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Power Consumption is Increasingly Important

One of the major cost factors 
in data centers.

Determines battery life in mobile 
devices and robots.
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Our Approach: Type-Based Resource Analysis

• Start with a functional programming language

1. Model the resource usage of programs with an operational semantics

2. Define a type system so that type derivations establish resource bounds

3. Prove the soundness of the types system with respect to the semantics

4. Develop an efficient inference algorithm for the type system

5. Show the practicality of the system with an implementation and 
experiments

Undecidable!



• Automatic type-based analysis: No annotations required 

• Naturally compositional: function types are resource specifications


• Generic in the resource: heap space, clock cycles, energy usage ...


• Precise bounds expressed by multivariate resource polynomials


• Efficient type inference based on linear programming

Polynomial Amortized Resource Analysis
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Figure 4.4: Inferring a linear resource-annotated type for the last: the annotated
type derivation, the linear constraints derived from the algorithmic type rules,
and the objective function.

multiplicative factors 1 and 1000 reflect that linear potential (p) is more expensive then
constant potential (q). In general, we state in objective functions that inner potential,
say, in list of list, is more expensive than outer potential.

The choice of the multiplicative factors is a heuristic. You can always construct RAML
programs that will admit a linear constraint system in which the objective function is
minimized by a solution that assign more potential to linear annotations than necessary.
The problem is that classic linear programming does permit objectives that state that
the minimization of one constraint is more important than the minimization of another.

In practice, the objective function is however not very important. The results are
generally stable when changing the constant factors in the objective function. The
reason is that cases where the LP solver has an option to trade linear for constant
potential are relatively seldom. The example in Figure 4.4 is representative in this
regard.

4.5 Examples

This section exemplifies the analysis with different RAML programs. At first, I demon-
strate that the analysis works well on typical linear functions on lists and trees like
map, fold, and filter operations, which are naturally implemented by using structural
induction. Hereafter, I demonstrate the advantages of amortization by automatically
analyzing a breath-fist search on trees that uses a stack. Then I give more theoretically
motivated examples that demonstrate the need of rational potential and the possibility
of analyzing non-terminating functions.

Type Derivation
Run-time system Hardware
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Can we transfer the ideas of automatic 
amortized analysis to C-like programs?



Why Automatic Amortized Analysis for C Code?

• Today’s embedded and real-time systems are written in C code


• There are many great techniques for deriving resource bounds on 
imperative code [Gulwani et al., Albert et al., Brockschmidt et al.]


But: current techniques are not compositional


Why looking a functional programs in the first place? 

• Might be used more often in the future


• Clean setting to study and understand the problem (compare: type 
systems, type inference, higher-order functions, …)



Promising First Results: Stack Bounds

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs 

• Uses CompCert and a program logic that 
is based on amortized analysis


• Verified in Coq


• Applied to the CertiKOS hypervisor kernel

Function Name Verified Stack Bound

recidpq 8a bytes
bsearchpx, lo, hiq 40p1 ` log2phi ´ loqq bytes
fibpnq 24n bytes
qsortpa, lo, hiq 48phi ´ loq bytes
filter pospa, sz, lo, hiq 48phi ´ loq bytes
sumpa, lo, hiq 32phi ´ loq bytes
fact sqpnq 40 ` 24n2 bytes
filter findpa, sz, lo, hiq 128 ` 48phi ´ loq ` 40 log2pBLq bytes

Table 1. Manually verified stack bounds for C functions.

on a valid sub array. The file sizes of the manual verified examples
range from 8 to 52 lines of code.

Our main application of the automatic stack-analyzer is the
CertiKOS operating system kernel [15]. Currently, the stack in
CertiKOS is preallocated and proving the absence of stack-overflow
is essential in the verification of the reliability of the system.
Since CertiKOS does not make use of recursion, we can use
the automatic analysis to derive precise stack bounds. Using our
Quantitative CompCert compiler, we were, for instance, able to
compile and compute bounds for the virtual memory management
module (certikos{vmm.c) and the process management module
(certikos{proc.c). In total more than 1500 lines of system C code
were processed without any human interaction. Because of the large
number of functions in CertiKOS, only a sample of the analyzed
functions is displayed in Table 2.

Testing the quantitative Hoare logic and the compiler on Com-
pCert test suite was a natural choice since our compiler builds on
CompCert’s architecture. This also allowed us to make sure that we
did not introduce any regression with respect to the original Com-
pCert compiler. To stress the expressivity of the logic we focused
on test programs with recursive functions. The functions fib and
qsort in Table 1 are for instance from the CompCert test suite. Files
with automatically derived bounds for non-recursive functions from
the CompCert test suite include mandelbrot.c which computes an
approximation of the Mandelbrot set and nbody.c which computes
an n-body simulation of a part of our solar system.

We also made sure that the experiments stressed our ability to
handle safety critical software. Embedded software typically runs in
a highly memory constrained environment and, in the most critical
cases, running out of stack space could turn into threat for human
lives. The MiBench [17] benchmark we used for this purpose is
free, publicly available, and representative for embedded software.
The use of recursion in MiBench programs is relatively rare, which
makes them a great target for our automatic stack analyzer. The
analyzed examples we present in Table 2 include for instance
Dijkstra’s single-source shortest-path algorithm (dijkstra.c), and the
cryptographic algorithms Blowfish (blowfish.c) and MD5 (md5).

Finally, Table 1 contains some recursive functions that demon-
strate the expressivity of our quantitative logic. The function bsearch
is, for example, a recursive binary search with logarithmic recursion
depth. The function fib computes the Fibonacci sequence using an
exponential algorithm and the function qsort implements a recursive
version of the quicksort algorithm. In both cases the asymptotically
tight linear bounds could be proved. The verification of the func-
tion fact sq shows the modularity of the logic: We first verify a
linear bound for the factorial function and then use this bound to
verify fact sqpnq, which contains the call factpn2q. The function
filter pos takes an array and computes a new array that contains
all positive elements of the input array. Similarly, filter find uses
the binary search bsearch to filter out all elements of an input array
that are contained in another array of size BL. The modularity of
the logic enables us to reuse the logarithmic bound that we already

File Name / Function Name Verified
Line Count Stack Bound

mibench{net{dijkstra.c enqueue 40 bytes
(174 LOC) dequeue 40 bytes

dijkstra 88 bytes
mibench{auto{bitcount.c bitcount 16 bytes
(110 LOC) bitstring 32 bytes
mibench{sec{blowfish.c BF encrypt 40 bytes
(233 LOC) BF options 8 bytes

BF ecb encrypt 80 bytes
mibench{sec{pgp{md5.c MD5Init 16 bytes
(335 LOC) MD5Update 168 bytes

MD5Final 168 bytes
MD5Transform 128 bytes

mibench{tele{↵t.c IsPowerOfTwo 16 bytes
(195 LOC) NumberOfBitsNeeded 24 bytes

ReverseBits 24 bytes
↵t float 160 bytes

certikos{vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes

mem init 72 bytes
pmap init 176 bytes
pt free 80 bytes
pt init 152 bytes
pt init kern 136 bytes
pt insert 80 bytes
pt read 56 bytes
pt resv 120 bytes

certikos{proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes

kctxt new 72 bytes
sched init 232 bytes
tdqueue init 208 bytes
thread init 192 bytes
thread spawn 96 bytes

compcert{mandelbrot.c main 56 bytes
(92 LOC)
compcert{nbody.c advance 80 bytes
(174 LOC) energy 56 bytes

o↵set momentum 24 bytes
setup bodies 16 bytes
main 112 bytes

Table 2. Automatically verified stack bounds for C functions.

derived for bsearch in the proof. The verification of some functions
is still underway. The bounds for the functions recid, bsearch, fib,
and qsort are already completely verified.

Our experiments have shown that the automatic stack analyzer
works effectively for our main application, the CertiKOS OS kernel.
The reason is that we designed the quantitative logic to include
exactly the subset of Clight that is needed for CertiKOS. It turned out
that this subset is also sufficient for many examples in the CompCert
test suite and the MiBench embedded software benchmarks. If a
program is not interactively analyzable in our logic then this due
to unsupported language constructs such as switch statements and
functions pointers. Many of these language features could easily be
supported by relatively small additions to the logic. An exception to
this are function pointers which would require more work, following
for example XCAP [31].

Accuracy of the Derived Bounds We have evaluated the precision
of the automatically and manually derived bounds by comparing
our verified upper bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
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Figure 8. Experimental evaluation of the accuracy of hand-derived
bounds. The plots compare the derived bounds (blue lines) for the
functions bsearch (at the top), fact sq (in the middle), and fib

(at the bottom) with the measured stack usage of the execution
of the respective function for different inputs (red crosses). The
experiments indicate that the derived bounds over-approximate the
actual stack usage by a small constant factor.

show that the derived bounds are very precise: Both the manually
and automatically derived bounds over-approximate the stack usage
by exactly four bytes (see the following explanation).

Figure 8 shows the results of three experiments we made with
hand-derived stack bounds using the quantitative logic. We plotted
the derived bounds for the functions bsearch, fib and fact sq (blue
lines) and the measured stack usage for different inputs (red crosses).
The x-axis shows the size of the input; either the value of an
integer argument (fib and fact sq) or the length of an input array
(for bsearch). The y-axis shows the stack usage in bytes. The
experiments show that the logic is expressive enough to get very
tight bounds on the recursive programs. The bsearch example shows
that the logarithmic bound derived by the logic is very close the

program requirements; the fact sq example makes the point that our
logic is indeed compositional.

We also experimentally proved the efficiency of our automatic
tool on complete programs. This includes part of the CompCert
benchmarks and some programs from the MiBench benchmark suite.
The derived bounds are all off by exactly four bytes. Unfortunately,
the precision of bounds derived on the CertiKOS operating system
kernel could not be experimentally verified since it cannot be
compiled and monitored by our tool as a regular Linux program.
Further experiments may be possible by using, for instance, an
instrumented virtual machine.

As mentioned, all the derived bounds are off by four bytes. The
reason for this is that stack frames always reserve four bytes for a
potential function call: The return address needs to be pushed by
a call instruction in the callee. Obviously, the last function in the
function call chain does not call any other function. So these four
bytes remain unused. A different point of view is to see these four
bytes as the return address of main. Indeed, before main is called,
its return address is pushed on the stack. But, as described below, our
tool takes the stack pointer at the function prologue as a reference
point. So the return address is already on the stack and four bytes
are not counted in the experiment.

Various technical problems make the measurement of stack
consumption during the execution of compiled C code a complex
task on today’s systems. These problems involve security features
of the host operating system and implicit management of the stack
pointer by C compilers. Indeed, instructions allocating and freeing
stack space can be emitted by the compiler at any place in the
assembly code and can take several forms.

To our knowledge, no tool available today can monitor the stack
consumption of running programs with the precision required to
evaluate our bounds. For this purpose, we implemented a small
program able to monitor resources used by any function of a Linux
executable. It uses the ptrace system call8. This system call allows
one Linux process (we will call it the parent) to have a very precise
control on the execution of another process (called child). It is meant
to be used by common debugging tools like gdb or strace.

Our tool works as follows. We first retreive the location of
the entry point of the monitored function using standard ELF
files dissection tools. Once we have this address, we can set up
a breakpoint by replacing the function prologue with an x86 trap
instruction (ptrace allows to poke in the child’s address space).
This trap instruction plays the role of a breakpoint and when the
child executes it, control is given back to the monitoring process by
the kernel. At this point, we inspect the registers of the child process
to get the value of the stack pointer. This will become the stack
reference point. Now we can restore the function prologue that was
overwritten in the first step and proceed with the execution of the
child in step-by-step mode. At each executed assembly instruction
the control is given back to the parent process which inspects the
value of the stack pointer and tracks its watermark. When the stack
pointer becomes smaller than the reference point, we know that the
child process returned from the tracked function. At this point we
stop monitoring the stack pointer and display the stack watermark.

One obvious weakness of this method is that it stops the control
of the child process at every assembly instruction, and thus, is very
slow. However, for our purposes, this has not been an issue.

