Generating Constrained Random Data with Uniform Distribution

Koen Claessen Jonas Duregård

Michał Pałka

Chalmers University of Technology

We have:

- **data** *A* = ...
- predicate :: $A \rightarrow Bool$
- A desired size (number of construcors used)

We want to:

• Randomly generate values that satisfy *predicate*

We have:

- **data** *A* = ...
- predicate :: $A \rightarrow Bool$
- A desired size (number of construcors used)

We want to:

- Randomly generate values that satisfy *predicate*
- With uniform probability distribution

Examples:

- ordered :: [Int] → Bool
 To generate ordered lists
- (typeCheck TInt):: Exp → Bool
 To generate expressions of type Int

Application: Property Based Testing

insert :: $Int \rightarrow [Int] \rightarrow [Int]$ *ordered* :: $[Int] \rightarrow Bool$ *prop_ins* :: $Int \rightarrow [Int] \rightarrow Bool$ *prop_ins* x xs = *ordered* xs \implies *ordered* (*insert* x xs)

*Main> quickCheck prop_ins
+++ OK, passed 100 tests.

- Most tests pass without executing tested code
- Solution: generate only ordered lists

Hand written data generators are ...

- ... complicated to write
 - A generator for ordered lists is more complex than the *insert* function it tests
 - Expensive
 - Generators may contain errors

Hand written data generators are ...

- ... complicated to write
 - A generator for ordered lists is more complex than the *insert* function it tests
 - Expensive
 - Generators may contain errors
- ... not compositional

ordered, nonempty :: Gen [Int]
orderedNonempty :: Gen [Int]
orderedNonempty = ? -- We start from scratch here

```
ordered :: Gen [Int]
```

- What is the probability of generating [1,2,3]?
- Do all ordered lists have a positive probability?
- What about a more complicated generator, like type correct lambda terms?

Our Method

- Start with a finite set of values and a predicate p
- Choose a value x uniformly at random
- If $p x \Rightarrow True$, we are done
- Else, exclude x from the set and any *similar* values 'Similar' means p does not distinguish between them

Our Method

- Start with a finite set of values and a predicate p
- Choose a value x uniformly at random
- If $p x \Rightarrow True$, we are done
- Else, exclude x from the set and any *similar* values 'Similar' means p does not distinguish between them
- x and y are similar if there exists a partial value z s.t.

$$p z \Rightarrow False$$

$$z \sqsubseteq x \quad -- ("z is x with some parts undefined")$$

$$z \sqsubseteq y$$

- Predicate: $ordered :: [Int] \rightarrow Bool$
- Start with all lists of a given size
- Random list: [2,1,3,3] falsifies predicate
- Exclude all lists starting with 2,1 because ordered (2:1:⊥) ⇒ False

Generating typed lambda terms

data
$$E v = Lam (E (Maybe v))$$

| $App (E v) (E v)$
| $Var v$

data Void -- The empty type **type** Closed = E Void **data** Type = Int | Type \mapsto Type | ... typeCheck :: Type \rightarrow Closed \rightarrow Bool

$$\mathit{p}:: \mathit{Closed}
ightarrow \mathit{Bool} \ \mathit{p} = \mathit{typeCheck} \ (\mathit{Int} \mapsto \mathit{Int})$$

Generic datatype representation

$T = 1 \mid T \oplus T \mid T \otimes T \mid Con T$

Generic datatype representation

$T = 1 \mid T \oplus T \mid T \otimes T \mid Con T$

data E v = Lam (E (Maybe v))| App (E v) (E v)| Var v

 $E_v = Lam \ E_{v \oplus 1} \oplus App \ (E_v \otimes E_v) \oplus Var \ v$

 $|T|_k$ is the number of values in T with k constructors

 $|1|_0 = 1$ $|1|_{k+1} = 0$

 $|T|_k$ is the number of values in T with k constructors

$$|1|_0 = 1 |1|_{k+1} = 0$$

 $|A \oplus B|_k = |A|_k + |B|_k$

 $|T|_k$ is the number of values in T with k constructors $|1|_0 = 1$ $|1|_{k+1} = 0$ $|A \oplus B|_k = |A|_k + |B|_k$

$$|A \otimes B|_k = \sum_{a+b=k} |A|_a * |B|_b$$

 $|T|_k$ is the number of values in T with k constructors $|1|_0 = 1$ $|1|_{k+1} = 0$ $|A \oplus B|_k = |A|_k + |B|_k$ $|A \otimes B|_k = \sum_{a+b=k} |A|_a * |B|_b$

