Type-Based Amortized Resource Analysis with
Integers and Arrays

Jan Hoffmann and Zhong Shao, Yale University

Performance

Bugs are Common and

—Xpensive

Performance Bugs are Common and Expensive

HealthCare.gov Get Insurance Login

Individuals & Families Small Businesses All Topics v Search SEARCH

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

Please include the reference ID below if you wish to contact us at 1-800-318-2596

Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%
Reference ID: 0.cdc7¢117.1380633115.2739dce8

HealthCare.gov debacle has
been mainly caused by
performance issues.

Performance Bugs are Common and Expensive

HealthCare.gov Get Insurance Login

Individuals & Families Small Businesses v EECUEEEEE SEARCH

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

Please include the reference ID below if you wish to contact us at 1-800-318-2596

Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%
Reference ID: 0.cdc7¢117.1380633115.2739dce8

HealthCare.gov debacle has
been mainly caused by
performance issues.

ICE 3 Velaro D delivery delayed
by one year because of software
performance issues in 2013.

Fatalities Because of Stack Overflow?

Fatalities Because of Stack Overflow?

EDN About Us + Subscribe to Newsletters

N E 1T w o =« DESIGN CENTERS - TOOLS & LEARNING - COMMUNITY - ED

Home > Automotive Design Center > How To Article

Toyota’s killer firmware: Bad design and
its consequences

Michael Dunn -October 28,2013
109 Comments

[share| 277 341 932 wiweet (724| [y {e] | My b=

On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended
acceleration that lead to the death of one the occupants. Central to the trial was the Engine
Control Module's (ECM) firmware.

Stack overflow. Toyota claimed only 41% of the allocated stack space was being used. Barr's
investigation showed that 94% was closer to the truth. On top of that, stack-killing, MISRA-C rule-
violating recursion was found in the code, and the CPU doesn't incorporate memory protection to
guard against stack overflow.

Although Toyota had performed a stack analysis, Barr concluded the automaker had completely
botched it. Toyota missed some of the calls made via pointer, missed stack usage by library and
assembly functions (about 350 in total),and missed RTOS use during task switching. They also
failed to perform run-time stack monitoring.

Fatalities Because of Stack Overflow?

ED N About Us « Subscribe to Newsletters

N E 1T w o =« DESIGN CENTERS - TOOLS & LEARNING - COMMUNITY - ED

Home > Automotive Design Center > How To Article

Toyota’s killer firmware: Bad design and
its consequences

Michael Dunn -October 28,2013
109 Comments

Y share| 277 341 032 wiweet (724| [ze] My = IR

On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended
acceleration that lead to the death of one the occupants. Central to the trial was the Engine
Control Module's (ECM) firmware.

Stack overflow. Toyota claimed only 41% of the allocated stack space was being used. Barr's
investigation showed that 94% was closer to the truth. On top of that, stack-killing, MISRA-C rule-
violating recursion was found in the code, and the CPU doesn't incorporate memory protection to
guard against stack overflow.

Although Toyota had performed a stack analysis, Barr concluded the automaker had completely
botched it. Toyota missed some of the calls made via pointer, missed stack usage by library and
assembly functions (about 350 in total),and missed RTOS use during task switching. They also
failed to perform run-time stack monitoring.

Expert withess found:
“Toyota’s electronic
throttle control system
(ETCS) source code is of
unreasonable quality.”

Fatalities Because of Stack Overflow?

EDN About Us « Subscribe to Newsletters

N E 1T w o r < DESIGN CENTERS - TOOLS & LEARNING - COMMUNITY ~

Home > Automotive Design Center > How To Article

Toyota’s killer firmware: Bad design and
its consequences

Michael Dunn -October 28,2013
109 Comments

On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended
acceleration that lead to the death of one the occupants. Central to the trial was the Engine
Control Module's (ECM) firmware.

Stack overflow. Toyota claimed only 41% of the allocated stack space was being used. Barr's

investigation showed that 94% was closer to the truth. On top of that, stack-killing, MISRA-C rule-

violating recursion was found in the code, and the CPU doesn't incorporate memory protection to
guard against stack overflow.

Although Toyota had performed a stack analysis, Barr concluded the automaker had completely
botched it. Toyota missed some of the calls made via pointer, missed stack usage by library and
assembly functions (about 350 in total),and missed RTOS use during task switching. They also
failed to perform run-time stack monitoring.