7. Related Work
In the following we discuss research that is related to our contribu-
tions in verified compilation, program logics, and automatic resource
analysis.

8 This monitoring program is available at http://zoo.cs.yale.edu/
~

qc35/data/mon.c
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on test programs with recursive functions. The functions fib and
qsort in Table 1 are for instance from the CompCert test suite. Files
with automatically derived bounds for non-recursive functions from
the CompCert test suite include mandelbrot.c which computes an
approximation of the Mandelbrot set and nbody.c which computes
an n-body simulation of a part of our solar system.

We also made sure that the experiments stressed our ability to
handle safety critical software. Embedded software typically runs in
a highly memory constrained environment and, in the most critical
cases, running out of stack space could turn into threat for human
lives. The MiBench [17] benchmark we used for this purpose is
free, publicly available, and representative for embedded software.
The use of recursion in MiBench programs is relatively rare, which
makes them a great target for our automatic stack analyzer. The
analyzed examples we present in Table 2 include for instance
Dijkstra’s single-source shortest-path algorithm (dijkstra.c), and the
cryptographic algorithms Blowfish (blowfish.c) and MD5 (md5).

Finally, Table 1 contains some recursive functions that demon-
strate the expressivity of our quantitative logic. The function bsearch
is, for example, a recursive binary search with logarithmic recursion
depth. The function fib computes the Fibonacci sequence using an
exponential algorithm and the function qsort implements a recursive
version of the quicksort algorithm. In both cases the asymptotically
tight linear bounds could be proved. The verification of the func-
tion fact sq shows the modularity of the logic: We first verify a
linear bound for the factorial function and then use this bound to
verify fact sqpnq, which contains the call factpn2q. The function
filter pos takes an array and computes a new array that contains
all positive elements of the input array. Similarly, filter find uses
the binary search bsearch to filter out all elements of an input array
that are contained in another array of size BL. The modularity of
the logic enables us to reuse the logarithmic bound that we already

File Name / Function Name Verified
Line Count Stack Bound

mibench{net{dijkstra.c enqueue 40 bytes
(174 LOC) dequeue 40 bytes

dijkstra 88 bytes
mibench{auto{bitcount.c bitcount 16 bytes
(110 LOC) bitstring 32 bytes
mibench{sec{blowfish.c BF encrypt 40 bytes
(233 LOC) BF options 8 bytes

BF ecb encrypt 80 bytes
mibench{sec{pgp{md5.c MD5Init 16 bytes
(335 LOC) MD5Update 168 bytes

MD5Final 168 bytes
MD5Transform 128 bytes

mibench{tele{↵t.c IsPowerOfTwo 16 bytes
(195 LOC) NumberOfBitsNeeded 24 bytes

ReverseBits 24 bytes
↵t float 160 bytes

certikos{vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes

mem init 72 bytes
pmap init 176 bytes
pt free 80 bytes
pt init 152 bytes
pt init kern 136 bytes
pt insert 80 bytes
pt read 56 bytes
pt resv 120 bytes

certikos{proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes

kctxt new 72 bytes
sched init 232 bytes
tdqueue init 208 bytes
thread init 192 bytes
thread spawn 96 bytes

compcert{mandelbrot.c main 56 bytes
(92 LOC)
compcert{nbody.c advance 80 bytes
(174 LOC) energy 56 bytes

o↵set momentum 24 bytes
setup bodies 16 bytes
main 112 bytes

Table 2. Automatically verified stack bounds for C functions.

derived for bsearch in the proof. The verification of some functions
is still underway. The bounds for the functions recid, bsearch, fib,
and qsort are already completely verified.

Our experiments have shown that the automatic stack analyzer
works effectively for our main application, the CertiKOS OS kernel.
The reason is that we designed the quantitative logic to include
exactly the subset of Clight that is needed for CertiKOS. It turned out
that this subset is also sufficient for many examples in the CompCert
test suite and the MiBench embedded software benchmarks. If a
program is not interactively analyzable in our logic then this due
to unsupported language constructs such as switch statements and
functions pointers. Many of these language features could easily be
supported by relatively small additions to the logic. An exception to
this are function pointers which would require more work, following
for example XCAP [31].

Accuracy of the Derived Bounds We have evaluated the precision
of the automatically and manually derived bounds by comparing
our verified upper bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
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Figure 8. Experimental evaluation of the accuracy of hand-derived
bounds. The plots compare the derived bounds (blue lines) for the
functions bsearch (at the top), fact sq (in the middle), and fib

(at the bottom) with the measured stack usage of the execution
of the respective function for different inputs (red crosses). The
experiments indicate that the derived bounds over-approximate the
actual stack usage by a small constant factor.

show that the derived bounds are very precise: Both the manually
and automatically derived bounds over-approximate the stack usage
by exactly four bytes (see the following explanation).

Figure 8 shows the results of three experiments we made with
hand-derived stack bounds using the quantitative logic. We plotted
the derived bounds for the functions bsearch, fib and fact sq (blue
lines) and the measured stack usage for different inputs (red crosses).
The x-axis shows the size of the input; either the value of an
integer argument (fib and fact sq) or the length of an input array
(for bsearch). The y-axis shows the stack usage in bytes. The
experiments show that the logic is expressive enough to get very
tight bounds on the recursive programs. The bsearch example shows
that the logarithmic bound derived by the logic is very close the

program requirements; the fact sq example makes the point that our
logic is indeed compositional.

We also experimentally proved the efficiency of our automatic
tool on complete programs. This includes part of the CompCert
benchmarks and some programs from the MiBench benchmark suite.
The derived bounds are all off by exactly four bytes. Unfortunately,
the precision of bounds derived on the CertiKOS operating system
kernel could not be experimentally verified since it cannot be
compiled and monitored by our tool as a regular Linux program.
Further experiments may be possible by using, for instance, an
instrumented virtual machine.

As mentioned, all the derived bounds are off by four bytes. The
reason for this is that stack frames always reserve four bytes for a
potential function call: The return address needs to be pushed by
a call instruction in the callee. Obviously, the last function in the
function call chain does not call any other function. So these four
bytes remain unused. A different point of view is to see these four
bytes as the return address of main. Indeed, before main is called,
its return address is pushed on the stack. But, as described below, our
tool takes the stack pointer at the function prologue as a reference
point. So the return address is already on the stack and four bytes
are not counted in the experiment.

Various technical problems make the measurement of stack
consumption during the execution of compiled C code a complex
task on today’s systems. These problems involve security features
of the host operating system and implicit management of the stack
pointer by C compilers. Indeed, instructions allocating and freeing
stack space can be emitted by the compiler at any place in the
assembly code and can take several forms.

To our knowledge, no tool available today can monitor the stack
consumption of running programs with the precision required to
evaluate our bounds. For this purpose, we implemented a small
program able to monitor resources used by any function of a Linux
executable. It uses the ptrace system call8. This system call allows
one Linux process (we will call it the parent) to have a very precise
control on the execution of another process (called child). It is meant
to be used by common debugging tools like gdb or strace.

Our tool works as follows. We first retreive the location of
the entry point of the monitored function using standard ELF
files dissection tools. Once we have this address, we can set up
a breakpoint by replacing the function prologue with an x86 trap
instruction (ptrace allows to poke in the child’s address space).
This trap instruction plays the role of a breakpoint and when the
child executes it, control is given back to the monitoring process by
the kernel. At this point, we inspect the registers of the child process
to get the value of the stack pointer. This will become the stack
reference point. Now we can restore the function prologue that was
overwritten in the first step and proceed with the execution of the
child in step-by-step mode. At each executed assembly instruction
the control is given back to the parent process which inspects the
value of the stack pointer and tracks its watermark. When the stack
pointer becomes smaller than the reference point, we know that the
child process returned from the tracked function. At this point we
stop monitoring the stack pointer and display the stack watermark.

One obvious weakness of this method is that it stops the control
of the child process at every assembly instruction, and thus, is very
slow. However, for our purposes, this has not been an issue.

7. Related Work
In the following we discuss research that is related to our contribu-
tions in verified compilation, program logics, and automatic resource
analysis.

8 This monitoring program is available at http://zoo.cs.yale.edu/
~

qc35/data/mon.c
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is developed with other quantitative resources in mind. Many of the
developed techniques can be applied to derive bounds for resources
such as heap memory or clock cycles. However, for clock-cycle
bounds there is a lot of additional work to be done that is beyond the
scope of this article (e.g., developing a formal model for hardware
caches and instruction pipelines).

The main innovation of our framework is that it enables the
formal verification of stack bounds for compiled x86 assembly
code at the C level. To gain the benefits of source-level verification
without the entailed disadvantages, we have to deal with three main
challenges.

1. We have to model the stack consumption of programs at the C
level and we have to formally prove that our model is consistent
with the stack consumption of the compiled code.

2. We have to design and implement a C-level verification mecha-
nism that allows users to derive parametric stack-usage bounds
in an interactive and flexible way.

3. We have to minimize user interaction during the verification to
enable the verification of large systems.

To meet Challenge 1, we use event traces and verified compilation.
Our starting point is the CompCert C Compiler. It relies on event
traces to prove that a compiled program is a refinement of the source
program. We extend event traces with events for function calls and
returns and define a weight for event traces. The weight describes
the stack-space consumption of one program execution as a function
of a cost metric which assigns a cost to individual call and return
events. The idea is that a user or an (semi) automatic analysis tool
derives bounds on the weights of event traces that depend on the
stack-frame sizes of the program functions. During compilation the
compiler produces a specific cost metric that guarantees that the
weight of an event trace computed with this metric is an upper bound
on the stack-space usage of the compiled assembly program which
produces this trace. As a result, we derive a verified upper bound
if we instantiate the derived memory bound with the cost metric
produced by the compiler.

We implemented the extended event traces for full CompCert C
and all intermediate languages down to x86 assembly in Coq. We
extended CompCert’s soundness theorem to take into account the
weights of traces. In addition to CompCert’s refinement theorem for
the original event traces, we prove that compiled programs produce
extended event traces whose weights are less or equal to the weights
of the traces at the source level. This means that we allow reordering
or deletion of call and return events as long the weight of the trace is
reduced or unchanged. To relate the weight of traces to the execution
on a system with finite stack space, we modified the CompCert x86
assembly semantics into a more realistic x86 assembly that features
a finite stack, and reimplemented the assembly generation pass of
CompCert to our new x86 assembly semantics.

To meet Challenge 2, we have developed and implemented a novel
quantitative Hoare logic for CompCert Clight in Coq. To account for
memory consumption, the assertions of the logic generalize the usual
boolean-valued assertions of Hoare logic. Instead of the classic true,
our quantitative assertions return a natural number that indicates
the amount of memory that is needed to execute the program. The
boolean false is represented by 8 and indicates that there are no
guarantees provided for the future execution.

We proved the soundness of our quantitative Hoare logic with
respect to Clight and CompCert’s continuation-based small-step
semantics. The soundness theorem states that Hoare triples that
are derived with our inference rules describe sound bounds on the
weights of traces. The logic can be used for interactive stack-bound
development or as a backend for verified static analysis tools.

For clarity, we do not prove the safety of programs and simply
assume that this is done using a different tool such as Appel’s
separation logic for Clight [3]. It would be possible to integrate our
logic into a separation logic for safety proofs. This would however
diminish the deployability of the quantitative logic as a backend for
static stack-bound analysis tools since they would be required to
also prove memory safety.

To meet Challenge 3, we implemented an automatic stack ana-
lyzer for C programs. To verify the soundness of the stack analyzer
each successful run generates a derivation in the quantitative Hoare
logic. This does not only simplify the verification but also allows
interoperability with stack bounds that have been interactively devel-
oped in the logic or derived by some other static analysis. Concep-
tually, our stack analyzer is rather simple but we have proved that
it derives sound bounds for programs without recursion and func-
tion pointers. This is already sufficient for many programs used in
embedded systems. Using our automatic analysis we have created a
verified C compiler that translates a program without function point-
ers and recursive calls to x86 assembly and automatically derives a
stack bound for each function in the program including mainpq.

