Type-Based Amortized Resource Analysis with
Integers and Arrays

Jan Hoffmann and Zhong Shao, Yale University




Performance

Bugs are Common and

—Xpensive




Performance Bugs are Common and Expensive

HealthCare.gov Get Insurance Login

Individuals & Families Small Businesses All Topics v Search SEARCH

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

Please include the reference ID below if you wish to contact us at 1-800-318-2596

Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%
Reference ID: 0.cdc7¢117.1380633115.2739dce8

HealthCare.gov debacle has
been mainly caused by
performance issues.



Performance Bugs are Common and Expensive

HealthCare.gov Get Insurance Login

Individuals & Families Small Businesses v  EECUEEEEE  SEARCH

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

Please include the reference ID below if you wish to contact us at 1-800-318-2596

Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%
Reference ID: 0.cdc7¢117.1380633115.2739dce8

HealthCare.gov debacle has
been mainly caused by
performance issues.

ICE 3 Velaro D delivery delayed
by one year because of software
performance issues in 2013.



Fatalities Because of Stack Overflow?



Fatalities Because of Stack Overflow?

EDN About Us + Subscribe to Newsletters

N E 1T w o =« DESIGN CENTERS - TOOLS & LEARNING - COMMUNITY - ED

Home > Automotive Design Center > How To Article

Toyota’s killer firmware: Bad design and
its consequences

Michael Dunn -October 28,2013
109 Comments

[ share| 277 341 932 wiweet (724| [y {e] | My b=

On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended
acceleration that lead to the death of one the occupants. Central to the trial was the Engine
Control Module's (ECM) firmware.

Stack overflow. Toyota claimed only 41% of the allocated stack space was being used. Barr's
investigation showed that 94% was closer to the truth. On top of that, stack-killing, MISRA-C rule-
violating recursion was found in the code, and the CPU doesn't incorporate memory protection to
guard against stack overflow.

Although Toyota had performed a stack analysis, Barr concluded the automaker had completely
botched it. Toyota missed some of the calls made via pointer, missed stack usage by library and
assembly functions (about 350 in total),and missed RTOS use during task switching. They also
failed to perform run-time stack monitoring.
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Stack overflow. Toyota claimed only 41% of the allocated stack space was being used. Barr's

investigation showed that 94% was closer to the truth. On top of that, stack-killing, MISRA-C rule-

violating recursion was found in the code, and the CPU doesn't incorporate memory protection to
guard against stack overflow.

Although Toyota had performed a stack analysis, Barr concluded the automaker had completely
botched it. Toyota missed some of the calls made via pointer, missed stack usage by library and
assembly functions (about 350 in total),and missed RTOS use during task switching. They also
failed to perform run-time stack monitoring.

Expert withess found:
“Toyota’s electronic
throttle control system
(ETCS) source code is of
unreasonable quality.”

Stack overflow was
possible because stack-
bound analysis was
faulty.



Power Consumption is Increasingly Important

One of the major cost factors Determines battery life in mobile
In data centers. devices and robots.
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Our Approach: Type-Based Resource Analysis

- Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

2. Define a type system so that type derivations establish resource bounds

3. Prove the soundness of the types system with respect to the semantics
Undecidable!

4. Develop an efficient inference algorithm for the type system

5. Show the practicality of the system with an implementation and
experiments



Polynomial Amortized Resource Analysis

- Automatic type-based analysis: No annotations required

- Naturally compositional: function types are resource specifications

- Generic in the resource: heap space, clock cycles, energy usage ...

- Precise bounds expressed by multivariate resource polynomials

- Efficient type inference based on linear programming
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Can we transfer the ideas of automatic
amortized analysis to C-like programs”?



Why Automatic Amortized Analysis for C Code”

» Today’s embedded and real-time systems are written in C code

» There are many great techniques for deriving resource bounds on
imperative code [Gulwani et al., Albert et al., Brockschmidt et al.]

But: current techniques are not compositional

Why looking a functional programs in the first place?

» Might be used more often in the future

» Clean setting to study and understand the problem (compare: type
systems, type inference, higher-order functions, ...)