Expert withess found:
“Toyota’s electronic
throttle control system
(ETCS) source code is of
unreasonable quality.”

Stack overflow was
possible because stack-
bound analysis was
faulty.

Power Consumption is Increasingly Important

One of the major cost factors Determines battery life in mobile
In data centers. devices and robots.

This Work: Static Resource Analysi

Given:

Question:

A program P

What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Static Resource
Analysis

ESOP’10

APLAS’10

POPL’11

PhD Thesis

CAV’12

TOPLAS’12

FLOPS'14

Collaborators: Aehlig (LMU),
Hofmann (LMU), Shao (Yale)

This Work: Static Resource Analysi

Clock cycles, heap

Given: A program P Space, power, ...

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Static Resource
Analysis

ESOP’10

APLAS’10

POPL’11

PhD Thesis

CAV’12

TOPLAS’12

FLOPS’14

Collaborators: Aehlig (LMU),
Hofmann (LMU), Shao (Yale)

This Work: Static Resource Analysi

Clock cycles, heap

Given: A program P Space, power, ...

Question: What is the worst-case resource

consumption of P as a function of
the size of its inputs?

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of Not only
Computer. asymptotic bounds
Programming but concrete
Sm;ling_;, :md Searching ConStant faCtO rS.

Second Edition

DONALD E. KNUTH

Static Resource
Analysis

ESOP’10

APLAS’10

POPL’11

PhD Thesis

CAV’12

TOPLAS’12

FLOPS'14

Collaborators: Aehlig (LMU),
Hofmann (LMU), Shao (Yale)

Automatic
This Wmic Resource Analysis

Static Resource
Analysis
Clock cycles, heap y
: space, powet, ...
Given: A program P P P ESOP’10
Question: What is the worst-case resource APLAS™O
consumption of P as a function of
. . POPL’11
the size of its inputs?
PhD Thesis
| CAV'12
The Art of Not only
gOmPUtef | asymptotic bounds TOPLAS’12
rogr
e but concrete
et i constant factors. FLoPsTA
~ DONALD E. KNUTH Collaborators: Aehlig (LMU),
Hofmann (LMU), Shao (Yale)

Our Approach: Type-Based Resource Analysis

- Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

Our Approach: Type-Based Resource Analysis

- Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

2. Define a type system so that type derivations establish resource bounds

Our Approach: Type-Based Resource Analysis

- Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

2. Define a type system so that type derivations establish resource bounds

3. Prove the soundness of the types system with respect to the semantics

Our Approach: Type-Based Resource Analysis

- Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

2. Define a type system so that type derivations establish resource bounds
3. Prove the soundness of the types system with respect to the semantics

4. Develop an efficient inference algorithm for the type system

Our Approach: Type-Based Resource Analysis

- Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

2. Define a type system so that type derivations establish resource bounds
3. Prove the soundness of the types system with respect to the semantics

Undecidable!
4. Develop an efficient inference algorithm for the type system

Our Approach: Type-Based Resource Analysis

- Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

2. Define a type system so that type derivations establish resource bounds

3. Prove the soundness of the types system with respect to the semantics
Undecidable!

4. Develop an efficient inference algorithm for the type system

5. Show the practicality of the system with an implementation and
experiments

Polynomial Amortized Resource Analysis

- Automatic type-based analysis: No annotations required

- Naturally compositional: function types are resource specifications

- Generic in the resource: heap space, clock cycles, energy usage ...