We have successfully used our quantitative Hoare logic, the
extended C compiler, and the automatic stack analyzer to verify end-
to-end memory bounds for micro benchmarks and system software.
Our main example is the CertiKOS [15] operating system kernel that
is currently under development at Yale. Our automatic analyzer finds
stack bounds for all functions in the simplified development version
of CertiKOS that is currently verified. Other examples are taken
from Leroy’s CompCert benchmarks and the MiBench embedded
benchmark suite [17]. To evaluate the quality of the verified stack-
space bounds, we experimentally compared the automatically and
manually verified bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
indicate that both the manually and automatically derived bounds
over-approximate the stack usage by exactly four bytes. More details
can be found in Section 6.

In summary, we make the following contributions.

• We introduce a methodology that uses cost metrics to link event
traces to resource consumption. This approach enables us to
link source-level code to the resource consumption of compiled
target-level code.

• We develop a novel quantitative Hoare logic to reason about
the resource consumption of programs at the source level. We
have formally verified the soundness of the logic with respect to
CompCert Clight in Coq.

• We introduce Quantitative CompCert, a modified version of
the verified CompCert C Compiler, in which parametric stack
bounds are preserved during compilation. Furthermore, Quanti-
tative CompCert creates a cost metric so that the instantiation of
the bounds with the metric forms an upper bound on the memory
consumption of the compiled code.

• We have implemented and verified an automatic stack analyzer
that is guaranteed to compute stack bounds for non-recursive
programs.

• We have evaluated the practicability of our framework with
experiments using micro benchmarks and system code.
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The complete Coq development and the imple-
mented tools are well documented and publically
available on the authors’ websites. The PLDI Ar-
tifact Evaluation Committee reproduced samples
of our experiments and tested the implemented
tools on additional programs. The reviewers unani-
mously stated that our implementation exceeded their expectations.

Technical Report 2 2014/3/27



Promising First Results: Stack Bounds

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs 

• Uses CompCert and a program logic that 
is based on amortized analysis


• Verified in Coq


• Applied to the CertiKOS hypervisor kernel

Function Name Verified Stack Bound

recidpq 8a bytes
bsearchpx, lo, hiq 40p1 ` log2phi ´ loqq bytes
fibpnq 24n bytes
qsortpa, lo, hiq 48phi ´ loq bytes
filter pospa, sz, lo, hiq 48phi ´ loq bytes
sumpa, lo, hiq 32phi ´ loq bytes
fact sqpnq 40 ` 24n2 bytes
filter findpa, sz, lo, hiq 128 ` 48phi ´ loq ` 40 log2pBLq bytes

Table 1. Manually verified stack bounds for C functions.

on a valid sub array. The file sizes of the manual verified examples
range from 8 to 52 lines of code.

Our main application of the automatic stack-analyzer is the
CertiKOS operating system kernel [15]. Currently, the stack in
CertiKOS is preallocated and proving the absence of stack-overflow
is essential in the verification of the reliability of the system.
Since CertiKOS does not make use of recursion, we can use
the automatic analysis to derive precise stack bounds. Using our
Quantitative CompCert compiler, we were, for instance, able to
compile and compute bounds for the virtual memory management
module (certikos{vmm.c) and the process management module
(certikos{proc.c). In total more than 1500 lines of system C code
were processed without any human interaction. Because of the large
number of functions in CertiKOS, only a sample of the analyzed
functions is displayed in Table 2.

Testing the quantitative Hoare logic and the compiler on Com-
pCert test suite was a natural choice since our compiler builds on
CompCert’s architecture. This also allowed us to make sure that we
did not introduce any regression with respect to the original Com-
pCert compiler. To stress the expressivity of the logic we focused
on test programs with recursive functions. The functions fib and
qsort in Table 1 are for instance from the CompCert test suite. Files
with automatically derived bounds for non-recursive functions from
the CompCert test suite include mandelbrot.c which computes an
approximation of the Mandelbrot set and nbody.c which computes
an n-body simulation of a part of our solar system.

We also made sure that the experiments stressed our ability to
handle safety critical software. Embedded software typically runs in
a highly memory constrained environment and, in the most critical
cases, running out of stack space could turn into threat for human
lives. The MiBench [17] benchmark we used for this purpose is
free, publicly available, and representative for embedded software.
The use of recursion in MiBench programs is relatively rare, which
makes them a great target for our automatic stack analyzer. The
analyzed examples we present in Table 2 include for instance
Dijkstra’s single-source shortest-path algorithm (dijkstra.c), and the
cryptographic algorithms Blowfish (blowfish.c) and MD5 (md5).

Finally, Table 1 contains some recursive functions that demon-
strate the expressivity of our quantitative logic. The function bsearch
is, for example, a recursive binary search with logarithmic recursion
depth. The function fib computes the Fibonacci sequence using an
exponential algorithm and the function qsort implements a recursive
version of the quicksort algorithm. In both cases the asymptotically
tight linear bounds could be proved. The verification of the func-
tion fact sq shows the modularity of the logic: We first verify a
linear bound for the factorial function and then use this bound to
verify fact sqpnq, which contains the call factpn2q. The function
filter pos takes an array and computes a new array that contains
all positive elements of the input array. Similarly, filter find uses
the binary search bsearch to filter out all elements of an input array
that are contained in another array of size BL. The modularity of
the logic enables us to reuse the logarithmic bound that we already

File Name / Function Name Verified
Line Count Stack Bound

mibench{net{dijkstra.c enqueue 40 bytes
(174 LOC) dequeue 40 bytes

dijkstra 88 bytes
mibench{auto{bitcount.c bitcount 16 bytes
(110 LOC) bitstring 32 bytes
mibench{sec{blowfish.c BF encrypt 40 bytes
(233 LOC) BF options 8 bytes

BF ecb encrypt 80 bytes
mibench{sec{pgp{md5.c MD5Init 16 bytes
(335 LOC) MD5Update 168 bytes

MD5Final 168 bytes
MD5Transform 128 bytes

mibench{tele{↵t.c IsPowerOfTwo 16 bytes
(195 LOC) NumberOfBitsNeeded 24 bytes

ReverseBits 24 bytes
↵t float 160 bytes

certikos{vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes

mem init 72 bytes
pmap init 176 bytes
pt free 80 bytes
pt init 152 bytes
pt init kern 136 bytes
pt insert 80 bytes
pt read 56 bytes
pt resv 120 bytes

certikos{proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes

kctxt new 72 bytes
sched init 232 bytes
tdqueue init 208 bytes
thread init 192 bytes
thread spawn 96 bytes

compcert{mandelbrot.c main 56 bytes
(92 LOC)
compcert{nbody.c advance 80 bytes
(174 LOC) energy 56 bytes

o↵set momentum 24 bytes
setup bodies 16 bytes
main 112 bytes

Table 2. Automatically verified stack bounds for C functions.

derived for bsearch in the proof. The verification of some functions
is still underway. The bounds for the functions recid, bsearch, fib,
and qsort are already completely verified.

Our experiments have shown that the automatic stack analyzer
works effectively for our main application, the CertiKOS OS kernel.
The reason is that we designed the quantitative logic to include
exactly the subset of Clight that is needed for CertiKOS. It turned out
that this subset is also sufficient for many examples in the CompCert
test suite and the MiBench embedded software benchmarks. If a
program is not interactively analyzable in our logic then this due
to unsupported language constructs such as switch statements and
functions pointers. Many of these language features could easily be
supported by relatively small additions to the logic. An exception to
this are function pointers which would require more work, following
for example XCAP [31].

Accuracy of the Derived Bounds We have evaluated the precision
of the automatically and manually derived bounds by comparing
our verified upper bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
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Figure 8. Experimental evaluation of the accuracy of hand-derived
bounds. The plots compare the derived bounds (blue lines) for the
functions bsearch (at the top), fact sq (in the middle), and fib

(at the bottom) with the measured stack usage of the execution
of the respective function for different inputs (red crosses). The
experiments indicate that the derived bounds over-approximate the
actual stack usage by a small constant factor.

show that the derived bounds are very precise: Both the manually
and automatically derived bounds over-approximate the stack usage
by exactly four bytes (see the following explanation).

Figure 8 shows the results of three experiments we made with
hand-derived stack bounds using the quantitative logic. We plotted
the derived bounds for the functions bsearch, fib and fact sq (blue
lines) and the measured stack usage for different inputs (red crosses).
The x-axis shows the size of the input; either the value of an
integer argument (fib and fact sq) or the length of an input array
(for bsearch). The y-axis shows the stack usage in bytes. The
experiments show that the logic is expressive enough to get very
tight bounds on the recursive programs. The bsearch example shows
that the logarithmic bound derived by the logic is very close the

program requirements; the fact sq example makes the point that our
logic is indeed compositional.

We also experimentally proved the efficiency of our automatic
tool on complete programs. This includes part of the CompCert
benchmarks and some programs from the MiBench benchmark suite.
The derived bounds are all off by exactly four bytes. Unfortunately,
the precision of bounds derived on the CertiKOS operating system
kernel could not be experimentally verified since it cannot be
compiled and monitored by our tool as a regular Linux program.
Further experiments may be possible by using, for instance, an
instrumented virtual machine.

As mentioned, all the derived bounds are off by four bytes. The
reason for this is that stack frames always reserve four bytes for a
potential function call: The return address needs to be pushed by
a call instruction in the callee. Obviously, the last function in the
function call chain does not call any other function. So these four
bytes remain unused. A different point of view is to see these four
bytes as the return address of main. Indeed, before main is called,
its return address is pushed on the stack. But, as described below, our
tool takes the stack pointer at the function prologue as a reference
point. So the return address is already on the stack and four bytes
are not counted in the experiment.

Various technical problems make the measurement of stack
consumption during the execution of compiled C code a complex
task on today’s systems. These problems involve security features
of the host operating system and implicit management of the stack
pointer by C compilers. Indeed, instructions allocating and freeing
stack space can be emitted by the compiler at any place in the
assembly code and can take several forms.

To our knowledge, no tool available today can monitor the stack
consumption of running programs with the precision required to
evaluate our bounds. For this purpose, we implemented a small
program able to monitor resources used by any function of a Linux
executable. It uses the ptrace system call8. This system call allows
one Linux process (we will call it the parent) to have a very precise
control on the execution of another process (called child). It is meant
to be used by common debugging tools like gdb or strace.

Our tool works as follows. We first retreive the location of
the entry point of the monitored function using standard ELF
files dissection tools. Once we have this address, we can set up
a breakpoint by replacing the function prologue with an x86 trap
instruction (ptrace allows to poke in the child’s address space).
This trap instruction plays the role of a breakpoint and when the
child executes it, control is given back to the monitoring process by
the kernel. At this point, we inspect the registers of the child process
to get the value of the stack pointer. This will become the stack
reference point. Now we can restore the function prologue that was
overwritten in the first step and proceed with the execution of the
child in step-by-step mode. At each executed assembly instruction
the control is given back to the parent process which inspects the
value of the stack pointer and tracks its watermark. When the stack
pointer becomes smaller than the reference point, we know that the
child process returned from the tracked function. At this point we
stop monitoring the stack pointer and display the stack watermark.

One obvious weakness of this method is that it stops the control
of the child process at every assembly instruction, and thus, is very
slow. However, for our purposes, this has not been an issue.

7. Related Work
In the following we discuss research that is related to our contribu-
tions in verified compilation, program logics, and automatic resource
analysis.

8 This monitoring program is available at http://zoo.cs.yale.edu/
~

qc35/data/mon.c
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is developed with other quantitative resources in mind. Many of the
developed techniques can be applied to derive bounds for resources
such as heap memory or clock cycles. However, for clock-cycle
bounds there is a lot of additional work to be done that is beyond the
scope of this article (e.g., developing a formal model for hardware
caches and instruction pipelines).

The main innovation of our framework is that it enables the
formal verification of stack bounds for compiled x86 assembly
code at the C level. To gain the benefits of source-level verification
without the entailed disadvantages, we have to deal with three main
challenges.

1. We have to model the stack consumption of programs at the C
level and we have to formally prove that our model is consistent
with the stack consumption of the compiled code.

2. We have to design and implement a C-level verification mecha-
nism that allows users to derive parametric stack-usage bounds
in an interactive and flexible way.