Promising First Results: Stack Bounds

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs

» Uses CompCert and a program logic that
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Promising First Results: Stack

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs S & LEA

» Uses CompCert and a program logic that
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Functional Imperative
Data structures Inductive data types Arrays
lteration Recursion Loops
Control Flow Pattern matching Integers
Cost depends on Sizes of ind. data structures Sizes of integer intervals |[n,m]|
Size changes in Pattern matching, constructors Arithmetic operations

1. Track size changes in arithmetic operations Today.

2. Apply the analysis to C programs and track sizes

of intervals Upcoming paper.
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The General [dea of Amortized Analysis

 Assign potential functions to data structures

( d(state) > 0 )

= States are mapped to non-negative numbers

» Potential pays the resource consumption and @)(before) > ®(after) + cost)
the potential at the following program point

W telescoping ¥
+ Initial potential is an upper bound (Cb(initia/ state) > ) COSO
Type Systems for automatic analysis Potential is given by

type context.
 Fix a format of potential functions

 Develop type rules that manipulate potential functions
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Programs with Unsigned Integers (nat)

Non-negative
rational numbers

Data types: (nat * nat, (q(i,j))i,jEN)

Potential functions: ®((n, m), (q(i.j)) Z q(”)< >< )
IjeN

Function types: (A, Q) — (B, Q")

Polynomial input Polynomial
potential output potential
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add : (nat,nat) -> nat mult: (nat,nat) -> nat
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where G(0,0) = 3 p; = 10 |
g(1,0) = 12 p; = 0 otherwise
d1,1) = 18 |
qi.j) = 0 otherwise Output potential is

consumed later.



Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0
| n+l -> 1+a | n+l -> add(m,mult(n,m));
®((n, m), (qij)) =

Number of evalua $~ ¢ (”) (m> he worst case: 8nm + 12n+ 3
A AV AN
I,JEN

Possible typing of mult: (nat * nat, (q(;,j))i,jeN) — (nat, (pi)ien)

where g9y =3 10nm = p = 10 |
g(1,0) = 12 10(mult(n,m)) p; = 0 otherwise
d1,1) = 18 |
qi.j) = 0 otherwise Output potential is

consumed later.
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Code transformation to recursive function?
- Need to prove soundness (semantic and resource usage equivalence)
* |Inefficient: a large constraint set is generated for each multiplication

Better approach: directly describe how to pass potential to the result

d((n, m), Q) > ®(n-m, Q") + cost(mult)



How to Deal with Multiplications x*y 7

Code transformation to recursive function?
- Need to prove soundness (semantic and resource usage equivalence)
* |Inefficient: a large constraint set is generated for each multiplication

Better approach: directly describe how to pass potential to the result
d((n, m), Q) > ®(n-m, Q") + cost(mult)

Can we express this inequality with
a succinct constraint system?



New [ype Rule for Multiplication
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New [ype Rule for Multiplication

Constant cost of
multiplication.

Q o ( )_l_ Mmult
x1:nat, ro:mat; Q) |—AL r1*T2 : (nat, Q' )

(T:MuLt)

' (Q) — (qzz‘,j))(i,j)EI(nat*nat) if qij,j) — ZA(Zaja k) dk
k

nm o ny(m
Riordan and Stein < L ) B ZA(Z’]’ k) (z) (])
i7j

(1972)

46,0 = S0 (1 () () = S 58000 50,5 stk )

r,s



Smaller Constraints Sets Enable Scaling

[
(\®)

[
U

= New rule

= Recursive

Maximal degree
[E—
_— N W Bk UL N 0 O O

10! 102 10° 10* 107 10° 107

ek
-
)

Number of constraints generated for one multiplication



Other Arithmetic Operations

Treatment of other arithmetic operations is described in the paper

- Operations handled: subst, add, div, mod, mult

- Similar to multiplication

Also in the paper: arrays

- Arrays are treated as non-negative numbers: Array.length() returns a
natural number that can be used for iteration

 Potential of data that is stored inside arrays is not tracked



ow does it scale?”



Dyadic Product of two Arrays

dyad : (Arr(int),nat,Arr(int),nat) -> Arr(Arr(int))

dyad (a,n,b,m) =
let outerArr = A.make(n,A.make(@,+0)) 1n
let _ = f1ll(Ca,n,b,m,outerArr) in outerArr;




Dyadic Product of two Arrays

dyad : (Arr(int),nat,Arr(int),nat) -> Arr(Arr(int))

dyad (a,n,b,m) =
let outerArr = A.make(n,A.make(@,+0)) 1n
let _ = f1ll(Ca,n,b,m,outerArr) in outerArr;

Computed evaluation-step bound:

20nm + 31Tn + 18
where
n is the value of the second component of the input
m Is the value of the 4'th component of the input



