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What this talk is about

I Denotational semantics for Prolog with cut, designed to be
“oven ready” for abstract interpretation;

I Correct mistakes in [Kriener, TPLP, 2011] that we discovered
with a proof assistant;

I Draw conclusions about designing logic programming
semantics with Coq
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Semantics for cut over sequences [de Vink, SCP, 1989]

p(a, ).
p( , b).

[[p(x , y)]] 〈〉 = 〈〉

[[p(x , y)]] 〈ε〉 = 〈θ1, θ3〉
[[p(x , y)]]〈θ1〉 = 〈θ1, θ4〉
[[p(x , y)]]〈θ2〉 = 〈θ5〉
[[p(x , y)]]〈θ3〉 = 〈θ4, θ3〉

θ1 = {x 7→ a}
θ2 = {x 7→ c}
θ3 = {y 7→ b}

θ4 = {x 7→ a, y 7→ b}
θ5 = {x 7→ c , y 7→ b}

Domain constructed using the ordering: ~θ v ~κ iff ~θ is a prefix ~κ
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α γ ?
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An off-the-shelf abstract domain D

false

x ∧ y

x y

x ∨ y

true

γ(true) = Sub
γ(x ∨ y) = Θ1 ∪Θ2

γ(x) = Θ1

γ(y) = Θ2

γ(x ∧ y) = Θ1 ∩Θ2

γ(false) = ∅

where Θ1 = {θ ∈ Sub | θ(x) is ground}
Θ2 = {θ ∈ Sub | θ(y) is ground}
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Sequences over D

Problem:

〈θ1〉 〈f1〉

〈f1, f2〉〈θ1, θ2〉

α

[[·]]A

γ

[[·]]

θ1 = {x 7→ a}
θ2 = {x 7→ a, y 7→ b}

f1 = x
f2 = x ∧ y

θ3 = {x 7→ c}
θ4 = {x 7→ c , y 7→ b}

〈θ3〉 〈f1〉

〈f2〉〈θ4〉

α

[[·]]A

γ

[[·]]

Solution: design vseq so that 〈f2〉 vseq 〈f1, f2〉 (non-prefix)
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Ordering sequences over D

Subsequence ordering:

〈〉 vsub
~f

~f vsub
~f ′ ⇒ g :: ~f vsub g :: ~f ′

~f vsub
~f ′ ⇒ ~f vsub g :: ~f ′

Mix in the domain ordering:

~f vseq ~g ⇔ ∃~g ′ · ~f vpw ~g ′ ∧ ~g ′ vsub ~g

Example: 〈x ∨ y , y〉 vseq 〈true, x ∨ y , x , x ∨ y , false〉 since

〈x ∨ y , y〉 vpw 〈x ∨ y , x ∨ y〉 vsub 〈true, x ∨ y , x , x ∨ y , false〉
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Candidate meet [Kriener, TPLP, 2011]

~f ⊗ ~g = remove false ~h where

~h =


⊔

pw

{
~f upw ~g ′

∣∣∣ ~g ′ vsub ~g ∧ |~g ′| = |~f |
}

if |~f | ≤ |~g |⊔
pw

{
~f ′ upw ~g

∣∣∣ ~f ′ vsub
~f ∧ |~f ′| = |~g |

}
otherwise

Then join can be constructed from meet to give a complete lattice

Or can it?
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Coq formalisation revealed that ⊗ is non-monotonic

Problem:

I Observe 〈true, true, x〉 ⊗ 〈x , true, true〉 = 〈x , true, x〉
I Observe too 〈true, true〉 ⊗ 〈x , true, true〉 = 〈true, true〉
I Notice 〈true, true〉 vseq 〈true, true, x〉
I By monotonity one would expect 〈true, true〉 vseq 〈x , true, x〉

Show-stopper?