3. We have to minimize user interaction during the verification to
enable the verification of large systems.

To meet Challenge 1, we use event traces and verified compilation.
Our starting point is the CompCert C Compiler. It relies on event
traces to prove that a compiled program is a refinement of the source
program. We extend event traces with events for function calls and
returns and define a weight for event traces. The weight describes
the stack-space consumption of one program execution as a function
of a cost metric which assigns a cost to individual call and return
events. The idea is that a user or an (semi) automatic analysis tool
derives bounds on the weights of event traces that depend on the
stack-frame sizes of the program functions. During compilation the
compiler produces a specific cost metric that guarantees that the
weight of an event trace computed with this metric is an upper bound
on the stack-space usage of the compiled assembly program which
produces this trace. As a result, we derive a verified upper bound
if we instantiate the derived memory bound with the cost metric
produced by the compiler.

We implemented the extended event traces for full CompCert C
and all intermediate languages down to x86 assembly in Coq. We
extended CompCert’s soundness theorem to take into account the
weights of traces. In addition to CompCert’s refinement theorem for
the original event traces, we prove that compiled programs produce
extended event traces whose weights are less or equal to the weights
of the traces at the source level. This means that we allow reordering
or deletion of call and return events as long the weight of the trace is
reduced or unchanged. To relate the weight of traces to the execution
on a system with finite stack space, we modified the CompCert x86
assembly semantics into a more realistic x86 assembly that features
a finite stack, and reimplemented the assembly generation pass of
CompCert to our new x86 assembly semantics.

To meet Challenge 2, we have developed and implemented a novel
quantitative Hoare logic for CompCert Clight in Coq. To account for
memory consumption, the assertions of the logic generalize the usual
boolean-valued assertions of Hoare logic. Instead of the classic true,
our quantitative assertions return a natural number that indicates
the amount of memory that is needed to execute the program. The
boolean false is represented by 8 and indicates that there are no
guarantees provided for the future execution.

We proved the soundness of our quantitative Hoare logic with
respect to Clight and CompCert’s continuation-based small-step
semantics. The soundness theorem states that Hoare triples that
are derived with our inference rules describe sound bounds on the
weights of traces. The logic can be used for interactive stack-bound
development or as a backend for verified static analysis tools.

For clarity, we do not prove the safety of programs and simply
assume that this is done using a different tool such as Appel’s
separation logic for Clight [3]. It would be possible to integrate our
logic into a separation logic for safety proofs. This would however
diminish the deployability of the quantitative logic as a backend for
static stack-bound analysis tools since they would be required to
also prove memory safety.

To meet Challenge 3, we implemented an automatic stack ana-
lyzer for C programs. To verify the soundness of the stack analyzer
each successful run generates a derivation in the quantitative Hoare
logic. This does not only simplify the verification but also allows
interoperability with stack bounds that have been interactively devel-
oped in the logic or derived by some other static analysis. Concep-
tually, our stack analyzer is rather simple but we have proved that
it derives sound bounds for programs without recursion and func-
tion pointers. This is already sufficient for many programs used in
embedded systems. Using our automatic analysis we have created a
verified C compiler that translates a program without function point-
ers and recursive calls to x86 assembly and automatically derives a
stack bound for each function in the program including mainpq.

We have successfully used our quantitative Hoare logic, the
extended C compiler, and the automatic stack analyzer to verify end-
to-end memory bounds for micro benchmarks and system software.
Our main example is the CertiKOS [15] operating system kernel that
is currently under development at Yale. Our automatic analyzer finds
stack bounds for all functions in the simplified development version
of CertiKOS that is currently verified. Other examples are taken
from Leroy’s CompCert benchmarks and the MiBench embedded
benchmark suite [17]. To evaluate the quality of the verified stack-
space bounds, we experimentally compared the automatically and
manually verified bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
indicate that both the manually and automatically derived bounds
over-approximate the stack usage by exactly four bytes. More details
can be found in Section 6.

In summary, we make the following contributions.

• We introduce a methodology that uses cost metrics to link event
traces to resource consumption. This approach enables us to
link source-level code to the resource consumption of compiled
target-level code.

• We develop a novel quantitative Hoare logic to reason about
the resource consumption of programs at the source level. We
have formally verified the soundness of the logic with respect to
CompCert Clight in Coq.

• We introduce Quantitative CompCert, a modified version of
the verified CompCert C Compiler, in which parametric stack
bounds are preserved during compilation. Furthermore, Quanti-
tative CompCert creates a cost metric so that the instantiation of
the bounds with the metric forms an upper bound on the memory
consumption of the compiled code.

• We have implemented and verified an automatic stack analyzer
that is guaranteed to compute stack bounds for non-recursive
programs.

• We have evaluated the practicability of our framework with
experiments using micro benchmarks and system code.
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The complete Coq development and the imple-
mented tools are well documented and publically
available on the authors’ websites. The PLDI Ar-
tifact Evaluation Committee reproduced samples
of our experiments and tested the implemented
tools on additional programs. The reviewers unani-
mously stated that our implementation exceeded their expectations.
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Promising First Results: Stack Bounds

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs 

• Uses CompCert and a program logic that 
is based on amortized analysis


• Verified in Coq


• Applied to the CertiKOS hypervisor kernel

Function Name Verified Stack Bound

recidpq 8a bytes
bsearchpx, lo, hiq 40p1 ` log2phi ´ loqq bytes
fibpnq 24n bytes
qsortpa, lo, hiq 48phi ´ loq bytes
filter pospa, sz, lo, hiq 48phi ´ loq bytes
sumpa, lo, hiq 32phi ´ loq bytes
fact sqpnq 40 ` 24n2 bytes
filter findpa, sz, lo, hiq 128 ` 48phi ´ loq ` 40 log2pBLq bytes

Table 1. Manually verified stack bounds for C functions.

on a valid sub array. The file sizes of the manual verified examples
range from 8 to 52 lines of code.

Our main application of the automatic stack-analyzer is the
CertiKOS operating system kernel [15]. Currently, the stack in
CertiKOS is preallocated and proving the absence of stack-overflow
is essential in the verification of the reliability of the system.
Since CertiKOS does not make use of recursion, we can use
the automatic analysis to derive precise stack bounds. Using our
Quantitative CompCert compiler, we were, for instance, able to
compile and compute bounds for the virtual memory management
module (certikos{vmm.c) and the process management module
(certikos{proc.c). In total more than 1500 lines of system C code
were processed without any human interaction. Because of the large
number of functions in CertiKOS, only a sample of the analyzed
functions is displayed in Table 2.

Testing the quantitative Hoare logic and the compiler on Com-
pCert test suite was a natural choice since our compiler builds on
CompCert’s architecture. This also allowed us to make sure that we
did not introduce any regression with respect to the original Com-
pCert compiler. To stress the expressivity of the logic we focused
on test programs with recursive functions. The functions fib and
qsort in Table 1 are for instance from the CompCert test suite. Files
with automatically derived bounds for non-recursive functions from
the CompCert test suite include mandelbrot.c which computes an
approximation of the Mandelbrot set and nbody.c which computes
an n-body simulation of a part of our solar system.

We also made sure that the experiments stressed our ability to
handle safety critical software. Embedded software typically runs in
a highly memory constrained environment and, in the most critical
cases, running out of stack space could turn into threat for human
lives. The MiBench [17] benchmark we used for this purpose is
free, publicly available, and representative for embedded software.
The use of recursion in MiBench programs is relatively rare, which
makes them a great target for our automatic stack analyzer. The
analyzed examples we present in Table 2 include for instance
Dijkstra’s single-source shortest-path algorithm (dijkstra.c), and the
cryptographic algorithms Blowfish (blowfish.c) and MD5 (md5).

Finally, Table 1 contains some recursive functions that demon-
strate the expressivity of our quantitative logic. The function bsearch
is, for example, a recursive binary search with logarithmic recursion
depth. The function fib computes the Fibonacci sequence using an
exponential algorithm and the function qsort implements a recursive
version of the quicksort algorithm. In both cases the asymptotically
tight linear bounds could be proved. The verification of the func-
tion fact sq shows the modularity of the logic: We first verify a
linear bound for the factorial function and then use this bound to
verify fact sqpnq, which contains the call factpn2q. The function
filter pos takes an array and computes a new array that contains
all positive elements of the input array. Similarly, filter find uses
the binary search bsearch to filter out all elements of an input array
that are contained in another array of size BL. The modularity of
the logic enables us to reuse the logarithmic bound that we already

File Name / Function Name Verified
Line Count Stack Bound

mibench{net{dijkstra.c enqueue 40 bytes
(174 LOC) dequeue 40 bytes

dijkstra 88 bytes
mibench{auto{bitcount.c bitcount 16 bytes
(110 LOC) bitstring 32 bytes
mibench{sec{blowfish.c BF encrypt 40 bytes
(233 LOC) BF options 8 bytes

BF ecb encrypt 80 bytes
mibench{sec{pgp{md5.c MD5Init 16 bytes
(335 LOC) MD5Update 168 bytes

MD5Final 168 bytes
MD5Transform 128 bytes

mibench{tele{↵t.c IsPowerOfTwo 16 bytes
(195 LOC) NumberOfBitsNeeded 24 bytes

ReverseBits 24 bytes
↵t float 160 bytes

certikos{vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes

mem init 72 bytes
pmap init 176 bytes
pt free 80 bytes
pt init 152 bytes
pt init kern 136 bytes
pt insert 80 bytes
pt read 56 bytes
pt resv 120 bytes

certikos{proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes

kctxt new 72 bytes
sched init 232 bytes
tdqueue init 208 bytes
thread init 192 bytes
thread spawn 96 bytes

compcert{mandelbrot.c main 56 bytes
(92 LOC)
compcert{nbody.c advance 80 bytes
(174 LOC) energy 56 bytes

o↵set momentum 24 bytes
setup bodies 16 bytes
main 112 bytes

Table 2. Automatically verified stack bounds for C functions.

derived for bsearch in the proof. The verification of some functions
is still underway. The bounds for the functions recid, bsearch, fib,
and qsort are already completely verified.

Our experiments have shown that the automatic stack analyzer
works effectively for our main application, the CertiKOS OS kernel.
The reason is that we designed the quantitative logic to include
exactly the subset of Clight that is needed for CertiKOS. It turned out
that this subset is also sufficient for many examples in the CompCert
test suite and the MiBench embedded software benchmarks. If a
program is not interactively analyzable in our logic then this due
to unsupported language constructs such as switch statements and
functions pointers. Many of these language features could easily be
supported by relatively small additions to the logic. An exception to
this are function pointers which would require more work, following
for example XCAP [31].

Accuracy of the Derived Bounds We have evaluated the precision
of the automatically and manually derived bounds by comparing
our verified upper bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
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Figure 8. Experimental evaluation of the accuracy of hand-derived
bounds. The plots compare the derived bounds (blue lines) for the
functions bsearch (at the top), fact sq (in the middle), and fib

(at the bottom) with the measured stack usage of the execution
of the respective function for different inputs (red crosses). The
experiments indicate that the derived bounds over-approximate the
actual stack usage by a small constant factor.

show that the derived bounds are very precise: Both the manually
and automatically derived bounds over-approximate the stack usage
by exactly four bytes (see the following explanation).

Figure 8 shows the results of three experiments we made with
hand-derived stack bounds using the quantitative logic. We plotted
the derived bounds for the functions bsearch, fib and fact sq (blue
lines) and the measured stack usage for different inputs (red crosses).
The x-axis shows the size of the input; either the value of an
integer argument (fib and fact sq) or the length of an input array
(for bsearch). The y-axis shows the stack usage in bytes. The
experiments show that the logic is expressive enough to get very
tight bounds on the recursive programs. The bsearch example shows
that the logarithmic bound derived by the logic is very close the

program requirements; the fact sq example makes the point that our
logic is indeed compositional.

