
On Cross-Stage Persistence in
Multi-Stage Programming

Yuichiro Hanada and Atsushi Igarashi

Graduate School of Informatics,
Kyoto University

June 4, 2014

1 / 26

What is Multi-stage Programming (MSP)?

A programming paradigm in which we can
generate and run code fragments at runtime.

Applications
• DSLs [Taha ’04]
• Specilizing dynamic programming algorithms

2 / 26

Program Residualization

Generated code fragments can be executed
• by the very program that has generated it
• by another program

Program residualization : Serializing code
fragments in order to execute it later

3 / 26

Styles of Multi-stage Programming

How is code represented?

• Strings
• ’eval’ function in scripting languages

• ASTs
• Lisp with macros

• ASTs + code types
• Scala with Lightweight Modular Staging

library
• MetaOCaml [Calcagno et al. ’03]

4 / 26

An example program of MetaOCaml

let a = ⟨1 + 2⟩ (* Bracket *)

val a : int code = ⟨1 + 2⟩
let b = ⟨˜a ∗ 2⟩ (* Escape *)

val b : int code = ⟨(1 + 2) ∗ 2⟩
run b (* Run *)

− : int 6

5 / 26

Cross-Stage Persistence (CSP)

Refererence to a variable defined outside of
brackets

let a = ⟨(% sqrt) (2 + 2)⟩
run a

−→ 2

6 / 26

Residualization with CSP

let h = open in “a.txt”
let c = ⟨(% input line) (% h)⟩
run c
(* returns first line of “a.txt” *)
run c
(* returns the next line *)
print code c (* ??? *)

Writing the “print code” function is not always
feasible.

7 / 26

Our Goal

Rejecting unsafe residualization statically !

⟨1 + 2⟩ (* Residualizable *)

let h = open in “a.txt” in
⟨%(input line) % h⟩ (* Not Residualizable *)

8 / 26

Why is writing “print code” difficult?

• All values can be embedded by CSP
• Syntactic representations needed to

residualize the code
• Integers→ OK
• Functions→ not always feasible
• File handlers→ impossible

We need syntactic representations of all values to
mix residualization and CSP!

9 / 26

Our approach : λ▷%

An extension of λ▷ [Tsukada&Igarashi ’09]

• All core features of MetaOCaml
• Type safety

• for programs written by programmers
• for programs generated at run time

• Type-safe residualization
Ideas : Introducing residualizable code types
• Distinction between two kinds of code types

• One is residualizable
• Another can be used with CSP

10 / 26

An example program of λ▷%

λ▷% MetaOCaml

let a = ▶α(1 + 2) let a = ⟨1 + 2⟩
−→∗ ▶α(1 + 2)

let b = ▶α(◀α a ∗ 2) let b = ⟨˜a ∗ 2⟩
−→∗ ▶α((1 + 2) ∗ 2)

11 / 26

An example program of λ▷%

λ▷% MetaOCaml

let a = Λβ.(▶β(1 + 2)) let a = ⟨1 + 2⟩
−→∗ Λβ.(▶β(1 + 2))

let b = Λα.▶α(◀α(a α) ∗ 2) let b = ⟨˜a ∗ 2⟩
−→∗ Λα.▶α(◀α ▶α(1 + 2) ∗ 2)

−→∗ Λα.▶α((1 + 2) ∗ 2)

b ε (* ε : empty sequence *) .! b

−→∗ (▶α((1 + 2) ∗ 2))[α := ε]

−→∗ (1 + 2) ∗ 2 −→∗ 6

12 / 26

An example program of λ▷% with CSP

let f = λx : int.x ∗ 2 in

▶α(%α(f 1) + (%α f) 1)

−→∗s ▶α(%α(1 ∗ 2) + (%α(λx : int.x ∗ 2)) 1)

−→∗s ▶α(%α 2 +%α(λx : int.x ∗ 2) 1)

The former application is evaluated but the latter is
not.

13 / 26

An example program of λ▷% with CSP

let f = λx : int.x ∗ 2 in

(Λα.▶α((%α f) 1)) ε

−→∗ (Λα.▶α((%α(λx : int.x ∗ 2)) 1)) ε

−→∗ (λx : int.x ∗ 2) 1

−→∗ 2

The substitution removes the “%α”.