Solution: employ order ideals induced by vseq as follows:

I Seq↓(D) = {S | S = ↓S} where ↓S = {~f | ~f vseq ~g ∧ ~g ∈ S}
I Then 〈Seq↓(D),⊆,∩,∪〉 is a complete lattice
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Non-monotonicity bites back with cut

Problem:

I To illustrate consider the predicate:

liar :- liar, !, fail.
liar.

which succeeds if it fails and fails if it succeeds.

I Non-monotonicity has been previously dealt with by observing
that predicates such as liar also diverge, which give them a
stable value ⊥ [de Vink, SCP, 1989]

I But stratification [Apt, Blair and Walker, 1988] arguably gives
a simpler way to handle non-monotonicity that focusses solely
on one concern

Solution: avoid these vicious circular definitions
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Cut-normal programs

Introduce cut-normal form in which each predicate takes the form:

p(~x) :- G1;G2, !,G3;G4

where each Gi is a (cut-free) conjunctive goal

memberchk(X, L) :-
member(X, L), !.

member(X, [X| ]).
member(X, [ |L) :-

member(X, L).

⇒

memberchk(X, L) :-
false ;
member(X, L), !, true ;
false.

member(X, Y) :-
Y = [X| ] ;
false, !, false ;
Y = [ |L], member(X, L).

Admission: the transform has not been shown to be correct
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Cut-stratified programs

A program is cut-stratified if it can be partitioned into strata:

S1 =


member(X, Y) :-

Y = [X| ]) ;
false, !, false ;
Y = [ |L], member(X, L).

S2 =


memberchk(X, L) :-

false ;
member(X, L), !, true ;
false.


where for all p(~x) :- G1;G2, !,G3;G4 ∈ Si all calls in G2 are to
predicates defined in S1 ∪ . . . ∪ Si−1

Restriction seems to capture programming practise:

I not found an non-stratified example in the wild;

I not been able to manufacture an example that puts
non-stratfied predicate to good use

Kanazawa, Japan Semantics for Prolog with Cut – Revisited



Cut-stratified programs

A program is cut-stratified if it can be partitioned into strata:

S1 =


member(X, Y) :-

Y = [X| ]) ;
false, !, false ;
Y = [ |L], member(X, L).

S2 =


memberchk(X, L) :-

false ;
member(X, L), !, true ;
false.


where for all p(~x) :- G1;G2, !,G3;G4 ∈ Si all calls in G2 are to
predicates defined in S1 ∪ . . . ∪ Si−1

Restriction seems to capture programming practise:

I not found an non-stratified example in the wild;

I not been able to manufacture an example that puts
non-stratfied predicate to good use

Kanazawa, Japan Semantics for Prolog with Cut – Revisited



Evaluating cut-stratified programs

Denotational semantics then amounts to computing an
environment

Env = Atom→ Seq↓(D)→ Seq↓(D)

over a cut-stratified program S1, . . . ,Sn.

Lift ⊆ ordering on Seq↓(D) to order Env by v

The heart of our semantics is a fixpoint operator FSi that will map
each stratum Si into a growing function of type Env → Env
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Growing functions

A growing function f : Env → Env satisfies a weak monotonicity
property:

∀fgh ∈ Env .f v g v h v (f ↑ ω)(f)⇒ f (g) v f (h)

Then construct
f1 = (FS1 ↑ ω)(⊥)
f2 = (FS2 ↑ ω)(f1)

...
fn = (FSn ↑ ω)(fn−1)

CoLoR library only formalises classic fixpoint results
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Concluding discussion

Sobering lessons:

I Coq discovered holes in our logic programming semantics that
had undergone internal checking and external review;

I Architect of semantics is not the best person to prove their
correctness because of false suppositions;

I Repairing join had far reaching implications for semantics

Future work:

I Refine semantics with set abstractions that are pairs, one that
is upward closed, the other domain closed, akin to an interval;

I Synthesis our determinacy analysis from our semantics

I Extract abstract interpreter [Blazy et al, SAS, 2012]
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