We also experimentally proved the efficiency of our automatic
tool on complete programs. This includes part of the CompCert
benchmarks and some programs from the MiBench benchmark suite.
The derived bounds are all off by exactly four bytes. Unfortunately,
the precision of bounds derived on the CertiKOS operating system
kernel could not be experimentally verified since it cannot be
compiled and monitored by our tool as a regular Linux program.
Further experiments may be possible by using, for instance, an
instrumented virtual machine.

As mentioned, all the derived bounds are off by four bytes. The
reason for this is that stack frames always reserve four bytes for a
potential function call: The return address needs to be pushed by
a call instruction in the callee. Obviously, the last function in the
function call chain does not call any other function. So these four
bytes remain unused. A different point of view is to see these four
bytes as the return address of main. Indeed, before main is called,
its return address is pushed on the stack. But, as described below, our
tool takes the stack pointer at the function prologue as a reference
point. So the return address is already on the stack and four bytes
are not counted in the experiment.

Various technical problems make the measurement of stack
consumption during the execution of compiled C code a complex
task on today’s systems. These problems involve security features
of the host operating system and implicit management of the stack
pointer by C compilers. Indeed, instructions allocating and freeing
stack space can be emitted by the compiler at any place in the
assembly code and can take several forms.

To our knowledge, no tool available today can monitor the stack
consumption of running programs with the precision required to
evaluate our bounds. For this purpose, we implemented a small
program able to monitor resources used by any function of a Linux
executable. It uses the ptrace system call8. This system call allows
one Linux process (we will call it the parent) to have a very precise
control on the execution of another process (called child). It is meant
to be used by common debugging tools like gdb or strace.

Our tool works as follows. We first retreive the location of
the entry point of the monitored function using standard ELF
files dissection tools. Once we have this address, we can set up
a breakpoint by replacing the function prologue with an x86 trap
instruction (ptrace allows to poke in the child’s address space).
This trap instruction plays the role of a breakpoint and when the
child executes it, control is given back to the monitoring process by
the kernel. At this point, we inspect the registers of the child process
to get the value of the stack pointer. This will become the stack
reference point. Now we can restore the function prologue that was
overwritten in the first step and proceed with the execution of the
child in step-by-step mode. At each executed assembly instruction
the control is given back to the parent process which inspects the
value of the stack pointer and tracks its watermark. When the stack
pointer becomes smaller than the reference point, we know that the
child process returned from the tracked function. At this point we
stop monitoring the stack pointer and display the stack watermark.

One obvious weakness of this method is that it stops the control
of the child process at every assembly instruction, and thus, is very
slow. However, for our purposes, this has not been an issue.

7. Related Work
In the following we discuss research that is related to our contribu-
tions in verified compilation, program logics, and automatic resource
analysis.

8 This monitoring program is available at http://zoo.cs.yale.edu/
~

qc35/data/mon.c
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is developed with other quantitative resources in mind. Many of the
developed techniques can be applied to derive bounds for resources
such as heap memory or clock cycles. However, for clock-cycle
bounds there is a lot of additional work to be done that is beyond the
scope of this article (e.g., developing a formal model for hardware
caches and instruction pipelines).

The main innovation of our framework is that it enables the
formal verification of stack bounds for compiled x86 assembly
code at the C level. To gain the benefits of source-level verification
without the entailed disadvantages, we have to deal with three main
challenges.

1. We have to model the stack consumption of programs at the C
level and we have to formally prove that our model is consistent
with the stack consumption of the compiled code.

2. We have to design and implement a C-level verification mecha-
nism that allows users to derive parametric stack-usage bounds
in an interactive and flexible way.

3. We have to minimize user interaction during the verification to
enable the verification of large systems.

To meet Challenge 1, we use event traces and verified compilation.
Our starting point is the CompCert C Compiler. It relies on event
traces to prove that a compiled program is a refinement of the source
program. We extend event traces with events for function calls and
returns and define a weight for event traces. The weight describes
the stack-space consumption of one program execution as a function
of a cost metric which assigns a cost to individual call and return
events. The idea is that a user or an (semi) automatic analysis tool
derives bounds on the weights of event traces that depend on the
stack-frame sizes of the program functions. During compilation the
compiler produces a specific cost metric that guarantees that the
weight of an event trace computed with this metric is an upper bound
on the stack-space usage of the compiled assembly program which
produces this trace. As a result, we derive a verified upper bound
if we instantiate the derived memory bound with the cost metric
produced by the compiler.

We implemented the extended event traces for full CompCert C
and all intermediate languages down to x86 assembly in Coq. We
extended CompCert’s soundness theorem to take into account the
weights of traces. In addition to CompCert’s refinement theorem for
the original event traces, we prove that compiled programs produce
extended event traces whose weights are less or equal to the weights
of the traces at the source level. This means that we allow reordering
or deletion of call and return events as long the weight of the trace is
reduced or unchanged. To relate the weight of traces to the execution
on a system with finite stack space, we modified the CompCert x86
assembly semantics into a more realistic x86 assembly that features
a finite stack, and reimplemented the assembly generation pass of
CompCert to our new x86 assembly semantics.

To meet Challenge 2, we have developed and implemented a novel
quantitative Hoare logic for CompCert Clight in Coq. To account for
memory consumption, the assertions of the logic generalize the usual
boolean-valued assertions of Hoare logic. Instead of the classic true,
our quantitative assertions return a natural number that indicates
the amount of memory that is needed to execute the program. The
boolean false is represented by 8 and indicates that there are no
guarantees provided for the future execution.

We proved the soundness of our quantitative Hoare logic with
respect to Clight and CompCert’s continuation-based small-step
semantics. The soundness theorem states that Hoare triples that
are derived with our inference rules describe sound bounds on the
weights of traces. The logic can be used for interactive stack-bound
development or as a backend for verified static analysis tools.

For clarity, we do not prove the safety of programs and simply
assume that this is done using a different tool such as Appel’s
separation logic for Clight [3]. It would be possible to integrate our
logic into a separation logic for safety proofs. This would however
diminish the deployability of the quantitative logic as a backend for
static stack-bound analysis tools since they would be required to
also prove memory safety.

To meet Challenge 3, we implemented an automatic stack ana-
lyzer for C programs. To verify the soundness of the stack analyzer
each successful run generates a derivation in the quantitative Hoare
logic. This does not only simplify the verification but also allows
interoperability with stack bounds that have been interactively devel-
oped in the logic or derived by some other static analysis. Concep-
tually, our stack analyzer is rather simple but we have proved that
it derives sound bounds for programs without recursion and func-
tion pointers. This is already sufficient for many programs used in
embedded systems. Using our automatic analysis we have created a
verified C compiler that translates a program without function point-
ers and recursive calls to x86 assembly and automatically derives a
stack bound for each function in the program including mainpq.

We have successfully used our quantitative Hoare logic, the
extended C compiler, and the automatic stack analyzer to verify end-
to-end memory bounds for micro benchmarks and system software.
Our main example is the CertiKOS [15] operating system kernel that
is currently under development at Yale. Our automatic analyzer finds
stack bounds for all functions in the simplified development version
of CertiKOS that is currently verified. Other examples are taken
from Leroy’s CompCert benchmarks and the MiBench embedded
benchmark suite [17]. To evaluate the quality of the verified stack-
space bounds, we experimentally compared the automatically and
manually verified bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
indicate that both the manually and automatically derived bounds
over-approximate the stack usage by exactly four bytes. More details
can be found in Section 6.

In summary, we make the following contributions.

• We introduce a methodology that uses cost metrics to link event
traces to resource consumption. This approach enables us to
link source-level code to the resource consumption of compiled
target-level code.

• We develop a novel quantitative Hoare logic to reason about
the resource consumption of programs at the source level. We
have formally verified the soundness of the logic with respect to
CompCert Clight in Coq.

• We introduce Quantitative CompCert, a modified version of
the verified CompCert C Compiler, in which parametric stack
bounds are preserved during compilation. Furthermore, Quanti-
tative CompCert creates a cost metric so that the instantiation of
the bounds with the metric forms an upper bound on the memory
consumption of the compiled code.

• We have implemented and verified an automatic stack analyzer
that is guaranteed to compute stack bounds for non-recursive
programs.

• We have evaluated the practicability of our framework with
experiments using micro benchmarks and system code.
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The complete Coq development and the imple-
mented tools are well documented and publically
available on the authors’ websites. The PLDI Ar-
tifact Evaluation Committee reproduced samples
of our experiments and tested the implemented
tools on additional programs. The reviewers unani-
mously stated that our implementation exceeded their expectations.
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Promising First Results: Stack Bounds

[PLDI’14]: End-to-End Verification of Stack-
Space Bounds for C Programs 

• Uses CompCert and a program logic that 
is based on amortized analysis


• Verified in Coq


• Applied to the CertiKOS hypervisor kernel

Function Name Verified Stack Bound

recidpq 8a bytes
bsearchpx, lo, hiq 40p1 ` log2phi ´ loqq bytes
fibpnq 24n bytes
qsortpa, lo, hiq 48phi ´ loq bytes
filter pospa, sz, lo, hiq 48phi ´ loq bytes
sumpa, lo, hiq 32phi ´ loq bytes
fact sqpnq 40 ` 24n2 bytes
filter findpa, sz, lo, hiq 128 ` 48phi ´ loq ` 40 log2pBLq bytes

Table 1. Manually verified stack bounds for C functions.

on a valid sub array. The file sizes of the manual verified examples
range from 8 to 52 lines of code.

Our main application of the automatic stack-analyzer is the
CertiKOS operating system kernel [15]. Currently, the stack in
CertiKOS is preallocated and proving the absence of stack-overflow
is essential in the verification of the reliability of the system.
Since CertiKOS does not make use of recursion, we can use
the automatic analysis to derive precise stack bounds. Using our
Quantitative CompCert compiler, we were, for instance, able to
compile and compute bounds for the virtual memory management
module (certikos{vmm.c) and the process management module
(certikos{proc.c). In total more than 1500 lines of system C code
were processed without any human interaction. Because of the large
number of functions in CertiKOS, only a sample of the analyzed
functions is displayed in Table 2.

Testing the quantitative Hoare logic and the compiler on Com-
pCert test suite was a natural choice since our compiler builds on
CompCert’s architecture. This also allowed us to make sure that we
did not introduce any regression with respect to the original Com-
pCert compiler. To stress the expressivity of the logic we focused
on test programs with recursive functions. The functions fib and
qsort in Table 1 are for instance from the CompCert test suite. Files
with automatically derived bounds for non-recursive functions from
the CompCert test suite include mandelbrot.c which computes an
approximation of the Mandelbrot set and nbody.c which computes
an n-body simulation of a part of our solar system.

We also made sure that the experiments stressed our ability to
handle safety critical software. Embedded software typically runs in
a highly memory constrained environment and, in the most critical
cases, running out of stack space could turn into threat for human
lives. The MiBench [17] benchmark we used for this purpose is
free, publicly available, and representative for embedded software.
The use of recursion in MiBench programs is relatively rare, which
makes them a great target for our automatic stack analyzer. The
analyzed examples we present in Table 2 include for instance
Dijkstra’s single-source shortest-path algorithm (dijkstra.c), and the
cryptographic algorithms Blowfish (blowfish.c) and MD5 (md5).