 $\begin{aligned} |\langle \textit{Con} \rangle A|_0 &= 0 \\ |\langle \textit{Con} \rangle A|_{k+1} &= |A|_k \end{aligned}$

 $|T|_k$ is the number of values in T with k constructors $|1|_0 = 1$ $|1|_{k+1} = 0$ $|A \oplus B|_k = |A|_k + |B|_k$ $|A \otimes B|_k = \sum_{a+b=k} |A|_a * |B|_b$ $|\langle Con \rangle A|_0 = 0$ $|\langle Con \rangle A|_{k+1} = |A|_k$ $|E_{v}|_{0} = 0$ $|E_{v}|_{k+1} = |E_{v\oplus 1}|_{k} + |E_{v} \otimes E_{v}|_{k} + |v|_{k}$

Generating Expressions of type Int → Int and size 8
|E₀|₈= 506 (Only some of which are Int → Int)

$$\perp: E_0$$

- Start with \bot , note that $p \bot \Rightarrow \bot$
- Probability P(Lam) of starting with a lambda = #values with head lambda / total #values

$$\perp$$
: E_0

- Start with \bot , note that $p \bot \Rightarrow \bot$
- Probability P(Lam) of starting with a lambda = #values with head lambda / total #values
- $|Lam E_1|_8 = 464, P(Lam) = 0.92$
- $|App(E_0 \otimes E_0)|_8 = 42, P(App) = 0.08$

•
$$|Var 0|_8 = 0, P(Var) = 0$$

- P(Lam) = 0.7
- *P*(*App*) = 0.3
- P(Var) = 0

- Predicate fails $(p(Lam(Lam \perp)) \Rightarrow False)$
- Backtracking points: $App (E_0 \otimes E_0)$ $Lam (App (E_1 \otimes E_1))$

$$\bot: E'$$

- New set: E' = App (E₀ ⊗ E₀) ⊕ Lam (App (E₁ ⊗ E₁))
 |E'|₈=182
- New probabilities
- $|App(E_0 \otimes E_0)|_8 = 42, P(App) = 0.23$
- $|Lam(App(E_1 \otimes E_1))|_8 = 140, P(Lam/App) = 0.77$

Should \perp_1 or \perp_2 be expanded next?

Should \perp_1 or \perp_2 be expanded next? $p(App \perp_1 \perp_2) \Rightarrow \perp_1$ So \perp_1 is expanded first

What is the probability of a lambda in \perp_1 ?

What is the probability of a lambda in \perp_1 ? $E_0 \otimes E_0$ = (definition of E_0) (Lam $E_1 \oplus App (E_0 \otimes E_0)$) $\otimes E_0$

What is the probability of a lambda in \perp_1 ? $E_0 \otimes E_0$ = (definition of E_0) (Lam $E_1 \oplus App (E_0 \otimes E_0)$) $\otimes E_0$ = (distributivity) (Lam $E_1 \otimes E_0$) $\oplus (App (E_0 \otimes E_0) \otimes E_0)$

- Expanding \perp_1
- $|Lam E_1 \otimes (E_0 \otimes E_0)|_6 = 1$, P(Lam) = 1
- $|App(E_0 \otimes E_0) \otimes (E_0 \otimes E_0)|_6 = 0, P(App) = 0$

- Expanding \perp_1
- $|Var \ 1 \otimes (E_1 \otimes E_1)|_3 = |1 \otimes E_1 \otimes E_1|_2 = 1$, $P(Var \ 0) = 1$

- Relies on predicates being lazy (in the negative case)
- Memory usage is often an issue

What else is in the paper?

- Some evidence that this is practically useful: Generating Lamda terms rediscovered bugs in GHC
- Memory and speed benchmarks
- Modified algorithms that improve performance at the expense of introducing a (predictable) bias