Semantics for Prolog with Cut — Revisited

Kanazawa, Japan

Jael Kriener Andy King
INRIA-Microsoft Research University of Kent
Paris, France Canterbury, UK

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Kanazawa, Japan

[m]

[
Semantics for Prolog with Cut — Rev

What this talk is about

» Denotational semantics for Prolog with cut, designed to be
“oven ready” for abstract interpretation;

» Correct mistakes in [Kriener, TPLP, 2011] that we discovered
with a proof assistant;

» Draw conclusions about designing logic programming
semantics with Coq

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Semantics for cut over sequences [de Vink, SCP, 1989]

p(a,). Iyl =0 01 = {x— a}
p(- b). 0 = {x — c}
03 = {y — b}

0y ={x— a,y — b}
0s = {x+— ¢,y — b}

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Semantics for cut over sequences [de Vink, SCP, 1989]

p(a). e,)] O =1 0y = {x— a}
p(- b). [p(x,y)] () =(01,63) b2 ={x—c}
93 = {y —> b}

0y = {x— a,y — b}
05 = {x+— ¢,y — b}

Semantics for Prolog with Cut — Revisited

Semantics for cut over sequences [de Vink, SCP, 1989]

0 01 ={x— a}
(61,653) b2 = {x + c}
[p(x, y)1{01) = (61, 0a) 03 = {y — b}

0y = {x— a,y— b}
05 = {x+— ¢,y — b}

Semantics for Prolog with Cut — Revisited

Semantics for cut over sequences [de Vink, SCP, 1989]

p(a,). POy O =) 01 ={x— a}

p(n b). [p(x,¥)] (€) = (01,03) b= {x+c}
[p(x, ¥)1{01) = (61, 0a) 03 = {y — b}
[p(x, y)1{02) = (65)

0y = {x— a,y— b}
05 = {x+— ¢,y — b}

Semantics for Prolog with Cut — Revisited

Semantics for cut over sequences [de Vink, SCP, 1989]

p(a,). POy O =) 01 = {x— a}
p(n b). [p(x,¥)] (€) = (01,03) b= {xc}
[p(x, ¥)1{01) = (61, 0a) 03 = {y — b}
[p(x, y)1{02) = (65)
[p(x, ¥)1{03) = (64, 03) 04 = {x > a,y — b}

05 = {x+— ¢,y — b}

Semantics for Prolog with Cut — Revisited

Semantics for cut over sequences [de Vink, SCP, 1989]

p(a,). IpCy)l =0 01 = {x > a}
p(- b). [p(,y)l (€) = (01,03) 02 ={x+c}
[p(x, y)1(61) = (01,0a) 03 = {y — b}
[p(x, y)1(62) = (65)
[p(x, ¥)1(03) = (0a,03) 04 = {x = a,y — b}

05 = {x+— ¢,y — b}

Domain constructed using the ordering: 52 Riff 0is a prefix K

Semantics for Prolog with Cut — Revisited

Kanazawa, Japan Sem s for Prolog with Cut — Re

Kanazawa, Japan Sem s for Prolog with Cut — Re

An off-the-shelf abstract domain D

true
xVy
N y ~(true) = Sub
’y(x\/y) =0;U0O,
v(x) = ©1
XNy 1(y) =02
Y(xAy)=01N6,
false v(false) = 0

where ©1 = {6 € Sub | 6(x) is ground}
©2 = {0 € Sub | O(y) is ground}

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Sequences over D

Problem:

01:{XI—>3}

o) o () 0, ={x— a,y— b}

| oA

h=xN\y
<91702> (7 <f17 f2>

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Sequences over D

Problem:
01 = {X — a}
o) S qmy T UTRYEE e
fi=x
n | ED, | h-]]/*
(61,602) = (f, 2) (04) - (f2)

03 = {x+— c}
04 = {x— c,y — b}

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Sequences over D

Problem:
01 = {X — a}
RIS St A R
fi=x
n | ED, | h-]]/*
(01, 02) = (i, f2) (04) — (f2)

03 = {x+— c}
04 = {x— c,y — b}

Solution: design Cseq so that (f) Ceeq (f1, f2) (non-prefix)

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Ordering sequences over D

Subsequence ordering:

() Cob F))
f Csub f' = g - f Csub g f!
F Ceub 1?/ = 1? Coub 8 F/

Mix in the domain ordering:
floqgd e 38 Flpw & NG Cown &
Example: (x V y,y) Cseq (true,x V y,x,xV y, false) since

(xVy,y) Cpw (XVy,xVy) Cop (true,x V y,x,x \V y, false)

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Candidate meet [Kriener, TPLP, 2011]

f® g = remove false h where

Upw {Fow @ | & Can g n 181 = 171} 171 <2l

h= . . So
U 47 Tpw & | 7/ o fA\f'\:yg|} otherwise

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Candidate meet [Kriener, TPLP, 2011]

f® g = remove false h where

Upw {Fow @ | & Can g n 181 = 171} 171 <2l
|_|pW f! Mow & f! Coub A \f’\ =]§|} otherwise

>
I

Then join can be constructed from meet to give a complete lattice

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Candidate meet [Kriener, TPLP, 2011]

f® g = remove false h where

Upw {Fow @ | & Can g n 181 = 171} 171 <2l
|_|pW f! Mow & f! Coub A \f’\ =]§|} otherwise

Then join can be constructed from meet to give a complete lattice

Or can it?