- Precise bounds expressed by multivariate resource polynomials

- Efficient type inference based on linear programming

Source Code

oooooo

0000000

0000000

ooooooo

ooooooo

ooooooo

oooooo

\\\\\\\\\\\

ssssssssssssssssssssss

Resource Bound

120+ 14n + 3

Bird’s Eye View Type-Based Resource Analysis

Source Code

oooooo

0000000

0000000

ooooooo

ooooooo

ooooooo

oooooo

\\\\\\\\\\\

ssssssssssssssssssssss

Resource Bound

S [FLTTTTTTP TP TPPRPT P PPRPPPPPP >

section .text
global _start, write

tttttt

call write

Machine Code

Bird’s Eye View Type-Based Resource Analysis

\\\\\\\\\\\\

0000000

0000000

ooooooo

uuuuuuu

ooooooo

0000000

oooooo

ssssssssssssssssssssss

Resource Bound

12n° + 14n + 3

Sird’s

Source Code

ction .text
lllllllllllllll

tttttt

applies to

Machine Code

88
4na

:ye VIEW | Type-Based Resource Analysis

g G o
— R

Run-time system Hardware

>

oooooo

0000000

0000000

ooooooo

ooooooo

ooooooo

oooooo

\\\\\\\\\\\

ssssssssssssssssssssss

Resource Bound

S [FLTTTTTTP TP TPPRPT P PPRPPPPPP >

section .text
global _start, write

tttttt

call write

Machine Code

Z85:
258

SIrd’s Eye View Type-Based Resource Analysis

Source Code

Formal Cost Semantics

Run-time system Hardware

>

\\\\\\\\\\\\\\\\\
section .text

oo

0000000

ooooooo

nnnnnn

lzzz:z: 12 n2 E —|_ 14n _|_ 3 IIIIIIIIIIIIIIIIIIIIIIIII é Ipl;llilellsl Itlol IIIIIIIIIIIIIIIIIIIIIII > N ;;j X,i,:::‘tj’:“r
Resource Bound Machine Code

3|rd ,S Eye VIeW Type-Based Resource Analysis

urce Code

So

Formal Cost Semantics

A

oooooo

0000000

0000000

ooooooo

ooooooo

ooooooo

oooooo

\\\\\\\\\\\

ssssssssssssssssssssss

Resource Bound

2- :

<€

ﬁ Absint

aiT WCET Analyzers

e,
NSOy
13

>

Run-time system Hardware

section .text
global _start, write

nnnnnn

Machine Code

Z85:
258

SIrd’s Eye View Type-Based Resource Analysis

Type Inference

Source Code

<€

Formal Cost Semantics

ﬁ Absint

aiT WCET Analyzers

A

Y(last) = (int, LP* (in) —22L9, int

————— (AVaR)
acc:int I;r- acc: int
v

acc:int, x:int, xs:L” (int) I%;“— last(x, xs) : int
a

(A:APP)

acc:int, I:LP (int) I% match [with | nil — acc| cons(x, xs) — last(x, xs) : int

Type Derivation

(A:MATL)

—_—

(FRTOS) ,

.'3 =

Run-time system Hardware

\\\\\\\\\\\\
ooooooooooooooooooooooooooooo
0000000

ooooooo

ooooooo

0000000

oooooo

Resource Bound

12n° + 14n + 3

section .text
lllllllllllllll

nnnnnn

L e e T T R TR IR IR LR IR ERCEPERT AR ERTERY

applies to

call write

Mach

88
88

ine Code

Type-Based Resource Analysis

Sird’s Eye View

Source Code

Type Inference

Formal Cost Semantics

ﬁ Absint

A aiT WCET Analyzers

Y(last) = (int, LP* (in) —22L9, int

————— (AVaR) 7 (A:APP)
acc.int = acc: int acc:int, x:int, xs:LP (int) = last(x, xs) : int
qv da
] X q . . — (A:MATL)
acc:int, I:LP (int) |7 match [with | nil — acc| cons(x, xs) — last(x, xs) : int S

(#RTOS)

Run-time system Hardware

Type Derivation

\\\\\\\\\\\\
ction .text

00

0000000

ooooooo

uuuuuuu

ooooooo

R e e TR C LR LR P ERERPEEPERTERTEY

2 S—— _

0000000

$85: 2BBBERE 338
S5 RIIIRET 853
O 5 3

000000 xo
mov rax

Resource Bound Machine Code

Sird’s :ye View Type-Based Resource Analysis

urce Code

So

(@) ||
=

=

X

Type Inference

(=)
=

@)
=
-

Y(last) = (int, LP* (in) —22L9, int
(A:VAR)

g qu da . (A:ApP)
acc:mtl—q;— acc: int acc:int, x:int, xs:L” (int) I;;— last(x, xs) : int
L “ (A:MATL)

acc:int, I:LP (int) I% match [with | nil — acc| cons(x, xs) — last(x, xs) : int

Type Derivation

\\\\\\\\\\\\\\\\\
sssssssssssssssssssssssssssss
0000000

ooooooo

ooooooo

ooooooo

000000 1202+ 14n + 3

Resource Bound

SIrd’s Eye View Type-Based Resource Analysis

Type Inference

. q)
acc:mtl—q;"— acc: int
v

Y(last) = (int, LP* (in) —22L9, int
(A:VAR)

