedNonempty =7 -- We start from scratch here



Random distribution

ordered :: Gen [ Int]

@ What is the probability of generating [1,2,3]7
@ Do all ordered lists have a positive probability?

@ What about a more complicated generator, like type
correct lambda terms?



Our Method

@ Start with a finite set of values and a predicate p
@ Choose a value x uniformly at random
e If px= True, we are done

o Else, exclude x from the set and any similar values
‘Similar’ means p does not distinguish between them



Our Method

Start with a finite set of values and a predicate p
Choose a value x uniformly at random

If p x = True, we are done

Else, exclude x from the set and any similar values
‘Similar’ means p does not distinguish between them
x and y are similar if there exists a partial value z s.t.

p z = False
zC x - ("zis x with some parts undefined”)
zLy



Example: Sorted lists

@ Predicate: ordered ::[Int] — Bool

e Start with all lists of a given size

@ Random list: [2,1,3,3] falsifies predicate
°

Exclude all lists starting with 2,1
because ordered (2:1: 1) = False



Generating typed lambda terms

data E v = Lam (E (Maybe v))

| App (E v) (E v)
| Var v



data Void -- The empty type
type Closed = E Void

data Type = Int | Type — Type | ...
typeCheck :: Type — Closed — Bool

p:: Closed — Bool
p = typeCheck (Int — Int)



Generic datatype representation

T=1|TeT|T®T|ConT



Generic datatype representation

T=1|TeT|T®T|ConT

data E v = Lam (E (Maybe v))

| App (E v) (E v)
| Var v

E,=LamE, 5 ® App (E,® E,)® Var v



Cardinalities
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o =1
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Cardinalities

| T | is the number of values in T with k constructors
o =1
[Hk+1 =0

|AD B|i=|Alk + [Blk

AR Blk= Y |Ala*|Blp
a+b=k

|(Con)Alp =0

|(Con) Alk+1 =|Alk

Eslo =0

|Evlk+1 =|Evailk + |Ev® Evlk + |v]k



@ Generating Expressions of type Int — Int and size 8
@ |Eylg= 506 (Only some of which are Int — Int)
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@ Start with L, note that p L = L

@ Probability P(Lam) of starting with a lambda =
#values with head lambda / total #values



J_ZE()

@ Start with L, note that p L = L

@ Probability P(Lam) of starting with a lambda =
#values with head lambda / total #values

@ |Lam Ej|g=464, P(Lam)=0.92
o |App (Eo® Eo)|s=42, P(App) = 0.08
@ |Var0|g=0, P(Var) =0



J_ZEl

e P(Lam)=0.7
e P(App) =0.3
e P(Var)=0



J_ZE2

@ Predicate fails (p (Lam (Lam 1)) = False)
@ Backtracking points:

App (Ey® Ey)

Lam (App (E1 ® Ey))



1:E

o New set: E/ = App (Ey® Ep) & Lam (App (E, ® Ey))
= 182

@ New probabilities

o |App (Eo® Eo)|s=42, P(App) =0.23

o |Lam (App (E; ® Ey))|s= 140, P(Lam/App) = 0.77



J_l . Eo J_Q . E()
Should L1 or 1Ly be expanded next?




J_l . EO J_Q . E()
Should L1 or 1Ly be expanded next?

p(App L1 Lo)= 1
So 7 is expanded first
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J_l . Eo J_Q . E()
What is the probability of a lambda in 17
Ey® Ey

= (definition of Ey)
(Lam Ey @ App (Eg® Ey)) ® Ey




11:Ey| Lo:Ey
What is the probability of a lambda in 17
Ey® Ey
= (definition of Ey)
(Lam E; & App (Eg® Ey)) ©@ E
= (distributivity)

(Lam E; ® Ey) & (App (Eo® Ey) @ Ep)
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J_QZE()

|E1 @ Eple=41,
P(Lam) =0.98




_]_1:E()

J_QZE()

J_1:E1

|E1 @ Eple=41,
P(Lam) =0.98

_]_3ZEO

J_liE()

J_QZE()

[(Eo® Eop) ® Egle= 1,
P(App) = 0.02




Ol

J_liE() J_QZE()

e Expanding 11
o |Lam Ey ® (Ey® Ep)|e=1, P(Lam) =1
o |App (Ey® Ey) ® (Eg® Ep)|6=0, P(App) =0



J_12E1

@ Expanding 11
o \Var1®(E1®E1)|3:\1®E1®E1\2: I, P(Var O): 1



(Ax = x) (Ax = x)) (Ax = x)



@ Relies on predicates being lazy (in the negative case)
@ Memory usage is often an issue



What else is in the paper?

@ Some evidence that this is practically useful:
Generating Lamda terms rediscovered bugs in GHC

@ Memory and speed benchmarks

@ Modified algorithms that improve performance at the
expense of introducing a (predictable) bias