Finally, Table 1 contains some recursive functions that demon-
strate the expressivity of our quantitative logic. The function bsearch
is, for example, a recursive binary search with logarithmic recursion
depth. The function fib computes the Fibonacci sequence using an
exponential algorithm and the function qsort implements a recursive
version of the quicksort algorithm. In both cases the asymptotically
tight linear bounds could be proved. The verification of the func-
tion fact sq shows the modularity of the logic: We first verify a
linear bound for the factorial function and then use this bound to
verify fact sqpnq, which contains the call factpn2q. The function
filter pos takes an array and computes a new array that contains
all positive elements of the input array. Similarly, filter find uses
the binary search bsearch to filter out all elements of an input array
that are contained in another array of size BL. The modularity of
the logic enables us to reuse the logarithmic bound that we already

File Name / Function Name Verified
Line Count Stack Bound

mibench{net{dijkstra.c enqueue 40 bytes
(174 LOC) dequeue 40 bytes

dijkstra 88 bytes
mibench{auto{bitcount.c bitcount 16 bytes
(110 LOC) bitstring 32 bytes
mibench{sec{blowfish.c BF encrypt 40 bytes
(233 LOC) BF options 8 bytes

BF ecb encrypt 80 bytes
mibench{sec{pgp{md5.c MD5Init 16 bytes
(335 LOC) MD5Update 168 bytes

MD5Final 168 bytes
MD5Transform 128 bytes

mibench{tele{↵t.c IsPowerOfTwo 16 bytes
(195 LOC) NumberOfBitsNeeded 24 bytes

ReverseBits 24 bytes
↵t float 160 bytes

certikos{vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes

mem init 72 bytes
pmap init 176 bytes
pt free 80 bytes
pt init 152 bytes
pt init kern 136 bytes
pt insert 80 bytes
pt read 56 bytes
pt resv 120 bytes

certikos{proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes

kctxt new 72 bytes
sched init 232 bytes
tdqueue init 208 bytes
thread init 192 bytes
thread spawn 96 bytes

compcert{mandelbrot.c main 56 bytes
(92 LOC)
compcert{nbody.c advance 80 bytes
(174 LOC) energy 56 bytes

o↵set momentum 24 bytes
setup bodies 16 bytes
main 112 bytes

Table 2. Automatically verified stack bounds for C functions.

derived for bsearch in the proof. The verification of some functions
is still underway. The bounds for the functions recid, bsearch, fib,
and qsort are already completely verified.

Our experiments have shown that the automatic stack analyzer
works effectively for our main application, the CertiKOS OS kernel.
The reason is that we designed the quantitative logic to include
exactly the subset of Clight that is needed for CertiKOS. It turned out
that this subset is also sufficient for many examples in the CompCert
test suite and the MiBench embedded software benchmarks. If a
program is not interactively analyzable in our logic then this due
to unsupported language constructs such as switch statements and
functions pointers. Many of these language features could easily be
supported by relatively small additions to the logic. An exception to
this are function pointers which would require more work, following
for example XCAP [31].

Accuracy of the Derived Bounds We have evaluated the precision
of the automatically and manually derived bounds by comparing
our verified upper bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments

Technical Report 14 2014/3/27

 0

 100

 200

 300

 400

 500

 600

 0  500  1000  1500  2000  2500  3000  3500  4000

measured stack consumption
40(1 + log_2(x))

Figure 8. Experimental evaluation of the accuracy of hand-derived
bounds. The plots compare the derived bounds (blue lines) for the
functions bsearch (at the top), fact sq (in the middle), and fib

(at the bottom) with the measured stack usage of the execution
of the respective function for different inputs (red crosses). The
experiments indicate that the derived bounds over-approximate the
actual stack usage by a small constant factor.

show that the derived bounds are very precise: Both the manually
and automatically derived bounds over-approximate the stack usage
by exactly four bytes (see the following explanation).

Figure 8 shows the results of three experiments we made with
hand-derived stack bounds using the quantitative logic. We plotted
the derived bounds for the functions bsearch, fib and fact sq (blue
lines) and the measured stack usage for different inputs (red crosses).
The x-axis shows the size of the input; either the value of an
integer argument (fib and fact sq) or the length of an input array
(for bsearch). The y-axis shows the stack usage in bytes. The
experiments show that the logic is expressive enough to get very
tight bounds on the recursive programs. The bsearch example shows
that the logarithmic bound derived by the logic is very close the

program requirements; the fact sq example makes the point that our
logic is indeed compositional.

We also experimentally proved the efficiency of our automatic
tool on complete programs. This includes part of the CompCert
benchmarks and some programs from the MiBench benchmark suite.
The derived bounds are all off by exactly four bytes. Unfortunately,
the precision of bounds derived on the CertiKOS operating system
kernel could not be experimentally verified since it cannot be
compiled and monitored by our tool as a regular Linux program.
Further experiments may be possible by using, for instance, an
instrumented virtual machine.

As mentioned, all the derived bounds are off by four bytes. The
reason for this is that stack frames always reserve four bytes for a
potential function call: The return address needs to be pushed by
a call instruction in the callee. Obviously, the last function in the
function call chain does not call any other function. So these four
bytes remain unused. A different point of view is to see these four
bytes as the return address of main. Indeed, before main is called,
its return address is pushed on the stack. But, as described below, our
tool takes the stack pointer at the function prologue as a reference
point. So the return address is already on the stack and four bytes
are not counted in the experiment.

Various technical problems make the measurement of stack
consumption during the execution of compiled C code a complex
task on today’s systems. These problems involve security features
of the host operating system and implicit management of the stack
pointer by C compilers. Indeed, instructions allocating and freeing
stack space can be emitted by the compiler at any place in the
assembly code and can take several forms.

To our knowledge, no tool available today can monitor the stack
consumption of running programs with the precision required to
evaluate our bounds. For this purpose, we implemented a small
program able to monitor resources used by any function of a Linux
executable. It uses the ptrace system call8. This system call allows
one Linux process (we will call it the parent) to have a very precise
control on the execution of another process (called child). It is meant
to be used by common debugging tools like gdb or strace.

Our tool works as follows. We first retreive the location of
the entry point of the monitored function using standard ELF
files dissection tools. Once we have this address, we can set up
a breakpoint by replacing the function prologue with an x86 trap
instruction (ptrace allows to poke in the child’s address space).
This trap instruction plays the role of a breakpoint and when the
child executes it, control is given back to the monitoring process by
the kernel. At this point, we inspect the registers of the child process
to get the value of the stack pointer. This will become the stack
reference point. Now we can restore the function prologue that was
overwritten in the first step and proceed with the execution of the
child in step-by-step mode. At each executed assembly instruction
the control is given back to the parent process which inspects the
value of the stack pointer and tracks its watermark. When the stack
pointer becomes smaller than the reference point, we know that the
child process returned from the tracked function. At this point we
stop monitoring the stack pointer and display the stack watermark.

One obvious weakness of this method is that it stops the control
of the child process at every assembly instruction, and thus, is very
slow. However, for our purposes, this has not been an issue.

7. Related Work
In the following we discuss research that is related to our contribu-
tions in verified compilation, program logics, and automatic resource
analysis.

8 This monitoring program is available at http://zoo.cs.yale.edu/
~

qc35/data/mon.c
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Automation only for programs without 
recursion!

is developed with other quantitative resources in mind. Many of the
developed techniques can be applied to derive bounds for resources
such as heap memory or clock cycles. However, for clock-cycle
bounds there is a lot of additional work to be done that is beyond the
scope of this article (e.g., developing a formal model for hardware
caches and instruction pipelines).

The main innovation of our framework is that it enables the
formal verification of stack bounds for compiled x86 assembly
code at the C level. To gain the benefits of source-level verification
without the entailed disadvantages, we have to deal with three main
challenges.

1. We have to model the stack consumption of programs at the C
level and we have to formally prove that our model is consistent
with the stack consumption of the compiled code.

2. We have to design and implement a C-level verification mecha-
nism that allows users to derive parametric stack-usage bounds
in an interactive and flexible way.

3. We have to minimize user interaction during the verification to
enable the verification of large systems.

To meet Challenge 1, we use event traces and verified compilation.
Our starting point is the CompCert C Compiler. It relies on event
traces to prove that a compiled program is a refinement of the source
program. We extend event traces with events for function calls and
returns and define a weight for event traces. The weight describes
the stack-space consumption of one program execution as a function
of a cost metric which assigns a cost to individual call and return
events. The idea is that a user or an (semi) automatic analysis tool
derives bounds on the weights of event traces that depend on the
stack-frame sizes of the program functions. During compilation the
compiler produces a specific cost metric that guarantees that the
weight of an event trace computed with this metric is an upper bound
on the stack-space usage of the compiled assembly program which
produces this trace. As a result, we derive a verified upper bound
if we instantiate the derived memory bound with the cost metric
produced by the compiler.

We implemented the extended event traces for full CompCert C
and all intermediate languages down to x86 assembly in Coq. We
extended CompCert’s soundness theorem to take into account the
weights of traces. In addition to CompCert’s refinement theorem for
the original event traces, we prove that compiled programs produce
extended event traces whose weights are less or equal to the weights
of the traces at the source level. This means that we allow reordering
or deletion of call and return events as long the weight of the trace is
reduced or unchanged. To relate the weight of traces to the execution
on a system with finite stack space, we modified the CompCert x86
assembly semantics into a more realistic x86 assembly that features
a finite stack, and reimplemented the assembly generation pass of
CompCert to our new x86 assembly semantics.

To meet Challenge 2, we have developed and implemented a novel
quantitative Hoare logic for CompCert Clight in Coq. To account for
memory consumption, the assertions of the logic generalize the usual
boolean-valued assertions of Hoare logic. Instead of the classic true,
our quantitative assertions return a natural number that indicates
the amount of memory that is needed to execute the program. The
boolean false is represented by 8 and indicates that there are no
guarantees provided for the future execution.

We proved the soundness of our quantitative Hoare logic with
respect to Clight and CompCert’s continuation-based small-step
semantics. The soundness theorem states that Hoare triples that
are derived with our inference rules describe sound bounds on the
weights of traces. The logic can be used for interactive stack-bound
development or as a backend for verified static analysis tools.

For clarity, we do not prove the safety of programs and simply
assume that this is done using a different tool such as Appel’s
separation logic for Clight [3]. It would be possible to integrate our
logic into a separation logic for safety proofs. This would however
diminish the deployability of the quantitative logic as a backend for
static stack-bound analysis tools since they would be required to
also prove memory safety.

To meet Challenge 3, we implemented an automatic stack ana-
lyzer for C programs. To verify the soundness of the stack analyzer
each successful run generates a derivation in the quantitative Hoare
logic. This does not only simplify the verification but also allows
interoperability with stack bounds that have been interactively devel-
oped in the logic or derived by some other static analysis. Concep-
tually, our stack analyzer is rather simple but we have proved that
it derives sound bounds for programs without recursion and func-
tion pointers. This is already sufficient for many programs used in
embedded systems. Using our automatic analysis we have created a
verified C compiler that translates a program without function point-
ers and recursive calls to x86 assembly and automatically derives a
stack bound for each function in the program including mainpq.

We have successfully used our quantitative Hoare logic, the
extended C compiler, and the automatic stack analyzer to verify end-
to-end memory bounds for micro benchmarks and system software.
Our main example is the CertiKOS [15] operating system kernel that
is currently under development at Yale. Our automatic analyzer finds
stack bounds for all functions in the simplified development version
of CertiKOS that is currently verified. Other examples are taken
from Leroy’s CompCert benchmarks and the MiBench embedded
benchmark suite [17]. To evaluate the quality of the verified stack-
space bounds, we experimentally compared the automatically and
manually verified bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
indicate that both the manually and automatically derived bounds
over-approximate the stack usage by exactly four bytes. More details
can be found in Section 6.

In summary, we make the following contributions.

• We introduce a methodology that uses cost metrics to link event
traces to resource consumption. This approach enables us to
link source-level code to the resource consumption of compiled
target-level code.

• We develop a novel quantitative Hoare logic to reason about
the resource consumption of programs at the source level. We
have formally verified the soundness of the logic with respect to
CompCert Clight in Coq.

• We introduce Quantitative CompCert, a modified version of
the verified CompCert C Compiler, in which parametric stack
bounds are preserved during compilation. Furthermore, Quanti-
tative CompCert creates a cost metric so that the instantiation of
the bounds with the metric forms an upper bound on the memory
consumption of the compiled code.

• We have implemented and verified an automatic stack analyzer
that is guaranteed to compute stack bounds for non-recursive
programs.