7a (A:APP)
acc:int, x:int, xs:L” (int) I;;— last(x, xs) : int
a

acc:int, I:LP (int) I% match [with | nil — acc| cons(x, xs) — last(x, xs) : int

(A:MATL)

Type Derivation

\\\\\\\\\\\\
0000000
0000000
ooooooo

ooooooo

ooooooo

0000000

oooooo

ssssssssssssssssssssss

12n° + 14n + 3

Resource Bound

Sird’s

Source Code

Polynomial Amortized
Resource Analysis

:ye VIEW | Type-Based Resource Analysis

Can we transfer the ideas of automatic
amortized analysis to C-like programs”?

Why Automatic Amortized Analysis for C Code”

» Today’s embedded and real-time systems are written in C code

» There are many great techniques for deriving resource bounds on
imperative code [Gulwani et al., Albert et al., Brockschmidt et al.]

But: current techniques are not compositional

Why looking a functional programs in the first place?

» Might be used more often in the future

» Clean setting to study and understand the problem (compare: type
systems, type inference, higher-order functions, ...)

Promising First Results: Stack Bounds

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs

» Uses CompCert and a program logic that
IS based on amortized analysis

» Verified in Cog
 Applied to the CertiKOS hypervisor kernel

600

[Function Name Verified Stack Bound
500
recid() 8a bytes
400 - 1 bsearch(x, lo, hi) 40(1 + log, (hi — lo)) bytes
fib(n) 24n bytes
300
gsort(a, lo, hi) 48(hi — lo) bytes
200 | filter_pos(a, sz, lo, hi) 48(hi — lo) bytes
sum(a, lo, hi) 32(hi — lo) bytes
| measured stack consumption x faCt—Sq(n) 40 + 24n2 bytes
4001+ log_200) filter_find(a, sz, lo, hi) 128 + 48(hi — lo) + 40 log, (BL) bytes

0

| | | |
0 500 1000 1500 2000 2500 3000 3500 4000

Promising First Results: Stack Bounds

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs

» Uses CompCert and a program logic that
IS based on amortized analysis

» Verified in Cog
 Applied to the CertiKOS hypervisor kernel

600

Function Name Verified Stack Bound
500 | recid() 8a bytes
400 - 1 bsearch(x, lo, hi) 40(1 + log, (hi — lo)) bytes
fib(n) 24n bytes

300
gsort(a, lo, hi) 48(hi — lo) bytes
200 | filter_pos(a, sz, lo, hi) 48(hi — lo) bytes
sum(a, lo, hi) 32(hi — lo) bytes
ol measured stack consumption fact_sq(n) 40 + 24n? bytes
0 ‘ ‘ ‘ ‘ 400+ log 269) —— filter_find(a, sz, lo, hi) 128 + 48(hi — lo) + 40 log,(BL) bytes

0 500 1000 1500 2000 2500 3000 3500 4000

Promising First

Results: Stack

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs

» Uses CompCert and a program logic that
IS based on amortized analysis

» Verified in Cog

 Applied to the CertiKOS hypervisor kernel

BSounds

EDN About Us + Subscribe to Newsletters

N E T w o r « DESIGN CENTERS - TOOLS & LEAI

Home > Automotive Design Center > How To Article

Toyota’s killer firmware: Bad
its consequences

Michael Dunn -October 28,2013
109 Comments

[share| 277 841 032 wiweet |724| [FIERY {3k

On Thursday October 24, 2013, an Oklahoma court ruled against Toy
acceleration that lead to the death of one the occupants. Central to
Control Module's (ECM) firmware.

Verified Stack Bound

600
Function Name

500 - [
recid()

400 |- bsearch(x, lo, hi)

oo | fib(n) |
qgsort(a, lo, hi)

200 filter_pos(a, sz, lo, hi)
sum(a, lo, hi)

100

measured stack consumption x faCt_Sq (n)
| 40 +log 20) —— filter_find(a, sz, lo, hi)