Dyadic Product with Polynomials

matrix : (nat,nat) -> Arr(Arr(int))

matrix (n,m) =
let sizel = n*n + 9*n + 28 1n
let s1ze2 = m*n + 6*m 1n
dyad( A.make(sizel,+1),s1zel, A.make(sizel,+1),s1ze2 );
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matrix : (nat,nat) -> Arr(Arr(int))

matrix (n,m) =
let sizel = n*n + 9*n + 28 1n
let s1ze2 = m*n + 6*m 1n
dyad( A.make(sizel,+1),s1zel, A.make(sizel,+1),s1ze2 );

Computed evaluation-step bound:
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where
n is the value of the first component of the input
m is the value of the second component of the input



Dyadic Product with

let sizel
let size’

matrix : (nat,nat) -> Arr(Arr(int))

matrix (n,m) =

n*n + 9*n + 28 1n
m*n + 6*m 1n

dyad( A.make(sizel,+1),s1zel, A.make(sizel,+1),s1ze2 );

Polynomials

Computes a
(N°+9n+28) x (Mn+6m)
matrix.

Computed evaluation-step bound:

20mn3 + 300mn2 + 1641mn + 3366mM + 32n<¢ + 288n + 942

where

n is the value of the first component of the input
m is the value of the second component of the input



Many Dyadic Products with Polynomials

dyadAllIM :

dyadAl1lM n

dyadM(n,m)

nat -> unit

= match n with | @ -> ()
| S n' -> let _ = dyadM(n,n) 1n

dyadAl1lM(n");

match m with | @ -> O

| S m'" -> let mat = matrix(n,m) 1in

dyadM(n,m");




Many Dyadic Products with Polynomials

dyadAllM : nat -> unit

dyadAlIM n = match n with | 0 -> O
| S n' -> let _ = dyadM(n,n) 1n
dyadAl1lM(n");

match m with | @ -> O
| S m'" -> let mat = matrix(n,m) 1in
dyadM(n,m");

dyadM(n,m)

Computed evaluation-step bound:
1.66Nn° + 37n° + 334.79n* + 1485.08n3 + 2963.54n% + 1789.92n + 3

where
n is the value of the input



Many Dyadic Products with Polynomials

Computes a
(i°+9i+28) x (ij+6j) matrix for every
pair (i,j) such that 1<j<i<n.

dyadAllM : nat -> unit

dyadAlIM n = match n with | 0 -> O
| S n' -> let _ = dyadM(n,n) 1n
dyadAlIM(n');
dyadM(n,m) match m with | @ -> O
| S m'" -> let mat = matrix(n,m) 1in
dyadM(n,m");

Computed evaluation-step bound:
1.66Nn° + 37n° + 334.79n* + 1485.08n3 + 2963.54n% + 1789.92n + 3

where
n is the value of the input
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1.66xXA6+37xA5+334.79xA4+1485.08xA3+2963.54xA2+1789.92*x+3

measured cost X

dyadAllMV]

Evaluation-step bound vs.
measured behavior



Experimental Evaluation



Actual

Computed Bound . Run Time #Constr.
Behavior
Dijkstra’s Shortest Path 79.5n O(n 0.1s 2178
Fast GCD 12m + 7 O(log m) 0.1s 105
Pascal’s Triangle 19n O(n 04s 998
In-Place Quick Sort 12.25x O(x 0.7s 2080
Matrix Multiplication (fora —ya \\ \ 31nuy + 38nu + 38n + 3 O(huyx) 5.6 184270
list of matrices)
Block Sort 12.25n O(n 0.4s 27795
DyadAllIM 1.6n O(n 3.9s 130236
Y 2963.54n '
Matrix-Mult, Flatten, and 12.25u
Sort + 19m + 66 O(u 59s 167603

—valuation-Step Bounds
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Dijkstra’s Si”QIe-Source Evaluation-step bound vs.
Shortest Path measured behavior




Conclusion

Directly encoding (non-linear) arithmetic operations in
amortized resource analysis lets us track size changes of
unsigned integers precisely and efficiently.



Conclusion

Directly encoding (non-linear) arithmetic operations in
amortized resource analysis lets us track size changes of
unsigned integers precisely and efficiently.

Ongoing Research: Application of the amortized analysis to C programs
- Bounds are non-negative linear combin. of sizes of intervals |[x,y]]
 Great preliminary results for linear bounds
- Beats already abstract interpretation-based techniques

» Extension to polynomial bounds using the presented techniques