• We have evaluated the practicability of our framework with
experiments using micro benchmarks and system code.
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The complete Coq development and the imple-
mented tools are well documented and publically
available on the authors’ websites. The PLDI Ar-
tifact Evaluation Committee reproduced samples
of our experiments and tested the implemented
tools on additional programs. The reviewers unani-
mously stated that our implementation exceeded their expectations.
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Q “ Q1
` Mvar

⌃;x:A;Q M x : pA,Q1
q

(T:Var)

P ` Mapp

“ Q pA,P q Ñ pA1, Q1
q P ⌃pfq

⌃;x:A;Q M fpxq : pA1, Q1
q

(T:App)

Q “ Q1
` Mpair

⌃;x1:A1, x2:A2;Q
M

px1, x2q : pA1˚A2, Q
1
q

(T:Pair)

⌃;�, x1:A1, x2:A2;P
M e : pB,Q1

q P ` MmatP

“ Q

⌃;�, x:A;Q M
matchxwith px1, x2q ñ e : pB,Q1

q

(T:MatP)

⌃;�, x1:A, x2:A;P M e : pB,Q1
q .P ` M share

“ Q

⌃;�, x:A;Q M
sharex as px1, x2q in e : pB,Q1

q

(T:Share)

⌃;�1,�2;R
M e1  �2, x:A;R1

⌃;�2, x:A;P M e2 : pB,Q1
q Q “ R ` M let1 R1

“ P ` M let2

⌃;�1,�2;Q
M

letx “ e1 in e2 : pB,Q1
q

(T:Let)

Q “ ‘pQ1
q ` Madd

⌃;x1:nat, x2:nat;Q
M x1 ` x2 : pnat, Q1

q

(T:Add)

Q1
` M sub

“ ‘p⇡x1:nat
0 pQqq

⌃;x1:nat, x2:nat;Q
M

minuspx1, x2q : pnat ˚ nat, Q1
q

(T:Sub)

q0 “ Mnat

`

ÿ

i•0

q1
i

´n
i

¯

⌃; ¨;Q M n : pnat, Q1
q

(T:Nat)

Q “ M sub

`P`R P 1
“ ‘pP q R1

“ Cn

pRq

q1
pi,0q “ r1

i

` p1
pi,0q q1

pi,jq “ p1
pi,jq if j ° 0

⌃;x:nat;Q M
minuspx, nq : pnat ˚ nat, Q1

q

(T:SubC)

q0 “ Mundef

⌃; ¨;Q M
undefined : pB,Q1

q

(T:Undef)

Q “ dpQ1
q ` Mmult

⌃;x1:nat, x2:nat;Q
M x1˚x2 : pnat, Q1

q

(T:Mult)

R ` Mdif

“ ‘p⇡x1:nat
0 pQqq @i P N : ⇡

i

pRq “ dp⇡
i

pQ1
qq

⌃;x1:nat, x2:nat;Q
M

divmodpx1, x2q : ppnat ˚ natq ˚ nat, Q1
q

(T:Div)

⌃;� ;R M e1 : pB,Q1
q

R ` MmatZ

“ ⇡�

0 pQq ⌃;�, y:nat;P M e2 : pB,Q1
q P ` MmatS

“ CpQq

⌃;�, x:nat;Q M
matchxwith x0 ñ e1 ~

S

pyq ñ e2y : pB,Q1
q

(T:MatN)

⌃;� ;P M e : pB,P 1
q

Q • P ` c Q1
§ P 1

` c

⌃;� ;Q M e : pB,Q1
q

(T:Weak-A)

⌃;� ;⇡�

0 pQq

M e : pB,Q1
q

⌃;�, x:A;Q M e : pB,Q1
q

(T:Weak-C)

˛ ˛ ˛
@j P Ip�q: j“

~
0 ùñ ⌃;� ;⇡�

j

pQq

M e : pA,⇡x:A
j

pQ1
qq

j‰

~
0 ùñ ⌃

j

;� ;⇡�

j

pQq

cf e : pA,⇡x:A
j

pQ1
qq

⌃;�,�;Q M e �, x:A;Q1 (B:Bind)

Fig. 5. Annotated type rules and the binding rule for multivariate variable binding.
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Lemma 3. Let Q be an annotation for type nat, H ( ` fiÑ n`K :nat , and

H 1 ( `1 fiÑ n :nat . Then �Hp`:pnat, Qqq “ �H1 p`1:pnat,CKQqq.

Proof. By definition, �Hp`:pnat, Qqq “ ∞
i qi

`
n`K

i

˘
and �H1 p`1:pnat,CKQqq “∞

i q
1
i

`
n
i

˘
for some coe�cients q1

i P Q`
0

. From the definition of the K-times shift

CKQ it follows that q1
i “ ∞

j“i`` qj
`
K
`

˘
. Thus we can use (3) to argue as follows.

ÿ

i

qi

ˆ
n ` K

i

˙
“

ÿ

i

˜
ÿ

j“i``

qj

ˆ
K

`

˙¸ ˆ
n

i

˙
“

ÿ

i

q1
i

ˆ
n

i

˙
“ �H1 p`1:pnat,CKQqq

[\
For multiplication and division, things are more interesting. Our goal is to define
a convolution-like operation dpQq that defines an annotation for the arguments
px

1

, x
2

q : nat ˚ nat if given an annotation Q of a product x
1

˚ x
2

: nat. For this
purpose, we are interested in the coe�cients Api, j, kq in the following identity.

ˆ
nm

k

˙
“

ÿ

i,j

Api, j, kq
ˆ
n

i

˙ˆ
m

j

˙
(4)

Fortunately, this problem has been carefully studied by Riordan and Stein [15].1

Intuitively, the coe�cient Api, j, kq is number of ways of arranging k pebbles on
an iˆj chessboard such that every row and every column has at least one pebble.
Riordan and Stein obtain the following closed formulas.

Api, j, kq “
ÿ

r,s

p´1qi`j`r`s

ˆ
i

r

˙ˆ
j

s

˙ˆ
rs

k

˙
“

ÿ

n

i!j!

k!
Spn, iqSpn, jq spk, nq

Here, Sp¨, ¨q and sp¨, ¨q denote the Stirling numbers of first and second kind,
respectively. Furthermore they report the recurrence relation Api, j, k`1qpk`1q “
pApi, j, kq ` Api ´ 1, j, kq ` Api, j ´ 1, kq ` Api ´ 1, j ´ 1, kqqij ´ k Api, j, kq.

Equipped with a closed formula for Api, j, kq, we now define the multiplicative

convolution dpQq of an annotation Q for type nat as

dpQq “ pq1
pi,jqqpi,jqPIpnat˚natq if q1

pi,jq “
ÿ

k

Api, j, kq qk .

Lemma 4. Let Q be an annotation for type nat, H ( ` fiÑ n
1

¨ n
2

:nat , and
H 1 ( `1 fiÑ pn

1

, n
2

q :nat ˚nat . Then �Hp`:pnat, Qqq “ �H1 p`1:pnat ˚ nat,dpQqqq.

Proof. By definition we have �Hp`:pnat, Qqq “ ∞
k qk

`
n1¨n2

k

˘
and �H1 p`1:pnat ˚

nat,dpQqqq “ ∞
pi,jq q

1
pi,jq

`
n1

i

˘`
n2

j

˘
for some coe�cients q1

pi,jq P Q`
0

. From the defi-

nition of the multiplicative convolution dpQq it follows that q1
pi,jq“ ∞

k Api, j, kq qk.
1 Thanks to Mike Spivey for pointing us to that article.
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Lemma 3. Let Q be an annotation for type nat, H ( ` fiÑ n`K :nat , and

H 1 ( `1 fiÑ n :nat . Then �Hp`:pnat, Qqq “ �H1 p`1:pnat,CKQqq.

Proof. By definition, �Hp`:pnat, Qqq “ ∞
i qi

`
n`K

i

˘
and �H1 p`1:pnat,CKQqq “∞

i q
1
i

`
n
i

˘
for some coe�cients q1

i P Q`
0

. From the definition of the K-times shift

CKQ it follows that q1
i “ ∞

j“i`` qj
`
K
`

˘
. Thus we can use (3) to argue as follows.

ÿ

i

qi

ˆ
n ` K

i

˙
“

ÿ

i

˜
ÿ

j“i``

qj

ˆ
K

`

˙¸ ˆ
n

i

˙
“

ÿ

i

q1
i

ˆ
n

i

˙
“ �H1 p`1:pnat,CKQqq

[\
For multiplication and division, things are more interesting. Our goal is to define
a convolution-like operation dpQq that defines an annotation for the arguments
px

1

, x
2

q : nat ˚ nat if given an annotation Q of a product x
1

˚ x
2

: nat. For this
purpose, we are interested in the coe�cients Api, j, kq in the following identity.

ˆ
nm

k

˙
“

ÿ

i,j

Api, j, kq
ˆ
n

i

˙ˆ
m

j

˙
(4)

Fortunately, this problem has been carefully studied by Riordan and Stein [15].1

Intuitively, the coe�cient Api, j, kq is number of ways of arranging k pebbles on
an iˆj chessboard such that every row and every column has at least one pebble.
Riordan and Stein obtain the following closed formulas.

Api, j, kq “
ÿ

r,s

p´1qi`j`r`s

ˆ
i

r

˙ˆ
j

s

˙ˆ
rs

k

˙
“

ÿ

n

i!j!

k!
Spn, iqSpn, jq spk, nq

Here, Sp¨, ¨q and sp¨, ¨q denote the Stirling numbers of first and second kind,
respectively. Furthermore they report the recurrence relation Api, j, k`1qpk`1q “
pApi, j, kq ` Api ´ 1, j, kq ` Api, j ´ 1, kq ` Api ´ 1, j ´ 1, kqqij ´ k Api, j, kq.

Equipped with a closed formula for Api, j, kq, we now define the multiplicative

convolution dpQq of an annotation Q for type nat as

dpQq “ pq1
pi,jqqpi,jqPIpnat˚natq if q1

pi,jq “
ÿ

k

Api, j, kq qk .

Lemma 4. Let Q be an annotation for type nat, H ( ` fiÑ n
1

¨ n
2

:nat , and
H 1 ( `1 fiÑ pn

1

, n
2

q :nat ˚nat . Then �Hp`:pnat, Qqq “ �H1 p`1:pnat ˚ nat,dpQqqq.

Proof. By definition we have �Hp`:pnat, Qqq “ ∞
k qk

`
n1¨n2

k

˘
and �H1 p`1:pnat ˚

nat,dpQqqq “ ∞
pi,jq q

1
pi,jq

`
n1

i

˘`
n2

j

˘
for some coe�cients q1

pi,jq P Q`
0

. From the defi-

nition of the multiplicative convolution dpQq it follows that q1
pi,jq“ ∞

k Api, j, kq qk.
1 Thanks to Mike Spivey for pointing us to that article.
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Q “ Q1
` Mvar

⌃;x:A;Q M x : pA,Q1
q

(T:Var)

P ` Mapp

“ Q pA,P q Ñ pA1, Q1
q P ⌃pfq

⌃;x:A;Q M fpxq : pA1, Q1
q

(T:App)

Q “ Q1
` Mpair

⌃;x1:A1, x2:A2;Q
M

px1, x2q : pA1˚A2, Q
1
q

(T:Pair)

⌃;�, x1:A1, x2:A2;P
M e : pB,Q1

q P ` MmatP

“ Q

⌃;�, x:A;Q M
matchxwith px1, x2q ñ e : pB,Q1

q

(T:MatP)

⌃;�, x1:A, x2:A;P M e : pB,Q1
q .P ` M share

“ Q

⌃;�, x:A;Q M
sharex as px1, x2q in e : pB,Q1

q

(T:Share)

⌃;�1,�2;R
M e1  �2, x:A;R1

⌃;�2, x:A;P M e2 : pB,Q1
q Q “ R ` M let1 R1

“ P ` M let2

⌃;�1,�2;Q
M

letx “ e1 in e2 : pB,Q1
q

(T:Let)

Q “ ‘pQ1
q ` Madd

⌃;x1:nat, x2:nat;Q
M x1 ` x2 : pnat, Q1

q

(T:Add)

Q1
` M sub

“ ‘p⇡x1:nat
0 pQqq

⌃;x1:nat, x2:nat;Q
M

minuspx1, x2q : pnat ˚ nat, Q1
q

(T:Sub)

q0 “ Mnat

`

ÿ

i•0

q1
i

´n
i

¯

⌃; ¨;Q M n : pnat, Q1
q

(T:Nat)

Q “ M sub

`P`R P 1
“ ‘pP q R1

“ Cn

pRq

q1
pi,0q “ r1

i

` p1
pi,0q q1

pi,jq “ p1
pi,jq if j ° 0

⌃;x:nat;Q M
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q
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i
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i

pQ1
qq

⌃;x1:nat, x2:nat;Q
M
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q
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Proof. By definition, �Hp`:pnat, Qqq “ ∞
i qi

`
n`K

i

˘
and �H1 p`1:pnat,CKQqq “∞

i q
1
i

`
n
i

˘
for some coe�cients q1

i P Q`
0

. From the definition of the K-times shift

CKQ it follows that q1
i “ ∞

j“i`` qj
`
K
`

˘
. Thus we can use (3) to argue as follows.