0 1 1 1 1
0 500 1000 1500 2000 2500 3000

3500 4000

8a bytes

40(1 + log, (hi — lo)) bytes

24n bytes
48(hi — lo) bytes
48(hi — lo) bytes
32(hi — lo) bytes
40 + 24n? bytes

128 + 48(hi — lo) + 40log, (BL) bytes

Promising First Results: Stack

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs S & LEA

» Uses CompCert and a program logic that
IS based on amortized analysis

» Verified in Cog

 Applied to the CertiKOS hypervisor kernel N , |

acceleration that (€3 occupants. Central to
Control Module's (ECM) firmware

600

[Function Name Verified Stack Bound
500
recid() 8a bytes
400 - 1 bsearch(x, lo, hi) 40(1 + log, (hi — lo)) bytes
fib(n) 24n bytes
300
gsort(a, lo, hi) 48(hi — lo) bytes
200 | filter_pos(a, sz, lo, hi) 48(hi — lo) bytes
sum(a, lo, hi) 32(hi — lo) bytes
| measured stack consumption x fact_sq(n) 40 + 24“2 bytes
0 J J J J | A0+ log 206) —— filter_find(a, sz, lo, hi) 128 + 48(hi — lo) + 40 log,(BL) bytes

0 500 1000 1500 2000 2500 3000 3500 4000

Promising First Results: Stack

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs S & LEA

» Uses CompCert and a program logic that
IS based on amortized analysis

 Verified in (

- Applied to Automation only for programs without ,
. 2 occupants. Central to
recursion! sl
600
ck Bound
500 |- [:
recid() 8a bytes
400 - 1 bsearch(x, lo, hi) 40(1 + log, (hi — lo)) bytes
200 | fib(n) 24n bytes
gsort(a, lo, hi) 48(hi — lo) bytes
200 | filter_pos(a, sz, lo, hi) 48(hi — lo) bytes
sum(a, lo, hi) 32(hi — lo) bytes
T measured stack consumption x | faCt_Sq(n) 40 + 24n2 bytes
. _40a+ka200 —— | filter find(a, sz, lo, hi) 128 + 48(hi — lo) + 40 log, (BL) bytes

| | | |
0 500 1000 1500 2000 2500 3000 3500 4000

Challenges in (Numeric) Imperative code?

Challenges in (Numeric) Imperative code?

Data structures

lteration

Control Flow

Functional Imperative
Inductive data types Arrays
Recursion Loops

Pattern matching Integers

Challenges in (Numeric) Imperative code?

Data structures
lteration

Control Flow

Cost depends on

Size changes in

Functional
Inductive data types
Recursion

Pattern matching

Sizes of ind. data structures

Pattern matching, constructors

Imperative
Arrays
Loops

Integers

Sizes of integer intervals |[n,m]|

Arithmetic operations

Challenges in (Numeric) Imperative code?

Functional Imperative
Data structures Inductive data types Arrays
lteration Recursion Loops
Control Flow Pattern matching Integers
Cost depends on Sizes of ind. data structures Sizes of integer intervals |[n,m]|
Size changes in Pattern matching, constructors Arithmetic operations

1. Track size changes in arithmetic operations

2. Apply the analysis to C programs and track sizes
of intervals

Challenges in (Numeric) Imperative code?

Functional Imperative
Data structures Inductive data types Arrays
lteration Recursion Loops
Control Flow Pattern matching Integers
Cost depends on Sizes of ind. data structures Sizes of integer intervals |[n,m]|
Size changes in Pattern matching, constructors Arithmetic operations

1. Track size changes in arithmetic operations Today.

2. Apply the analysis to C programs and track sizes
of intervals

Challenges in (Numeric) Imperative code?

Functional Imperative
Data structures Inductive data types Arrays
lteration Recursion Loops
Control Flow Pattern matching Integers
Cost depends on Sizes of ind. data structures Sizes of integer intervals |[n,m]|
Size changes in Pattern matching, constructors Arithmetic operations

1. Track size changes in arithmetic operations Today.

2. Apply the analysis to C programs and track sizes

of intervals Upcoming paper.

The General [dea of Amortized Analysis

 Assign potential functions to data structures

(d(state) > 0)

= States are mapped to non-negative numbers

» Potential pays the resource consumption and @)(before) > ®(after) + cost)
the potential at the following program point ¥ telescoping

+ Initial potential is an upper bound (Cb(initia/ state) >) COSO

The General [dea of Amortized Analysis

 Assign potential functions to data structures

(d(state) > 0)

= States are mapped to non-negative numbers

» Potential pays the resource consumption and @)(before) > ®(after) + cosa
the potential at the following program point ¥ telescoping