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Coq formalisation revealed that ® is non-monotonic

Problem:
» Observe (true, true, x) ® (x, true, true) = (x, true, x)
» Observe too (true, true) ® (x, true, true) = (true, true)
> Notice (true, true) Coeq (true, true, x)

» By monotonity one would expect (true, true) Ceeq (X, true, x)

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Coq formalisation revealed that ® is non-monotonic

Problem:
» Observe (true, true, x) ® (x, true, true) = (x, true, x)
» Observe too (true, true) ® (x, true, true) = (true, true)
> Notice (true, true) Coeq (true, true, x)

» By monotonity one would expect (true, true) Ceeq (X, true, x)

Show-stopper?

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Coq formalisation revealed that ® is non-monotonic

Problem:
» Observe (true, true, x) ® (x, true, true) = (x, true, x)
» Observe too (true, true) ® (x, true, true) = (true, true)
> Notice (true, true) Coeq (true, true, x)

» By monotonity one would expect (true, true) Ceeq (X, true, x)
Show-stopper?

Solution: employ order ideals induced by Ceq as follows:
> Seqt(D) = {S|S=1S} where |S={f | fCeeq &NE €S}
» Then (Seq*(D),C, N, U) is a complete lattice

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Non-monotonicity bites back with cut

Problem:
» To illustrate consider the predicate:
liar :- liar, !, fail.
liar.
which succeeds if it fails and fails if it succeeds.

» Non-monotonicity has been previously dealt with by observing
that predicates such as liar also diverge, which give them a
stable value L [de Vink, SCP, 1989]

» But stratification [Apt, Blair and Walker, 1988] arguably gives
a simpler way to handle non-monotonicity that focusses solely
on one concern

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Non-monotonicity bites back with cut

Problem:
» To illustrate consider the predicate:

liar :- liar, !, fail.
liar.

which succeeds if it fails and fails if it succeeds.

» Non-monotonicity has been previously dealt with by observing
that predicates such as liar also diverge, which give them a
stable value L [de Vink, SCP, 1989]

» But stratification [Apt, Blair and Walker, 1988] arguably gives
a simpler way to handle non-monotonicity that focusses solely
on one concern

Solution: avoid these vicious circular definitions

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Cut-normal programs

Introduce cut-normal form in which each predicate takes the form:
p(X) - G1; Go, !, G3; Gy

where each G;j is a (cut-free) conjunctive goal

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Cut-normal programs

Introduce cut-normal form in which each predicate takes the form:
p(X) - G1; Go, !, G3; Gy

where each G;j is a (cut-free) conjunctive goal
memberchk(X, L) :- memberchk(X, L) :-
member(X, L), !. false ;
member(X, L), !, true ;
member(X, [X]]). : false.
member(X, [|L) :-
member(X, L). member(X, Y) :-
Y = X1
false, I, false ;
Y = [-|L], member(X, L).

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Cut-normal programs

Introduce cut-normal form in which each predicate takes the form:
p(X) - G1; Go, !, G3; Gy

where each G;j is a (cut-free) conjunctive goal

memberchk(X, L) :- memberchk(X, L) :-
member(X, L), !. false ;

member(X, L), !, true ;
member(X, [X]]). : false.
member(X, [|L) :-

member(X, L). member(X, Y) :-
Y= X1
false, I, false ;
Y = [-|L], member(X, L).

Admission: the transform has not been shown to be correct

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Cut-stratified programs

A program is cut-stratified if it can be partitioned into strata:

member(X, Y) :- memberchk(X, L) :-
Y = [X|]); _ false ;
S1= So=
! false, !, false ; 2 member(X, L), !, true ;
Y = [-|L], member(X, L). false.

where for all p(X) - Gi; Gp,!, G3; G4 € S; all calls in Gy are to
predicates defined in S U...US;_1

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Cut-stratified programs

A program is cut-stratified if it can be partitioned into strata:

member(X, Y) :- memberchk(X, L) :-
Y = [X|]); _ false ;
S1= So=
! false, !, false ; 2 member(X, L), !, true ;
Y = [-|L], member(X, L). false.

where for all p(X) - Gi; Gp,!, G3; G4 € S; all calls in Gy are to
predicates defined in S U...US;_1

Restriction seems to capture programming practise:
» not found an non-stratified example in the wild;

» not been able to manufacture an example that puts
non-stratfied predicate to good use

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Evaluating cut-stratified programs

Denotational semantics then amounts to computing an
environment

Env = Atom — Seq*(D) — Seq*(D)

over a cut-stratified program Si,...,S,.
Lift C ordering on Seq*(D) to order Env by C

The heart of our semantics is a fixpoint operator Fs, that will map
each stratum S; into a growing function of type Env — Env

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Growing functions

A growing function f : Env — Env satisfies a weak monotonicity
property:

Vigh € Env.fC g C b C (f T w)(f) = f(g) E f(b)

Then construct
fi = (Fs Tw)(L)
fa = (Fs, T w)(f1)

o = (Fs, 7 ©)(Fn1)

CoLoR library only formalises classic fixpoint results

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

Concluding discussion

Sobering lessons:

» Coq discovered holes in our logic programming semantics that
had undergone internal checking and external review;

» Architect of semantics is not the best person to prove their
correctness because of false suppositions;

» Repairing join had far reaching implications for semantics

Future work:

» Refine semantics with set abstractions that are pairs, one that
is upward closed, the other domain closed, akin to an interval;

» Synthesis our determinacy analysis from our semantics
» Extract abstract interpreter [Blazy et al, SAS, 2012]

Kanazawa, Japan Semantics for Prolog with Cut — Revisited