ÿ

i

qi

ˆ
n ` K

i

˙
“

ÿ

i

˜
ÿ

j“i``

qj

ˆ
K

`

˙¸ ˆ
n

i

˙
“

ÿ

i

q1
i

ˆ
n

i

˙
“ �H1 p`1:pnat,CKQqq

[\
For multiplication and division, things are more interesting. Our goal is to define
a convolution-like operation dpQq that defines an annotation for the arguments
px

1

, x
2

q : nat ˚ nat if given an annotation Q of a product x
1

˚ x
2

: nat. For this
purpose, we are interested in the coe�cients Api, j, kq in the following identity.

ˆ
nm

k

˙
“

ÿ

i,j

Api, j, kq
ˆ
n

i

˙ˆ
m

j

˙
(4)

Fortunately, this problem has been carefully studied by Riordan and Stein [15].1

Intuitively, the coe�cient Api, j, kq is number of ways of arranging k pebbles on
an iˆj chessboard such that every row and every column has at least one pebble.
Riordan and Stein obtain the following closed formulas.

Api, j, kq “
ÿ

r,s

p´1qi`j`r`s

ˆ
i

r

˙ˆ
j

s

˙ˆ
rs

k

˙
“

ÿ

n

i!j!

k!
Spn, iqSpn, jq spk, nq

Here, Sp¨, ¨q and sp¨, ¨q denote the Stirling numbers of first and second kind,
respectively. Furthermore they report the recurrence relation Api, j, k`1qpk`1q “
pApi, j, kq ` Api ´ 1, j, kq ` Api, j ´ 1, kq ` Api ´ 1, j ´ 1, kqqij ´ k Api, j, kq.

Equipped with a closed formula for Api, j, kq, we now define the multiplicative

convolution dpQq of an annotation Q for type nat as

dpQq “ pq1
pi,jqqpi,jqPIpnat˚natq if q1

pi,jq “
ÿ

k

Api, j, kq qk .

Lemma 4. Let Q be an annotation for type nat, H ( ` fiÑ n
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, n
2

q :nat ˚nat . Then �Hp`:pnat, Qqq “ �H1 p`1:pnat ˚ nat,dpQqqq.

Proof. By definition we have �Hp`:pnat, Qqq “ ∞
k qk

`
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˘
and �H1 p`1:pnat ˚

nat,dpQqqq “ ∞
pi,jq q

1
pi,jq

`
n1

i

˘`
n2

j

˘
for some coe�cients q1

pi,jq P Q`
0

. From the defi-

nition of the multiplicative convolution dpQq it follows that q1
pi,jq“ ∞

k Api, j, kq qk.
1 Thanks to Mike Spivey for pointing us to that article.
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Fig. 5. Annotated type rules and the binding rule for multivariate variable binding.
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Fortunately, this problem has been carefully studied by Riordan and Stein [15].1
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an iˆj chessboard such that every row and every column has at least one pebble.
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Here, Sp¨, ¨q and sp¨, ¨q denote the Stirling numbers of first and second kind,
respectively. Furthermore they report the recurrence relation Api, j, k`1qpk`1q “
pApi, j, kq ` Api ´ 1, j, kq ` Api, j ´ 1, kq ` Api ´ 1, j ´ 1, kqqij ´ k Api, j, kq.

Equipped with a closed formula for Api, j, kq, we now define the multiplicative
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. From the defi-

nition of the multiplicative convolution dpQq it follows that q1
pi,jq“ ∞

k Api, j, kq qk.
1 Thanks to Mike Spivey for pointing us to that article.
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Fig. 1. Number of constraint generated by RAML for the program a ˚ b as a function
of the maximal degree. The solid bars show the number of constraints generated using
the novel type rule for multiplication. The striped bars show the number of constrained
generated using an recursive implementation. The scale on the x-axis is logarithmic.

are challenging to solve. Figure 1 shows the number of constraints that are
generated by the analysis for a program with a single multiplication a ˚ b as
a function of the maximal degree of the bounds. With our novel handcrafted
rule for multiplication the analysis creates for example 82 constraints when
searching for bounds of maximal degree 10. With the recursive implementation,
408653 constraints are generated. IBM’s Cplex can still solve this constraint
system in a few seconds but a precise analysis of a larger RAML program
currently requires to copy the 408653 constraints for every multiplication in
the program. This makes the analysis infeasible.

E↵ectivity A straightforward recursive implementation of the arithmetic op-
erations on unary lists in RAML would not allow us to analyze the same
range of functions we can analyze with handcrafted typing rules for the
operations. For example, the fast Euclidean algorithm cannot be analyzed
with the usual, recursive definition of mod but can be analyzed with our new
rule. Similarly, we cannot define a recursive function so that the analysis
is as e↵ective as with our novel rule for minus. For example, the pattern
if n ° C then ... recCallpn ´ Cq else ... for a constant C ° 0 can be analyzed
with our new rule but not with a recursive definition for minus.

Conception A code transformation prior to the analysis complicates the sound-
ness proof since we would have to show that the resource usage of the modified
code is equivalent to the resource usage of the original code. More impor-
tantly, handling new language features merely by code transformations into
well-understood constructs is conceptually less attractive since it often does
not advance our understanding of the new features.

To derive a typing rule for an arithmetic operation in amortized resource
analysis, we have to describe how the potential of the arguments of the op-
eration relates to the potential of the result. For x, y P N and a multiplica-
tion x ˚ y we start with a potential of the form

∞
pi,jqPI qpi,jq

`
x
i

˘`
y
j

˘
(where

I “ tp0, 0q, p1, 0q, p2, 0q, p1, 1q, p0, 1q, p0, 2qu in the case of degree 2). We then have

Number of constraints generated for one multiplication



Other Arithmetic Operations

Treatment of other arithmetic operations is described in the paper 

• Operations handled: subst, add, div, mod, mult


• Similar to multiplication


Also in the paper: arrays 

• Arrays are treated as non-negative numbers: Array.length() returns a 
natural number that can be used for iteration


• Potential of data that is stored inside arrays is not tracked



How does it scale?



Dyadic Product of two Arrays

dyad : (Arr(int),nat,Arr(int),nat) -> Arr(Arr(int))	
!
dyad (a,n,b,m) = 	
  let outerArr = A.make(n,A.make(0,+0)) in	
  let _ = fill(a,n,b,m,outerArr) in outerArr;



Dyadic Product of two Arrays

dyad : (Arr(int),nat,Arr(int),nat) -> Arr(Arr(int))	
!
dyad (a,n,b,m) = 	
  let outerArr = A.make(n,A.make(0,+0)) in	
  let _ = fill(a,n,b,m,outerArr) in outerArr;

Computed evaluation-step bound:

20nm + 31n + 18 
where 
   n is the value of the second component of the input 
   m is the value of the 4'th component of the input 



Dyadic Product with Polynomials

matrix : (nat,nat) -> Arr(Arr(int))	
!
matrix (n,m) =	
  let size1 = n*n + 9*n + 28 in	
  let size2 = m*n + 6*m in	
  dyad( A.make(size1,+1),size1, A.make(size2,+1),size2 );
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  let size2 = m*n + 6*m in	
  dyad( A.make(size1,+1),size1, A.make(size2,+1),size2 );

Computed evaluation-step bound:

20mn3 + 300mn2 + 1641mn + 3366m + 32n2 + 288n + 942 
!
where 
   n is the value of the first component of the input 
   m is the value of the second component of the input
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20mn3 + 300mn2 + 1641mn + 3366m + 32n2 + 288n + 942 
!
where 
   n is the value of the first component of the input 
   m is the value of the second component of the input

Computes a  
(n2+9n+28) x (mn+6m) 

matrix.



Many Dyadic Products with Polynomials

dyadAllM : nat -> unit	
!
dyadAllM n = match n with | 0 -> ()	
               | S n' -> let _ = dyadM(n,n) in	
                         dyadAllM(n');	
!
dyadM(n,m) =  match m with | 0 -> ()	
                | S m' -> let mat = matrix(n,m) in	
                          dyadM(n,m');
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                         dyadAllM(n');	
!
dyadM(n,m) =  match m with | 0 -> ()	
                | S m' -> let mat = matrix(n,m) in	
                          dyadM(n,m');

Computed evaluation-step bound:

1.66n6 + 37n5 + 334.79n4 + 1485.08n3 + 2963.54n2 + 1789.92n + 3 
!
where 
   n is the value of the input
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!
dyadM(n,m) =  match m with | 0 -> ()	
                | S m' -> let mat = matrix(n,m) in	
                          dyadM(n,m');

Computed evaluation-step bound:

1.66n6 + 37n5 + 334.79n4 + 1485.08n3 + 2963.54n2 + 1789.92n + 3 
!
where 
   n is the value of the input

Computes a  
(i2+9i+28) x (ij+6j) matrix for every 

pair (i,j) such that 1≤j≤i≤n. 



dyadAllM Evaluation-step bound vs. 
measured behavior

26 Jan Ho↵mann and Zhong Shao

Fig. 8. Derived evaluation-step bounds in comparison with the measured evaluation
steps for inputs of di↵erent sizes. On the top, the bound for dyadAllM is compared to
the measured cost for inputs x where x P t1, . . . , 12u. At the bottom, the bound for
mmultAll is compared to inputs that contain a list of y quadratic matrices of dimension
x ˆ x where 1 § x § 30 and 1 § y § 50. The experiments indicated that the derived
bounds are optimal.



Experimental Evaluation



Evaluation-Step Bounds

Computed Bound Actual 
Behavior Run Time #Constr.

Dijkstra’s Shortest Path 79.5n O(n 0.1 s 2178

Fast GCD 12m + 7 O(log m) 0.1 s 105

Pascal’s Triangle 19n O(n 0.4 s 998

In-Place Quick Sort 12.25x O(x 0.7 s 2080

Matrix Multiplication (for a 
list of matrices) 18nuyx + 31nuy + 38nu + 38n + 3 O(nuyx) 5.6 s 184270

Block Sort 12.25n O(n 0.4 s 27795

DyadAllM 1.6n
2963.54n O(n 3.9 s 130236

Matrix-Mult, Flatten, and 
Sort

12.25u
+ 19m + 66 O(u 5.9 s 167603



Dijkstra’s Single-Source 
Shortest Path

Evaluation-step bound vs. 
measured behavior
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Fig. 7. Derived evaluation-step bounds in comparison with the measured evaluation
steps for inputs of di↵erent sizes. On the top, the bound for dijkstra is compared with
manually selected worst-case inputs (complete graphs with x nodes for 1 § x § 100
and hand-picked edge weights), random inputs (graphs with randomly generated edge
weights), and best-case inputs (empty graphs). The measured costs for the random and
best-case inputs are very close. At the bottom, the bound for quicksort is compared to
worst-case inputs (reversely-sorted arrays of sizes 1 to 200) and randomly filled arrays
of the same sizes.



Conclusion

Directly encoding (non-linear) arithmetic operations in 
amortized resource analysis lets us track size changes of 

unsigned integers precisely and efficiently.



Conclusion

Ongoing Research: Application of the amortized analysis to C programs 

• Bounds are non-negative linear combin. of sizes of intervals |[x,y]|


• Great preliminary results for linear bounds


• Beats already abstract interpretation-based techniques


• Extension to polynomial bounds using the presented techniques

Directly encoding (non-linear) arithmetic operations in 
amortized resource analysis lets us track size changes of 

unsigned integers precisely and efficiently.