+ Initial potential is an upper bound (Cb(initia/ state) >) COSO

Type Systems for automatic analysis
 Fix a format of potential functions

 Develop type rules that manipulate potential functions

The General [dea of Amortized Analysis

 Assign potential functions to data structures

(d(state) > 0)

= States are mapped to non-negative numbers

» Potential pays the resource consumption and @)(before) > ®(after) + cost)
the potential at the following program point

W telescoping ¥
+ Initial potential is an upper bound (Cb(initia/ state) >) COSO
Type Systems for automatic analysis Potential is given by

type context.
 Fix a format of potential functions

 Develop type rules that manipulate potential functions

Programs with Unsigned Integers (nat)

Data types: (nat * nat, (q(ij))ijEN)

Potential functions: ®((n, m), (q(i.j)) Z q(”)< ><)
IjeN

Function types: (A, Q) — (B, Q")

Programs with Unsigned Integers (nat)

Non-negative
rational numbers

Data types: (nat * nat, (q(i,j))i,jEN)

Potential functions: ®((n, m), (q(i.j)) Z q(”)< ><)
IjeN

Function types: (A, Q) — (B, Q")

Programs with Unsigned Integers (nat)

Non-negative
rational numbers

Data types: (nat * nat, (q(i,j))i,jEN)

Potential functions: ®((n, m), (q(i.j)) Z q(”)< ><)
IjeN

Function types: (A, Q) — (B, Q")

Polynomial input Polynomial
potential output potential

Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0

| n+l -> 1+add(n,m); | n+l -> add(m,mult(n,m));

Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0

| n+l -> 1+add(n,m); | n+l -> add(m,mult(n,m));

Number of evaluation steps of mult in the worst case: 8nm + 12n 4+ 3

Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0

| n+l -> 1+add(n,m); | n+l -> add(m,mult(n,m));

Number of evaluation steps of mult in the worst case: 8nm + 12n 4+ 3

Possible typing of mult: (nat * nat, (q(;,j))i,jeN) — (nat, (pi)ien)

where g0y = 3 pi = 0 for all /
d(1,0) = 12
di,1) — 3

qi.j) = 0 otherwise

Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0
| n+l -> 1+a | n+l -> add(m,mult(n,m));
®((n, m), (qij)) =

Number of evalua $~ ¢ (”) (m> he worst case: 8nm + 12n+ 3
A AV AN
I,JEN

Possible typing of mult: (nat * nat, (q(;,j))i,jeN) — (nat, (pi)ien)

where g0y = 3 pi = 0 for all /
d(1,0) = 12
di,1) — 3

qi.j) = 0 otherwise

Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0
| n+l -> 1+a | n+l -> add(m,mult(n,m));
®((n, m), (qij)) =

Number of evalua $~ ¢ (”) (m> he worst case: 8nm + 12n+ 3
A AV AN
I,JEN

Possible typing of mult: (nat * nat, (q(;,j))i,jeN) — (nat, (pi)ien)

where G(0,0) = 3 p; = 10 |
g(1,0) = 12 p; = 0 otherwise
d1,1) = 18

qi.j) = 0 otherwise

Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0
| n+l -> 1+a | n+l -> add(m,mult(n,m));
®((n, m), (qij)) =

Number of evalua $~ ¢ (”) (m> he worst case: 8nm + 12n+ 3
A AV AN
I,JEN

Possible typing of mult: (nat * nat, (q(;,j))i,jeN) — (nat, (pi)ien)

where G(0,0) = 3 p; = 10 |
g(1,0) = 12 p; = 0 otherwise
d1,1) = 18 |
qi.j) = 0 otherwise Output potential is

consumed later.

Example: Evaluation Steps of mult

add : (nat,nat) -> nat mult: (nat,nat) -> nat
add(n,m) = mult(n,m) =
match n with | @ -> m match n with | @ -> 0
| n+l -> 1+a | n+l -> add(m,mult(n,m));
®((n, m), (qij)) =

Number of evalua $~ ¢ (”) (m> he worst case: 8nm + 12n+ 3
A AV AN
I,JEN

Possible typing of mult: (nat * nat, (q(;,j))i,jeN) — (nat, (pi)ien)

where g9y =3 10nm = p = 10 |
g(1,0) = 12 10(mult(n,m)) p; = 0 otherwise
d1,1) = 18 |
qi.j) = 0 otherwise Output potential is

consumed later.