14 / 26

Syntax of λ▷%

Transition Variable (TV) ::= α, β, γ · · ·
• Level of nested brackets
• c.f. Environment classifiers [Taha&Nielsen ’03]

Terms

M ::= x | λx : τ.M | M1 M2 | ▶αM | ◀αM
| Λα.M | M A (A = a sequence of TV) | %αM

15 / 26

Syntax of λ▷% (2)

Terms

M ::= x | λx : τ.M | M1 M2 | ▶αM | ◀αM
| Λα.M | M A (A = a sequence of TV) | %αM

• Λα.M = a binder of TV
• M A = an application to a sequence of TVs
• ε ∈ TV∗ = a special symbol for empty

sequence

(Λα.▶αM) (βγ) −→ ▶βγM
(Λα.▶αM) (ε) −→ M

16 / 26

Full reduction and staged reduction

• Full reduction
• Substitution-based
• Only 3 rules

• (λx : τ.M) N −→ M[x := N]
• (Λα.M) A −→ M[α := A]
• ◀α ▶αM −→ M

• Staged reduction (call-by-value, deterministic)

• Evaluation contexts

17 / 26

Type system of λ▷%

Types

τ ::= b | τ→ τ | ▷α τ | ∀α.τ | ∀εα.τ

• ▷ατ : a type of code of type τ
• ∀α.τ,∀εα.τ : types for Λα.M

• ∀α : ▶αM is residualizable
• ∀εα : ▶αM is not residualizable

• ▶α(· · ·%αM · · ·) is OK

18 / 26

Type system of λ▷% (2)

Type judgment

Γ;∆ ⊢A M : τ

• ∆ : a set of classifiers introduced by ∀εα
• A : current stage (a sequence of classifiers)

⊢A Λα.▶α(1 + 2) : ∀α. ▷α int
⊢A (Λα.▶α(1 + 2)) ε : int
⊬A ▶α((%α 1) + 2) : ▷αint
∅; {α} ⊢A ▶α((%α 1) + 2) : ▷αint

19 / 26

Typing rules of λ▷%

Γ;∆ ⊢Aα M : τ

Γ;∆ ⊢A ▶αM : ▷ατ
(▶)

Γ;∆ ⊢A M : ▷ατ
Γ;∆ ⊢Aα ◀αM : τ

(◀)

Γ;∆ ⊢A M : τ α ∈ ∆
Γ;∆ ⊢Aα %αM : τ

(%)

20 / 26

Typing rules of λ▷% (2)

Γ;∆ ⊢A M : τ α < FTV(Γ) ∪ FTV(A) ∪∆

Γ;∆ ⊢A Λα.M : ∀α.τ (Gen)

Γ;∆ ⊢A M : ∀α.τ
Γ;∆ ⊢A M B : τ[α := B]

(Ins)

Γ; ∆ ∪ {α} ⊢A M : τ
α < FTV(Γ) ∪ FTV(A) ∪∆

Γ;∆ ⊢A Λα.M : ∀εα.τ (GenE)

Γ; ∆ ⊢A M : ∀εα.τ β ∈ ∆ whenever β ∈ B
Γ; ∆ ⊢A M B : τ[α := B]

(InsE)

21 / 26

Type-safe residualization

Theorem : Type-safe residualization

If ⊢ε M : ▷ατ is derivable then
• M −→∗s ▶α vα for some vα

• vα : a value at stage α
• ⊢ε vα : τ is derivable.

Well-typed programs of code types yield
residualizable programs

22 / 26

Other properties of λ▷%

• Staged reduction ⊂ Full reduction
• Subject Reduction
• Strong Normalization
• Confluence
• Progress

• under staged reduction

23 / 26

Related Work

• λBN [Benaissa et al. ’99]

• Explict CSP operator “up”
• for any kinds of values
• as if any value has its syntactic

representation
• λα [Taha&Nielsen ’03]

• Environment classifiers
• No distiction between residualizable and

nonresidualizable code

24 / 26

Conclusion

New typed multi-stage calculus λ▷%

• All core features of MetaOCaml
• Full reduction and staged reduction
• Distinction between residualizable code types

and non-residualizable code types
• Type-safe residualization
• (Subtyping for two kinds of code types)

25 / 26

CSP vs. Lifting

• Cross-Stage Persistence
• Just a syntactic marker waiting for run to

dissolve the surrounding brackets
• Lifting (in Partial Evaluation)

• Convering a value into its syntactic
representation

26 / 26

	Introduction