How to Deal with Multiplications x*y 7

Code transformation to recursive function?
- Need to prove soundness (semantic and resource usage equivalence)
* |Inefficient: a large constraint set is generated for each multiplication

Better approach: directly describe how to pass potential to the result

d((n, m), Q) > ®(n-m, Q") + cost(mult)

How to Deal with Multiplications x*y 7

Code transformation to recursive function?
- Need to prove soundness (semantic and resource usage equivalence)
* |Inefficient: a large constraint set is generated for each multiplication

Better approach: directly describe how to pass potential to the result
d((n, m), Q) > ®(n-m, Q") + cost(mult)

Can we express this inequality with
a succinct constraint system?

New [ype Rule for Multiplication

Q I (Q/) 4+ Mmult (
x1:nat, xo:nat; Q) |—AL x1*x2 : (nat, Q/)

' (Q) — (qzz‘,j))(i,j)eI(nat*nat) if qij,j) — ZA(Zaja k) dk
k

T:MuLT)

New [ype Rule for Multiplication

— T Mmult
Q=LI@) + (T:MuLt)
x1:nat, ro:mat; Q) |—AL r1*T2 : (nat, Q')
' (Q) — (qzz‘,j))(i,j)eI(nat*nat) if qij,j) — ZA(Zaja k) dk
k

(7)=2a0n () ()

46,0 = S0 (1 () () = S 508000 50,5 stk,)

r,s

New [ype Rule for Multiplication

— T Mmult
Q=LI@) + (T:MuLt)
x1:nat, ro:mat; Q) |—AL r1*T2 : (nat, Q')
' (Q) — (qzz‘,j))(i,j)eI(nat*nat) if qij,j) — ZA(Zaja k) dk
k

nm o ny(m
Riordan and Stein (L) B ZA(Z’]’ k) (z) (])
i7j

(1972)

46,0 = S0 (1 () () = S 58000 50,5 stk)

r,s

New [ype Rule for Multiplication

Constant cost of
multiplication.

Q o ()_l_ Mmult
x1:nat, ro:mat; Q) |—AL r1*T2 : (nat, Q')

(T:MuLt)

' (Q) — (qzz‘,j))(i,j)EI(nat*nat) if qij,j) — ZA(Zaja k) dk
k

nm o ny(m
Riordan and Stein < L) B ZA(Z’]’ k) (z) (])
i7j

(1972)

46,0 = S0 (1 () () = S 58000 50,5 stk)

r,s

Smaller Constraints Sets Enable Scaling

[
(\®)

[
U

= New rule

= Recursive

Maximal degree
[E—
_— N W Bk UL N 0 O O

10! 102 10° 10* 107 10° 107

ek
-
)

Number of constraints generated for one multiplication

Other Arithmetic Operations

Treatment of other arithmetic operations is described in the paper

- Operations handled: subst, add, div, mod, mult

- Similar to multiplication

Also in the paper: arrays

- Arrays are treated as non-negative numbers: Array.length() returns a
natural number that can be used for iteration

 Potential of data that is stored inside arrays is not tracked

ow does it scale?”

Dyadic Product of two Arrays

dyad : (Arr(int),nat,Arr(int),nat) -> Arr(Arr(int))

dyad (a,n,b,m) =
let outerArr = A.make(n,A.make(@,+0)) 1n
let _ = f1ll(Ca,n,b,m,outerArr) in outerArr;

Dyadic Product of two Arrays

dyad : (Arr(int),nat,Arr(int),nat) -> Arr(Arr(int))

dyad (a,n,b,m) =
let outerArr = A.make(n,A.make(@,+0)) 1n
let _ = f1ll(Ca,n,b,m,outerArr) in outerArr;

Computed evaluation-step bound:

20nm + 31Tn + 18
where
n is the value of the second component of the input
m Is the value of the 4'th component of the input

Dyadic Product with Polynomials

matrix : (nat,nat) -> Arr(Arr(int))

matrix (n,m) =
let sizel = n*n + 9*n + 28 1n
let s1ze2 = m*n + 6*m 1n
dyad(A.make(sizel,+1),s1zel, A.make(sizel,+1),s1ze2);

Dyadic Product with Polynomials

matrix : (nat,nat) -> Arr(Arr(int))

matrix (n,m) =
let sizel = n*n + 9*n + 28 1n
let s1ze2 = m*n + 6*m 1n
dyad(A.make(sizel,+1),s1zel, A.make(sizel,+1),s1ze2);

Computed evaluation-step bound:

20mn3 + 300mn2 + 1641mn + 3366mM + 32n<¢ + 288n + 942

where
n is the value of the first component of the input
m is the value of the second component of the input

Dyadic Product with

let sizel
let size’

matrix : (nat,nat) -> Arr(Arr(int))

matrix (n,m) =

n*n + 9*n + 28 1n
m*n + 6*m 1n

dyad(A.make(sizel,+1),s1zel, A.make(sizel,+1),s1ze2);

Polynomials

Computes a
(N°+9n+28) x (Mn+6m)
matrix.

Computed evaluation-step bound:

20mn3 + 300mn2 + 1641mn + 3366mM + 32n<¢ + 288n + 942

where

n is the value of the first component of the input
m is the value of the second component of the input

Many Dyadic Products with Polynomials

dyadAllIM :

dyadAl1lM n

dyadM(n,m)

nat -> unit

= match n with | @ -> ()
| S n' -> let _ = dyadM(n,n) 1n

dyadAl1lM(n");

match m with | @ -> O

| S m'" -> let mat = matrix(n,m) 1in

dyadM(n,m");

Many Dyadic Products with Polynomials

dyadAllM : nat -> unit

dyadAlIM n = match n with | 0 -> O
| S n' -> let _ = dyadM(n,n) 1n
dyadAl1lM(n");

match m with | @ -> O
| S m'" -> let mat = matrix(n,m) 1in
dyadM(n,m");

dyadM(n,m)

Computed evaluation-step bound:
1.66Nn° + 37n° + 334.79n* + 1485.08n3 + 2963.54n% + 1789.92n + 3

where
n is the value of the input

Many Dyadic Products with Polynomials

Computes a
(i°+9i+28) x (ij+6j) matrix for every
pair (i,j) such that 1<j<i<n.

dyadAllM : nat -> unit

dyadAlIM n = match n with | 0 -> O
| S n' -> let _ = dyadM(n,n) 1n
dyadAlIM(n');
dyadM(n,m) match m with | @ -> O
| S m'" -> let mat = matrix(n,m) 1in
dyadM(n,m");

Computed evaluation-step bound:
1.66Nn° + 37n° + 334.79n* + 1485.08n3 + 2963.54n% + 1789.92n + 3

where
n is the value of the input

2.5e+07

2e+07

1.5e+07

le+07

5e+06

| | | | |
1.66xXA6+37xA5+334.79xA4+1485.08xA3+2963.54xA2+1789.92*x+3

measured cost X

dyadAllMV]

Evaluation-step bound vs.
measured behavior

Experimental Evaluation

Actual

Computed Bound . Run Time #Constr.
Behavior
Dijkstra’s Shortest Path 79.5n O(n 0.1s 2178
Fast GCD 12m + 7 O(log m) 0.1s 105
Pascal’s Triangle 19n O(n 04s 998
In-Place Quick Sort 12.25x O(x 0.7s 2080
Matrix Multiplication (fora —ya \\ \ 31nuy + 38nu + 38n + 3 O(huyx) 5.6 184270
list of matrices)
Block Sort 12.25n O(n 0.4s 27795
DyadAllIM 1.6n O(n 3.9s 130236
Y 2963.54n '
Matrix-Mult, Flatten, and 12.25u
Sort + 19m + 66 O(u 59s 167603

—valuation-Step Bounds

800000 - | | | | | | | | |
79.5xN2 + 31.5x + 38 ———

measured cost: random, worst, and best +
700000 |-

600000 |-

500000

400000

300000

200000

100000 |-

0 L—— I I I I I I I | |
0 10 20 30 40 50 60 70 80 90 100

Dijkstra’s Si”QIe-Source Evaluation-step bound vs.
Shortest Path measured behavior

Conclusion

Directly encoding (non-linear) arithmetic operations in
amortized resource analysis lets us track size changes of
unsigned integers precisely and efficiently.

Conclusion

Directly encoding (non-linear) arithmetic operations in
amortized resource analysis lets us track size changes of
unsigned integers precisely and efficiently.

Ongoing Research: Application of the amortized analysis to C programs
- Bounds are non-negative linear combin. of sizes of intervals |[x,y]]
 Great preliminary results for linear bounds
- Beats already abstract interpretation-based techniques

» Extension to polynomial bounds using the presented techniques

